1. Introduction and challenges of high dimensionality
2. Feature Selection

3. Feature Reduction and Metric Learning

[4. Clustering in High-Dimensional Data ]
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Challenges for Clustering High-Dimensional Data

DATABASE
GROUP

e Customer Recommendation / Target Marketing
— Data
e Customer ratings for given products

e Data matrix:
products (hundreds to thousands)

AN
4 A

customers = —

(millions) < \ rating of the ith
product by the jth

customer

(.

— Task: Cluster customers to find groups of persons that share similar
preferences or disfavor (e.g. to do personalized target marketing)

e Challenge:

customers may be grouped differently according to different
preferences/disfavors, i.e. different subsets of products

Knowledge Discovery in Databases Il: High-Dimensional Data
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Challenges for Clustering High-Dimensional Data

DATABASE
GROUP

e Relevant and irrelevant attributes
— Not all features, but a subset of the features may be relevant for clustering

— Groups of similar (“dense”) points may be identified when considering only
these features

irrelevant attribute

e
)

1
1
A 4

v

relevant attribute/
relevant subspace

— Different subsets of attributes may be relevant for different clusters
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Challenges for Clustering High-Dimensional Data

DATABASE ozt
SYSTEMS LM u . . .. | :
GROUP :

Effect on clustering:
e Traditional distance functions give equal weight to all dimensions
e However, not all dimensions are of equal importance

e Adding irrelevant dimensions ruins any clustering based on a distance
function that equally weights all dimensions
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Challenges for Clustering High-Dimensional Data

DATABASE
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GROUP

different attributes are relevant for different clusters

again
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Challenges for Clustering High-Dimensional Data

LMU

Task: Cluster test persons to find groups of individuals with similar correlation
among the concentrations of metabolites indicating homogeneous metabolic

behavior (e.g. disorder)

e Challenge:

different metabolic disorders appear through different correlations of
(subsets of) metabolites

Concentration
of Metabolite 2

4

A

N

N

Q
0&6 ® [ ]
0\% .

Concentration of Metabolite 1

Knowledge Discovery in Databases II: High-Dimensional Data

v



w

Challenges for Clustering High-Dimensional Data

DATABASE |
GROUP

e Correlation among attributes
— A subset of features may be correlated

— Groups of similar (“dense”) points may be identified when considering this
correlation of features only
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— Different correlations of attributes may be relevant for different clusters
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Challenges for Clustering High-Dimensional Data

DATABASE |

GROUP

Why not feature selection/reduction?
— (Unsupervised) feature selection/reduction is global (e.g. PCA)

— We face a local feature relevance/correlation: some features (or
combinations of them) may be relevant for one cluster, but may be
irrelevant for a second one

Knowledge Discovery in Databases II: High-Dimensional Data
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Challenges for Clustering High-Dimensional Data

DATABASE ozt
SYSTEMS LM u . . .. | :
GROUP :

Use feature selection/reduction before clustering .
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Cluster first and then apply PCA

Challenges for Clustering High-Dimensional Data
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Challenges for Clustering High-Dimensional Data

Problem Summary

e Feature relevance and correlation
- Usually, no clusters in the full dimensional space

- Often, clusters are hidden in subspaces of the data, i.e. only a subset of features

is relevant for the clustering

LMU

- E.g. a gene plays a certain role in a subset of experimental conditions

e Local feature relevance/correlation

- For each cluster, a different subset of features or a different correlation of

features may be relevant
- E.g. different genes are responsible for different phenotypes

e QOverlapping clusters

- Clusters may overlap, i.e. an object may be clustered differently in varying

subspaces

- E.g. a gene plays different functional roles depending on the environment

Knowledge Discovery in Databases Il: High-Dimensional Data
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Challenges for Clustering High-Dimensional Data

DATABASE
GROUP

e General problem setting of clustering high dimensional data

Search for clusters in
(in general arbitrarily oriented) subspaces
of the original feature space

e Challenges:

e Find the correct subspace of each cluster
- Search space:
= all possible arbitrarily oriented subspaces of a feature space
= infinite
e Find the correct cluster in each relevant subspace

- Search space:

= “Best” partitioning of points (see: minimal cut of the similarity graph)
= NP-complete [SCH75]

Knowledge Discovery in Databases Il: High-Dimensional Data
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Challenges for Clustering High-Dimensional Data

e Even worse: Circular Dependency

e Both challenges depend on each other:

LMU

e |n order to determine the correct subspace of a cluster, we need to know (at

least some) cluster members

e In order to determine the correct cluster memberships, we need to know the

subspaces of all clusters

e How to solve the circular dependency problem?

e Integrate subspace search into the clustering process
e Thus, we need heuristics to solve

- the subspace search problem
- the clustering problem

simultaneously

Knowledge Discovery in Databases Il: High-Dimensional Data
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Overview of the discussed methods

DATABASE ozt
SYSTEMS LM u . . .. | :
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B e s o mm s mm on s mm s s mm s s s s mm o,

— CLIQUE [AGGR98] F|nd all clusters in all subspaces.
— SUBCLU [KKKO0A4] Axis-parallel subspaces

— PROCLUS [APW+99] Each point is assigned to one

— PREDECON[BKKKO4] subspace cluster or noise.
Axis-parallel subspaces

.................................

* s o s s s e o s s o s mm o h s mm s ot

— ORCLUS[AYO00] Each point is assigned to one

— 4C [BKKZ04] subspace cluster or noise.
Arbitrary oriented subspaces

e Pattern based clustering

Knowledge Discovery in Databases II: High-Dimensional Data 14
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Overview of the discussed methods

GROUP 5

(e Bottom- -Up approaches Subspace Clusterlng\ A
— CLIQUE[AGGR98] Find all clusters in all subspaces.
— SUBCLU [KKKO0A4] Axis-parallel subspaces
- J
e Top-Down Approaches:: PrOJected Clusterlng’\
— PROCLUS [APW+99] Each point is assignhed to one
— PREDECON[BKKKO4] subspace cluster or noise.

Axis-parallel subspaces

.................................

* s o s s s e o s s o s mm o h s mm s ot

— ORCLUS[AYO00] Each point is assigned to one
— 4C [BKKZ04] subspace cluster or noise.

Arbitrary oriented subspaces

e Pattern based clustering
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Bottom-up Algorithms

LMU

Rational:

— Similar to Branch-and-Bound feature selection: Start with 1-dimensional
subspaces or subspace clusters and merge them to compute higher
dimensional ones.

— Most approaches transfer this problem into frequent item set mining.

e The cluster criterion must implement the downward closure (monotonicity)
property:

— If the criterion holds for a k-dimensional subspace S, then it also holds for any (k-
1)-dimensional projection of S

— Use the reverse implication for pruning: If the criterion does not hold for a (k—1)-
dimensional projection of S, then the criterion also does not hold for S

— Some approaches use other search heuristics (especially if monotonicity
does not hold) like best-first-search, greedy-search, etc.

e Better average and worst-case performance
e No guaranty on the completeness of results

Knowledge Discovery in Databases Il: High-Dimensional Data
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Downward-closure property: example

Cell C contains more than m=5 points in subspace , AB”

Bottom-up Algorithms

Monotonicity:

if C contains more than m points in subspace S then C also contains more than m points

in any subspace Tc S

=> Also in subspaces ,A"c, AB"” and ,B“c ,, AB”

Knowledge Discovery in Databases II:

LMU

Simple cluster criterion (density of grid cells):

If a cell C of side length s contains more than m points, it represents a cluster

Example: monotonicity (left) and reverse implication (right)

Cell C contains less than m=5 points in subspace , A"

=> Also in subspace ,,AB”

High-Dimensional Data
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DATABASE CLIQUE [AGG R98]
SisTENs LMU

CLIQUE is probably the first bottom-up algorithm; it uses a density-grid-based
cluster model.

g%,
Cluster Model -
e C(Clusters are “dense regions” in the feature space i i =
e Partition the feature space into ¢ equal sized parts in .
dimension (implicitly fixing side length s). T lu
e Aunitis the intersection of one interval from each dimension 720 5 |3ﬂ |35 40 45 50 55 60 65 70

age

e Dense unit: If unit u contains more than t objects, T = density threshold
=> monotonicity of dense units holds (see previous slide)

e (Clusters are maximal sets of connected dense units (e.g., A U B)

2-step Approach:

1. Find subspaces (with dense units)

2. Find subspace clusters (union of connected dense units in the same subspace)

Knowledge Discovery in Databases Il: High-Dimensional Data
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CLIQUE:
wews | 1. Identify subspaces containing clusters LMU

GROUP

1. Task: Find subspaces with dense units

e Greedy approach (Bottom-Up), comparable to APRIORI for finding frequent itemsets
(Downward Closure):

— Determine 1-dimensional dense units D,

— Candidate generation procedure:

e Basedon D, ,, the set of (k-1) dimensional dense units, generate candidate set C, by self joining D, ,
— Join condition: units share first k-2 dimensions

* Discard those candidates which have a k-1 projection not included in D, ,

e For the remaining candidates: check density

[m] [m]

B 2-dim. dense unit (eD2)

I 3-dim. candidate unit

_ A [ 1  2-dim. unit which has to be checked

Knowledge Discovery in Databases II: High-Dimensional Data
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amess: | CLIQUE: 2. Identify clusters

GROUP

2. Task: Find maximal sets of connected dense units

Given: a set of dense units D in the same k-dimensional subspace S
Output: A partition of D into clusters D, ..., D, of connected dense units

e The problem is equivalent to finding connected components in a graph

— Nodes: dense units

— Edge between two nodes if the corresponding dense units have a common face (neighboring
units)

—  Depth-first search algorithm: Start with a unit v in D, assign it to a new cluster ID and find all the
units it is connected to. Repeat if there are nodes not yet visited

Knowledge Discovery in Databases Il: High-Dimensional Data 20
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CLIQUE: Discussion

DATABASE
GROUP

. Inputparameters: ¢ and 1 specifying the density threshold
. Output: all clusters in all subspaces, clusters may overlap/be redundant

. Simple but efficient cluster model: Uses a fixed density threshold for all
subspaces (in order to ensure the downward closure property) => to
represent a cluster, a unit in 10D must contain as many points (or more) as

in 2D ...
OO QO]

(O )6 I.](.IOI.I ]

OO @@ OS)® (e

oI I X1
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- <| SUBCLU [KKK04] 1/6

GROUP

Motivation:
Drawbacks of a grid-based clustering model:
e Positioning of the grid influences the clustering

e Only rectangular regions
e Selection of £ and tis very sensitive | . &4
Example: o ! i o

| S S ©F K S N B

— i RN | ' :

Cluster for r=4 '..i,. o ¢
(is C, a cluster?) T ;".’;'.; 8o T T

, ! ! ! ' C2

for 7> 4: no cluster e B o e

(Cis lost) e | I e o d

= define regions based on the neighborhood of data points
—> use density-based clustering

Knowledge Discovery in Databases II: High-Dimensional Data
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SUBCLU: Cluster model 2/6

Density-based cluster model of DBSCAN
Clusters are maximal sets of density-connected points

Density connectivity is defined based on core points

LMU

Core points have at least MinPts points in their &-neighborhood

MinPts=5
(@) (o) (o) ®
© o ° e
o 9 o ®
pis core

Detects clusters of arbitrary shapes and positionings (in the corresponding subspaces)

p is core; o is directly density reachable from p; q is
density reachable from o is o core?

MinPts=5

p and g are density connected

Naive approach: Apply DBSCAN in all possible subspaces = exponential (2)

Idea: Exploit clustering information from previous step (subspaces)

Density-connected clusters are not monotonic
But, density connected sets are monotonic!

Knowledge Discovery in Databases Il: High-Dimensional Data
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SUBCLU: Downward closure of density connected

wnes | sets 3/6 LMU

w

GROUP

If Cis a density connected set in subspace S then Cis a density connected set in any

subspace T c S.
But, if Cis a clusterin S, it need not to be a cluster in T < S — maximality might be violated
All clusters in a higher-dimensional subspace will be subsets of the clusters detected in this

first clustering.

¢: circles indicate

{ MinPts = 4
\)@ T\

B .
w .-_.I 1 I W " l- ;:l—

(b) p and g are not density-connected

{a) p and g are density-connected via o

p and g not density connected in {B}.
Thus, they are not density connected in{A,B},
although they are density connected in {A}.

p and g density connected in {A,B}.
Thus, they are also density connected in {A} and {B}

Knowledge Discovery in Databases II: High-Dimensional Data
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SUBCLU: Discussion 6/6

DATABASE

GROUP

— Algorithm
e All subspaces that contain any density-connected set are computed
using the bottom-up approach (similar to CLIQUE/APRIORI)

e Density-connected clusters are computed using a specialized DBSCAN
run in the resulting subspace to generate the subspace clusters

— Discussion
e |nput: € and MinPts specifying the density threshold
e Qutput: all clusters in all subspaces, clusters may overlap
e Uses a fixed density threshold for all subspaces

e Advanced but costly cluster model

Knowledge Discovery in Databases Il: High-Dimensional Data
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Bottom-up Algorithms: Discussion

The key limitation: global density thresholds

Usually, the cluster criterion relies on density

In order to ensure the downward closure property, the density threshold must
be fixed

Consequence: the points in an e.g. 20-dimensional subspace cluster must be as
dense as in an e.g. 2-dimensional cluster

This is a rather optimistic assumption since the data space grows exponentially
with increasing dimensionality (see “curse” discussion)
Consequences:

— A strict threshold will most likely produce only lower dimensional clusters

— A loose threshold will most likely produce higher dimensional clusters but also a
huge amount of (potentially meaningless) low dimensional clusters

Knowledge Discovery in Databases Il: High-Dimensional Data 26
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Overview of the discussed methods

DATABASE il o
SYSTEMS LMU G
GROUP ;

B e s o mm s mm on s mm s s mm s s s s mm o,

— CLIQUE [AGGR98] F|nd all clusters in all subspaces.
— SUBCLU [KKKO04] Axis-parallel subspaces

& Top-Down Approaches: Projecied Clustering— O\

— PROCLUS [APW+99] Each point is assigned to one

— PREDECON[BKKKO4] subspace cluster or noise.
Axis-parallel subspaces

.................................

* s o s s s e o s s o s mm o h s mm s ot

— ORCLUS[AYO00] Each point is assigned to one
— 4C [BKKZ04] subspace cluster or noise.
k Arbitrary oriented subspacy

e Pattern based clustering

Knowledge Discovery in Databases II: High-Dimensional Data 27
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Top-down Algorithms

LMU

Rational:

Cluster-based approach:

Learn the subspace of a cluster in the entire d-dimensional feature space

Start with full-dimensional clusters

Iteratively refine the cluster memberships of points and the subspaces of the cluster
PROCLUS[APW+99], ORCLUS[AY00]

Instance-based approach:

Learn for each point its subspace preference in the entire d-dimensional feature
space

The subspace preference specifies the subspace in which each point “clusters best”
Merge points having similar subspace preferences to generate the clusters
PREDECON[BKKKO04] 4C[BKKZ04]

Knowledge Discovery in Databases Il: High-Dimensional Data 28
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Top-down Algorithms: The key problem

DATABASE
GROUP

How should we learn the subspace preference of a cluster or a point?

e Most approaches rely on the so-called “locality assumption”

— The subspace is usually learned from the local neighborhood of cluster
representatives/cluster members in the entire feature space:

e Cluster-based approach: the local neighborhood of each cluster representative is
evaluated in the d-dimensional space to learn the “correct” subspace of the
cluster

e Instance-based approach: the local neighborhood of each point is evaluated in
the d-dimensional space to learn the “correct” subspace preference of this point
(i.e. the subspace in which the cluster exists that accommodates this point)

e The locality assumption: the subspace preference can be learned from the local
neighborhood in the d-dimensional space

e Other approaches learn the subspace preference of a cluster or a point from
randomly sampled points

Knowledge Discovery in Databases Il: High-Dimensional Data
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Overview of the discussed methods

DATABASE il o
SYSTEMS LMU G
GROUP ;

B e s o mm s mm on s mm s s mm s s s s mm o,

— CLIQUE [AGGR98] F|nd all clusters in all subspaces.
— SUBCLU [KKKO04] Axis-parallel subspaces
/. T ............................. \
op-Down Approaches:! PrOJected CIusterlng\
— PROCLUS [APW+99] Each point is assignhed to one
— PREDECON[BKKKO4] subspace cluster or noise.
\_ Axis-parallel subspaces )
............... | 2
e Top-Down Approaches: 'Correlatlon Clustering !
— ORCLUS[AYOO] Each point is assigned to one
— 4C [BKKZO4] subspace cluster or noise.

Arbitrary oriented subspaces

e Pattern based clustering

Knowledge Discovery in Databases II: High-Dimensional Data 30
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PROCLUS [APW+99] 1/6

e PROjected CLUStering

— Cluster-based top-down approach: we learn

the subspace for each cluster

— K-medoid cluster model

e Cluster is represented by its medoid

e To each cluster a subspace (of relevant
attributes) is assigned

e Each point is assigned to the nearest

LMU

~
PN
7

4 e

»

medoid (where the distance to each 4
medoid is based on the corresponding
subspace of the medoid)

e Points that have a large distance
to their nearest medoids are

classified as noise

‘ ’
//’, R

L8 s e
7 Tq ’ -
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Ve \\ 4
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== | PROCLUS: Algorithm —Initialization phase 2/6
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GROUP

 3-phase algorithm: initialization, iterative phase, refinement

— Input:
0 The set of data points
O Number of clusters, denoted by k
0 Average number of dimensions for each clusters, denoted by L

— Output:
0 The clusters found, and the their associated dimensions

e [Phase 1] Initialization of cluster medoids
— Ideally we want a set of centroids, where each centroid comes from a different

cluster.
— We don’t know which are these k points though, so we choose a superset M of b*k
medoids such that they are well separated.

e Chose a random sample (S) of a*k data points

e Out of S, select b*k points (M) by greedy selection : medoids are picked iteratively so that
the current medoid is well separated from the medoids that have been chosen so far.

— Input parameters a and b are introduced for performance reasons

Knowledge Discovery in Databases Il: High-Dimensional Data 32
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PROCLUS: Algorithm —Iterative phase 3/6

LMU

e [Phase 2] Iterative phase (works similar to any k-medoid clustering)

— k randomly chosen medoids from M are the initial cluster medoids

— ldea: replace the “bad” medoids with other points in M if necessary = we should
be able to evaluate the quality of the clustering by a given set of medoids.

Procedure:

(0]

(0]
(0]
(0]

Find dimensions related to the medoids

Assign data points to the medoids

Evaluate the clusters formed

Find the bad medoid, and try the result of replacing bad medoid

Knowledge Discovery in Databases Il: High-Dimensional Data

33



PROCLUS: Algorithm —Iterative phase
omenst | — Find cluster dimensions 4/6 IMU

SYSTEMS
GROUP

w

e For each medoid m;, let 6 be the nearest distance to its closest medoid
e All the data points within 6 will be assigned to the medoid m; (L, locality of m,)

locality of A f 0

¢ [ntuition: to each medoid we want to associate those dimensions where the
points are closed to the medoid in that dimension

e Compute the average distance along each dimension from the points in L, to m..

|
— Let X;; be the avg distance along dimension j

e (Calculate for m; the mean Y;; and standard deviation o of X;,;

e Calculate Zj; = (Xi;—Yij) / 01

e Choose k x | smallest values Z;; with at least 2 chosen for each medoids
e Qutput: A set of k medoids and their associated dimensions

Knowledge Discovery in Databases Il: High-Dimensional Data
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PROCLUS: Algorithm —Iterative phase
— Assigning data points —evaluate clusters 5/6

LMU

Assign each data point to its closest medoid using Manhattan segmental
distance (only relevant dimensions count)

Manhattan segmental distance (A variance of Manhattan distance): For any two
points x1,x2 and any set of dimensions D, |D|< d:

Zie
dD(X19X2): >

How to evaluate the clusters?

Xpi = Xz,i‘
D

— Use average Manhattan segmental distance from the points in C, to the centroid of C,

along dimensionj_ & - Z:(:k‘ci"wi
~|D| N

Replace bad medoids with random points from M

Terminate if the clustering quality does not increase after a given number of
current medoids have been exchanged with medoids from M (it is not clear, if
there is another hidden parameter in that criterion)

Knowledge Discovery in Databases Il: High-Dimensional Data 35
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PROCLUS: Algorithm —Iterative phase 6/6

DATABASE |
GROUP

e [Phase 3] Refinement

— Reassign subspaces to medoids as above (but use only the points assigned to each
cluster rather than the locality of each cluster, i.e., C, not L,)

— Reassign points to medoids
— Points that are not in the locality of any medoid are classified as noise

Knowledge Discovery in Databases II: High-Dimensional Data
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PREDECON[BKKKO04] 1/3

DATABASE

GROUP

Instance-based top-down approach: we learn the subspace for each instance

Extends DBSCAN to high dimensional spaces by incorporating the notion of
dimension preferences in the distance function

For each point p, it defines its subspace preference vector:
.1 Ur VAR}. > 0

W, = (. wo....1y W, =
P { j {K‘ i VAR, <O

VAR is the variance along dimension jin N_.(p):

> gen. (p (dist(ma, (p). 7a,(q)))?

VAR, (N.(p)) =

N-(p)] B

v

6, k (k>>1) are input parameters

Knowledge Discovery in Databases II: High-Dimensional Data




e Preference weighted distance function:

d

diSt'P(pa Q) - J Z ul’i ' (ﬂ'Ai (P) — TA; (Q))2

=1

distprer(p,q) = max{disty(p, q). disty(q,p)}
e Preference weighted €-neighborhood:

MfF@;) ={r € ﬂ|di3tpmf(p_, r) < e}
o N

5/_‘1:
simple ' \ preference weighted
e-neighborhood e 69 },8 g-neighborhood

Ay e Ay
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PREDECON[BKKKO04] 3/3

e Preference weighted core points:

Core!™ (p) & PDIM(NL(p)) < AA |NT(p)| = p

den

e Direct density reachability, reachability and

connectivity are defined based on preference

weighted core points

e A subspace preference cluster is a maximal

density connected set of points associated

with a certain subspace preference vector.

Knowledge Discovery in Databases Il: High-Dimensional Data
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Overview of the discussed methods

DATABASE ozt
SYSTEMS LM u . . .. | :
GROUP :

B e s o mm s mm on s mm s s mm s s s s mm o,

— CLIQUE [AGGR98] F|nd all clusters in all subspaces.
— SUBCLU [KKKO04] Axis-parallel subspaces

— PROCLUS [APW+99] Each point is assigned to one
— PREDECON[BKKKO4] subspace cluster or noise.
Axis-parallel subspaces
(o Top-Down Approaches:iCorreIation Clustering ! A
— ORCLUS[AYOO] Each point is assigned to one
— 4C [BKKZ04] subspace cluster or noise.
\_ Arbitrary oriented subspaces /

e Pattern based clustering
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e Motivating example:
— Cluster 3 exists in an axis-parallel subspace

— Clusters 1 and 2 exist in (different) arbitrarily oriented subspaces: if the cluster

members are projected onto the depicted subspaces, the points are “densely
packed”

subspace for
cluster 1

N
& 3
o e
cluster 3 S 8
4---.-4@:'-‘"*"‘3, %
o o200
Tog o ° @
° ng
subspace for 5
cluster 3 -
o Q.g,@ iﬂ. subspace for
e AN cluster 2
o = * o

e Subspace clustering and projected clustering algorithms find axis-parallel
subspaces

e Correlation clustering for finding clusters in arbitrary oriented subspaces

Knowledge Discovery in Databases II: High-Dimensional Data
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ORCLUS[AY00] 1/3

LMU

e ORCLUS (arbitrarily ORiented projected CLUSter generation) first approach to
generalized projected clustering

Input:

E is a set of orthonormal vectors, |E|<d

e The number of clusters k

* The dimensionality of the subspace of the clusters, | (=|E|)
Output
e A set of k clusters and their associated subspaces of dimensionality |

Main idea

A generalized projected cluster is a set of vectors E and a set of points C such that the
points in C are closely clustered in the subspace defined by the vectors E.

» To find the subspace of a cluster C,, compute the dxd covariance matrix M, for C, and
determine the eigenvectors. Pick the |_ eigenvectors with the smallest eigenvalues.

e Relies on cluster-based locality assumption: subspace of each cluster is learned from its

members

Knowledge Discovery in Databases Il: High-Dimensional Data




w

DATABASE
GROUP

ORCLUS: Algorithm 2/3

similar ideas to PROCLUS [APW+99]
k-means like approach
start with k. > k seeds

assign points to clusters according to distance function based on
the eigensystem of the current cluster (starting with axes of data
space, i.e. Euclidean distance)

The eigensystem is iteratively adapted based on the updated
cluster members

Reduce the number of clusters k_in each iteration by merging
best-fitting cluster pairs
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¥ | ORCLUS: Merging clusters 3/3

e Each cluster C, existsin a / .
i i , clustet :
possible dlffere_nt subspace S, e"geﬁsystem o 0 Cigensysion o
how do we decide what to 00® 5% & ® Cluster 5
merge? @
e Compute the subspace of their

union GUC, eigenvectors g

corresponding to the smallest | . Huster 2
eigenvalues) 5 eigensystem cluster 11 Cluster
0.0 % s O
e Check the cluster energy of o® @ 0 © °
CUC,in this subspace (mean g
>
square distance of the points 2 S

from the centroid in this
subspace) — indicator of how
well the points combine

Assess average distance in all merged pairs of clusters and finally merge the best fitting
pair, that with the smallest cluster energy

Continue until the desired number of clusters, k, is achieved.
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4C = Computing Correlation Connected Clusters
Idea: Integrate PCA into density-based clustering.

Approach:

e Check the core point property of a point p in the complete feature space
e Perform PCA on the local neighborhood S of p to find subspace
correlations

PCA factorizes M, into M, =V E VT
V: eigenvectors
E: eigenvalues

A parameter 6 discerns large from small
eigenvalues.

* CorDim(S)=#eigenvalues>6

* In the eigenvalue matrix of p, large eigenvalues
are replaced by 1, small eigenvalues by a value k
>>1 - adapted eigenvalue matrix E’
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4C: Distance measure

DATABASE
GROUP

e effect on distance measure:

&
K

el

distance.P /
o® ¢

£

e distance of p and g w.r.t. p: \/(D—Q)°Vp ) E;) ‘VpT (p_q)T

e distance of pand g w.r.t. g: \/(q — p)-Vq ‘ E(; ‘VqT (q — p)T
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4C: correlation neighbors
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GROUP

LMU

e symmetry of distance measure by choosing the maximum:

e pand g are correlation-neighbors if

J(p-a)-v,-E, V] (p-q).,
@-p)V, E -V (- p)

max-
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4C
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4C vs. DBSCAN
¢~ Cluster found Clusters found
\ _' by DBSCAN by 4C
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4C: discussion

DATABASE
GROUP

e finds arbitrary number of clusters

e requires specification of density-thresholds

— U (minimum number of points): rather intuitive
— ¢ (radius of neighborhood): hard to guess

e biased to maximal dimensionality A of correlation clusters
(user specified)

e instance-based locality assumption: correlation distance measure
specifying the subspace is learned from local neighborhood of
each point in the d-dimensional space

enhancements also based on PCA:
e COPAC [ABK+07c] and
e ERIC [ABK+07b]
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Correlation clustering with PCA: Discussion

LMU

e PCA: mature technique, allows construction of a broad range of
similarity measures for local correlation of attributes

e drawback: all approaches suffer from locality assumption
e successfully employing PCA in correlation clustering in “really”

high-dimensional data requires more effort henceforth

e So how to overcome the locality assumption???

=> different method to determine correlation?

=> Hough transform (computer graphics)
find structures (e.g. lines, circles) in images

Knowledge Discovery in Databases Il: High-Dimensional Data
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CASH [ABKKZ 07]

LMU

e Basic idea of CASH (= Clustering in Arbitrary Subspaces based on
the Hough transform)

Transform each object into a so-called parameter space representing all
possible subspaces accommodating this object (i.e. all hyper-planes
through this object)

This parameter space is a continuum of all these subspaces

The subspaces are represented by a considerably small number of
parameters

This transform is a generalization of the Hough Transform (which is
designed to detect linear structures in 2D images) for arbitrary dimensions

Knowledge Discovery in Databases ll: High-Dimensional Data
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CASH

LMU

e Transform

For each d-dimensional point p there is an infinite number of (d-1)-
dimensional hyper-planes through p

Each of these hyper-planes s is defined by (p,a,..., a4,), Where a,..., 04 is
the normal vector n, of the hyper-plane s

The function fp(ocl,..., Oy = O, = <p,n> mapspand a,,.., o, onto the
distance o, of the hyper-plane s to the origin

The parameter space plots the graph of this function

y . o
.27 S
o~
7 B T}
o fp
//// p2 pr.
//‘/ 1
,,»” Py /
/}\v \aQ R (a5955)
’ data space X Parameter space o
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CASH
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— Properties of this transform

X3

point in the data space = sinusoide curve in the parameter space
point in the parameter space = hyper-plane in the data space
points on a common hyper-plane in the data space (cluster)

= sinusoide curves intersecting at one point in the parameter space
intersection of sinusoide curves in the parameter space

= hyper-plane accommodating the corresponding points in data space
P

B o

05~ “'Trb———:.--:;; g A
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CASH

e Detecting clusters

determine all intersection points of at
least m curves in the parameter space
=> (d-1)-dimensional cluster

Exact solution (check all pair-wise
intersections) is too costly

— Heuristics are employed

e Grid-based bisecting search

=> Find cells with at least m curves
© determining the curves that are
within a given cell is in O(d3)
@ Number of cells O(r9), where
I is the resolution of the grid
@ high value for r necessary

\
s
=

10

-10

dense region
cluster C1

dense region

]

0.931523.  0.326531
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e Complexity
— Bisecting search

— OQver all

CASH

Determination of curves in a cell

O(s - c)
O(n- d?)
O(s-c-n-d¥

(algorithms for PCA are also in O(d?))

e Robustness against noise

F-Measure [%]

100% -

90% -
80% -
70%
60% -
50%
40%
30%
20%
10%

0%

e

= CASH
-*-4C
-+ ORCLUS

0

T T T T T T T T '_l
10 20 30 40 50 60 70 80 90
level of noise objects [%]
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(c = number of cluster found — not an input parameter!!!)

3000 =
2500 4 f:"
S 2000 4 / = CASH
E‘ / #4C
2 1500 1 P 5 -+ ORCLUS
S 1000 4
500 -
o+ = @ O OO OO0
10 20 30 40 50 60 70 80 90 100
size * 1000
1000 000
100 000 - -~
10 000 - //’
1000 ¥
\ slope=3.14
108: s ....1 corresponding to O(d?)
10 -
i 1
1 10 100

dimensionality
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Clustering High Dimensional Data:
Discussion 1/2

LMU

e Finding clusters in (arbitrarily oriented) subspaces of the original

feature space.

e The subspace (where the cluster exists) is part of the cluster

definition.

e The challenge is 2-fold: finding the correct subspace for each

cluster and the correct cluster in each relevant subspace

— Integrate subspace search in the clustering process

e Traditional full dimensional clustering paradigms transferred in the

high dimensional space.
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Clustering High Dimensional Data:

Discussion 2/2 LMU

e Different types of methods

Bottom-Up approaches: Subspace Clustering
O Find clusters in all subspaces
O Restrict the search space by downward closure property
O Axis-parallel subspaces
0 CLIQUE [AGGR98], SUBCLU [KKKO04]
Top-Down Approaches: Projected Clustering
0 Each point is assigned to one subspace cluster or noise.
O Subspaces are discovered based on the locality (cluster-based, instance-based)
O Axis-parallel subspaces
0 PROCLUS [APW+99], PREDECON[BKKKO04]
Top-Down Approaches: Correlation Clustering
0 Each point is assigned to one subspace cluster or noise.
O Subspace are discovered based on the locality (cluster-based, instance-based)
O Arbitrary oriented subspaces
O ORCLUS[AYO00], 4C [BKKZ04], CASH []

Pattern based clustering (not covered here)
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