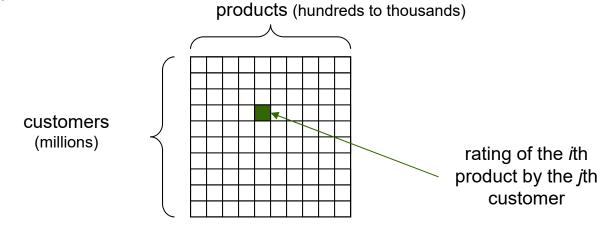


Outline

- 1. Introduction and challenges of high dimensionality
- 2. Feature Selection

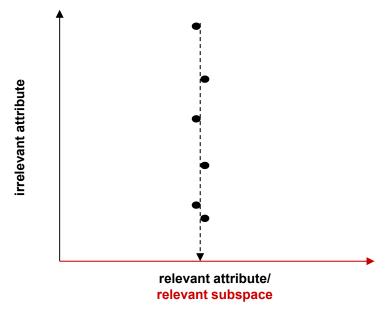
- 3. Feature Reduction and Metric Learning
- 4. Clustering in High-Dimensional Data

- Customer Recommendation / Target Marketing
 - Data
 - Customer ratings for given products
 - Data matrix:



- Task: Cluster customers to find groups of persons that share similar preferences or disfavor (e.g. to do personalized target marketing)
 - Challenge:
 - customers may be grouped differently according to different preferences/disfavors, i.e. different subsets of products

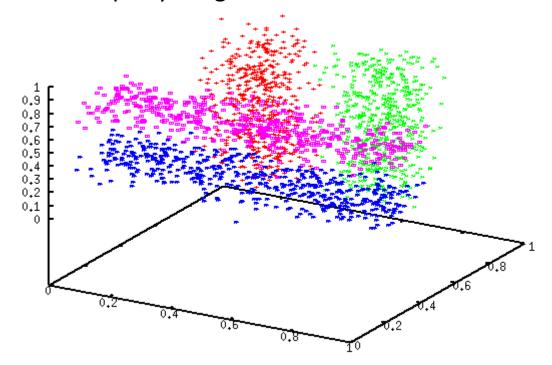
- Relevant and irrelevant attributes
 - Not all features, but a subset of the features may be relevant for clustering
 - Groups of similar ("dense") points may be identified when considering only these features



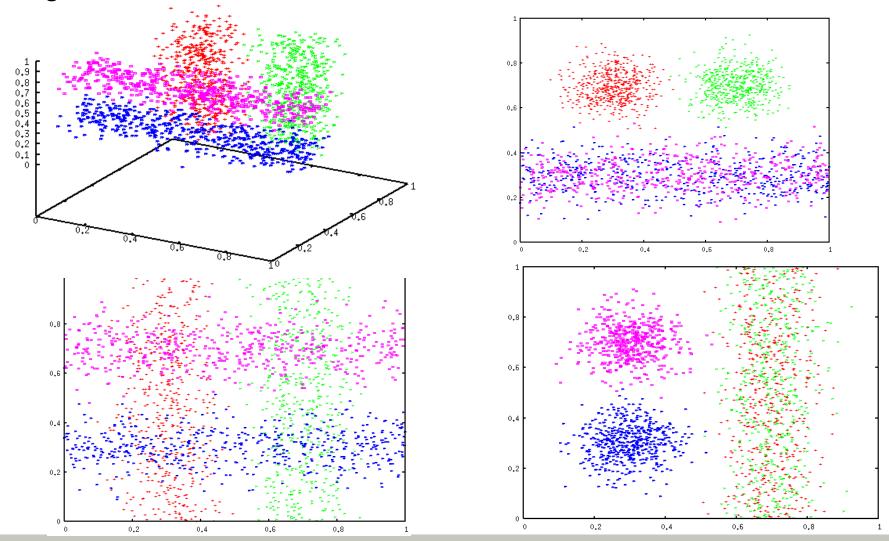
Different subsets of attributes may be relevant for different clusters

Effect on clustering:

- Traditional distance functions give equal weight to all dimensions
- However, not all dimensions are of equal importance
- Adding irrelevant dimensions ruins any clustering based on a distance function that equally weights all dimensions

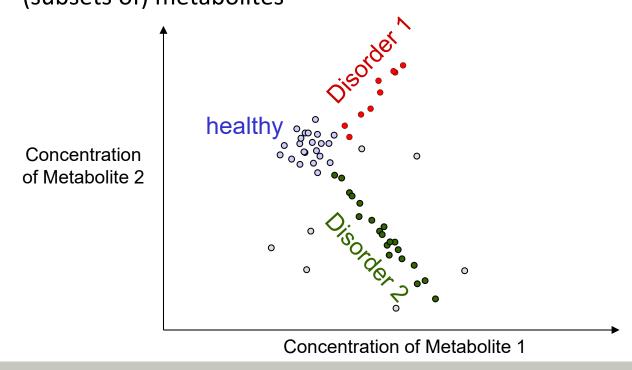


again: different attributes are relevant for different clusters

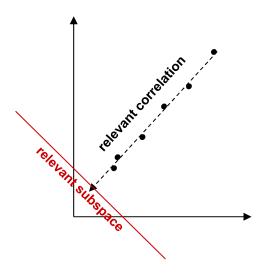


Task: Cluster test persons to find groups of individuals with similar correlation among the concentrations of metabolites indicating homogeneous metabolic behavior (e.g. disorder)

 Challenge: different metabolic disorders appear through different correlations of (subsets of) metabolites



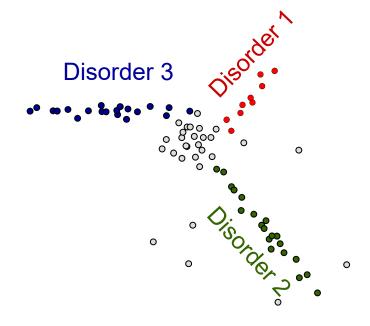
- Correlation among attributes
 - A subset of features may be correlated
 - Groups of similar ("dense") points may be identified when considering this correlation of features only

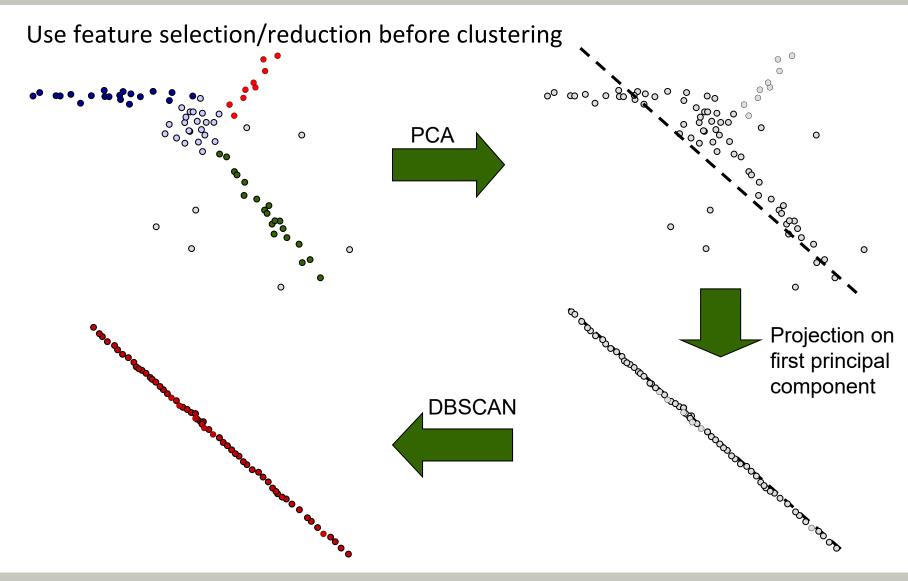


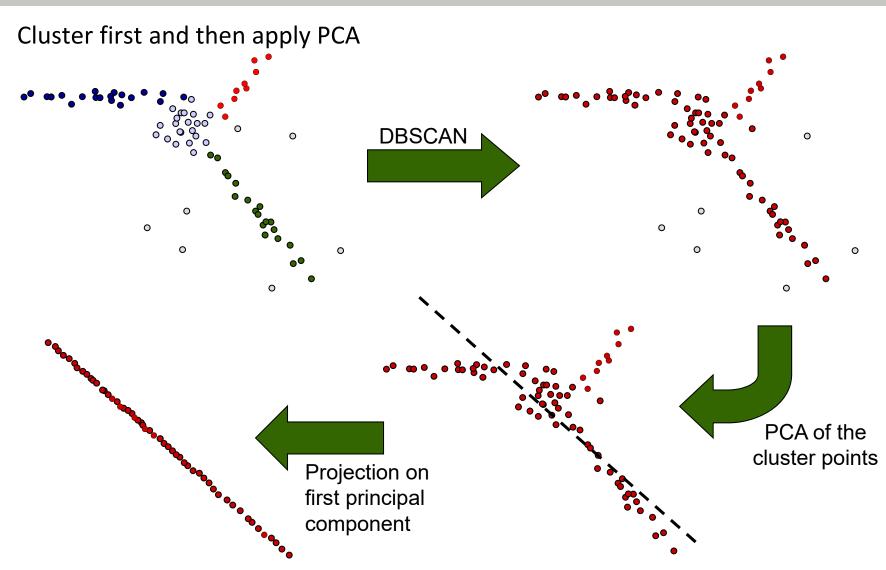
Different correlations of attributes may be relevant for different clusters

Why not feature selection/reduction?

- (Unsupervised) feature selection/reduction is global (e.g. PCA)
- We face a local feature relevance/correlation: some features (or combinations of them) may be relevant for one cluster, but may be irrelevant for a second one







Problem Summary

- Feature relevance and correlation
 - Usually, no clusters in the full dimensional space
 - Often, clusters are hidden in subspaces of the data, i.e. only a subset of features is relevant for the clustering
 - E.g. a gene plays a certain role in a subset of experimental conditions
- Local feature relevance/correlation
 - For each cluster, a different subset of features or a different correlation of features may be relevant
 - E.g. different genes are responsible for different phenotypes
- Overlapping clusters
 - Clusters may overlap, i.e. an object may be clustered differently in varying subspaces
 - E.g. a gene plays different functional roles depending on the environment

General problem setting of clustering high dimensional data

Search for clusters in (in general arbitrarily oriented) subspaces of the original feature space

- Challenges:
 - Find the correct subspace of each cluster
 - Search space:
 - all possible arbitrarily oriented subspaces of a feature space
 - infinite
 - Find the correct cluster in each relevant subspace
 - Search space:
 - "Best" partitioning of points (see: minimal cut of the similarity graph)
 - NP-complete [SCH75]

- Even worse: *Circular Dependency*
 - Both challenges depend on each other:
 - In order to determine the correct subspace of a cluster, we need to know (at least some) cluster members
 - In order to determine the correct cluster memberships, we need to know the subspaces of all clusters
- How to solve the circular dependency problem?
 - Integrate subspace search into the clustering process
 - Thus, we need heuristics to solve
 - the subspace search problem
 - the clustering problem

simultaneously

Overview of the discussed methods

- Bottom-Up approaches: Subspace Clustering -
 - CLIQUE [AGGR98]
 - SUBCLU [KKK04]

Find all clusters in all subspaces.

Axis-parallel subspaces

- Top-Down Approaches: Projected Clustering
 - PROCLUS [APW+99]
 - PREDECON[BKKK04]

Each point is assigned to one subspace cluster or noise.

Axis-parallel subspaces

- Top-Down Approaches: Correlation Clustering
 - ORCLUS[AY00]
 - 4C [BKKZ04]

Each point is assigned to one subspace cluster or noise.

Arbitrary oriented subspaces

Pattern based clustering

Overview of the discussed methods

- Bottom-Up approaches: Subspace Clustering
 - CLIQUE [AGGR98]
 - SUBCLU [KKK04]

Find all clusters in all subspaces.

Axis-parallel subspaces

- Top-Down Approaches: Projected Clustering +
 - PROCLUS [APW+99]
 - PREDECON[BKKK04]

Each point is assigned to one subspace cluster or noise.

Axis-parallel subspaces

- Top-Down Approaches: Correlation Clustering
 - ORCLUS[AY00]
 - 4C [BKKZ04]

Each point is assigned to one subspace cluster or noise.

Arbitrary oriented subspaces

Pattern based clustering

Bottom-up Algorithms

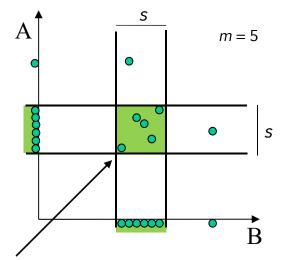
• Rational:

- Similar to Branch-and-Bound feature selection: Start with 1-dimensional subspaces or subspace clusters and merge them to compute higher dimensional ones.
- Most approaches transfer this problem into frequent item set mining.
 - The cluster criterion must implement the downward closure (monotonicity) property:
 - If the criterion holds for a k-dimensional subspace S, then it also holds for any (k–1)-dimensional projection of S
 - Use the reverse implication for pruning: If the criterion does not hold for a (k-1)-dimensional projection of S, then the criterion also does not hold for S
- Some approaches use other search heuristics (especially if monotonicity does not hold) like best-first-search, greedy-search, etc.
 - Better average and worst-case performance
 - No guaranty on the completeness of results

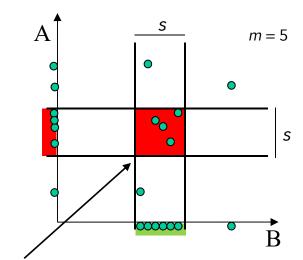
Bottom-up Algorithms

Downward-closure property: example

- Simple cluster criterion (density of grid cells):
 - If a cell C of side length s contains more than m points, it represents a cluster
- Monotonicity:
 - if C contains more than m points in subspace S then C also contains more than m points in any subspace $T \subset S$
 - Example: monotonicity (left) and reverse implication (right)



Cell *C* contains more than m=5 points in subspace "AB" => Also in subspaces "A" \subset "AB" and "B" \subset "AB"



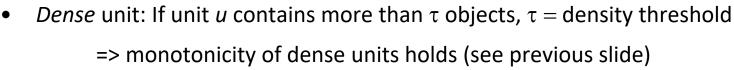
Cell *C* contains less than *m*=5 points in subspace "A" => Also in subspace "AB"

CLIQUE [AGGR98]

CLIQUE is probably the first bottom-up algorithm; it uses a density-grid-based cluster model.

Cluster Model

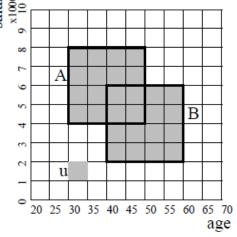
- Clusters are "dense regions" in the feature space
- Partition the feature space into ξ equal sized parts in dimension (implicitly fixing side length s).
- A *unit* is the intersection of one interval from each dimension



Clusters are maximal sets of connected dense units (e.g., A U B)

2-step Approach:

- 1. Find subspaces (with dense units)
- 2. Find subspace clusters (union of connected dense units in the same subspace)

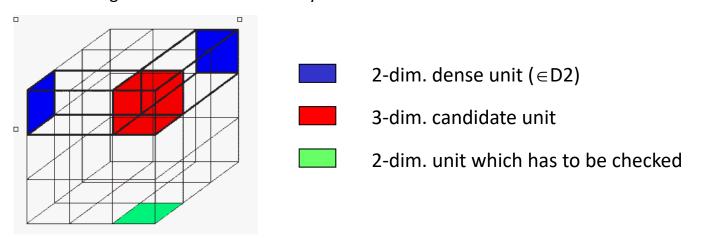


CLIQUE:

1. Identify subspaces containing clusters

1. Task: Find subspaces with dense units

- Greedy approach (Bottom-Up), comparable to APRIORI for finding frequent itemsets (Downward Closure):
 - Determine 1-dimensional dense units D₁
 - Candidate generation procedure:
 - Based on D_{k-1} , the set of (k-1) dimensional dense units, generate candidate set C_k by self joining D_{k-1}
 - Join condition: units share first k-2 dimensions
 - Discard those candidates which have a k-1 projection not included in D_{k-1}
 - For the remaining candidates: check density



CLIQUE: 2. Identify clusters

2. Task: Find maximal sets of connected dense units

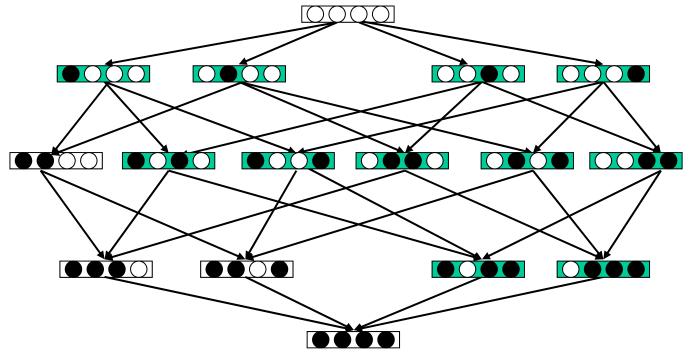
Given: a set of dense units *D* in the same *k*-dimensional subspace *S*

Output: A partition of D into clusters D_1 , ..., D_k of connected dense units

- The problem is equivalent to finding connected components in a graph
 - Nodes: dense units
 - Edge between two nodes if the corresponding dense units have a common face (neighboring units)
 - Depth-first search algorithm: Start with a unit u in D, assign it to a new cluster ID and find all the units it is connected to. Repeat if there are nodes not yet visited

CLIQUE: Discussion

- Input parameters: ξ and τ specifying the density threshold
- Output: all clusters in all subspaces, clusters may overlap/be redundant
- Simple but efficient cluster model: Uses a fixed density threshold for all subspaces (in order to ensure the downward closure property) => to represent a cluster, a unit in 10D must contain as many points (or more) as in 2D ...



SUBCLU [KKK04] 1/6

Motivation:

Drawbacks of a grid-based clustering model:

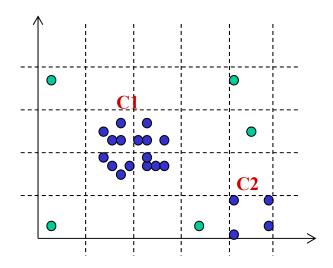
- Positioning of the grid influences the clustering
- Only rectangular regions
- Selection of ξ and τ is very sensitive Example:

```
Cluster for \tau = 4

(is C_2 a cluster?)

for \tau > 4: no cluster

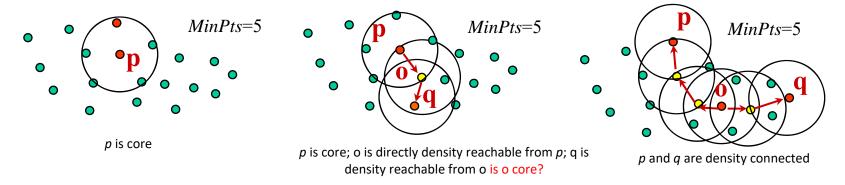
( C_1 is lost)
```



- ⇒ define regions based on the neighborhood of data points
- ⇒ use density-based clustering

SUBCLU: Cluster model 2/6

- Density-based cluster model of DBSCAN
- Clusters are maximal sets of density-connected points
- Density connectivity is defined based on core points
- Core points have at least *MinPts* points in their ε -neighborhood



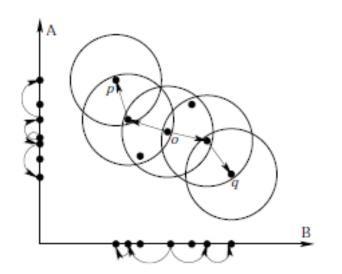
- Detects clusters of arbitrary shapes and positionings (in the corresponding subspaces)
- Naïve approach: Apply DBSCAN in all possible subspaces \rightarrow exponential (2^d)
- Idea: Exploit clustering information from previous step (subspaces)
 - Density-connected clusters are not monotonic
 - But, density connected sets are monotonic!

SUBCLU: Downward closure of density connected sets 3/6

If C is a density connected set in subspace S then C is a density connected set in any subspace $T \subset S$.

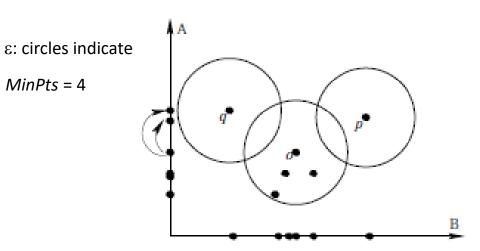
- But, if C is a cluster in S, it need not to be a cluster in $T \subset S$ maximality might be violated
- All clusters in a higher-dimensional subspace will be subsets of the clusters detected in this first clustering.

MinPts = 4



(a) p and q are density-connected via o

p and q density connected in {A,B}. Thus, they are also density connected in {A} and {B}



(b) p and q are not density-connected

p and q not density connected in {B}. Thus, they are not density connected in{A,B}, although they are density connected in {A}.

SUBCLU: Discussion 6/6

Algorithm

- All subspaces that contain any density-connected set are computed using the bottom-up approach (similar to CLIQUE/APRIORI)
- Density-connected clusters are computed using a specialized DBSCAN run in the resulting subspace to generate the subspace clusters

Discussion

- Input: ε and MinPts specifying the density threshold
- Output: all clusters in all subspaces, clusters may overlap
- Uses a fixed density threshold for all subspaces
- Advanced but costly cluster model

Bottom-up Algorithms: Discussion

The key limitation: *global density thresholds*

- Usually, the cluster criterion relies on density
- In order to ensure the downward closure property, the density threshold must be fixed
- Consequence: the points in an e.g. 20-dimensional subspace cluster must be as dense as in an e.g. 2-dimensional cluster
- This is a rather optimistic assumption since the data space grows exponentially with increasing dimensionality (see "curse" discussion)
- Consequences:
 - A strict threshold will most likely produce only lower dimensional clusters
 - A loose threshold will most likely produce higher dimensional clusters but also a huge amount of (potentially meaningless) low dimensional clusters

Overview of the discussed methods

- Bottom-Up approaches: Subspace Clustering -
 - CLIQUE [AGGR98]

- SUBCLU [KKK04]

Find all clusters in all subspaces.

Axis-parallel subspaces

- Top-Down Approaches: Projected Clustering
 - PROCLUS [APW+99]
 - PREDECON[BKKK04]

Each point is assigned to one subspace cluster or noise.

Axis-parallel subspaces

- Top-Down Approaches: Correlation Clustering
 - ORCLUS[AY00]

- 4C [BKKZ04]

Each point is assigned to one subspace cluster or noise.

Arbitrary oriented subspaces

Pattern based clustering

Top-down Algorithms

Rational:

- Cluster-based approach:
 - Learn the subspace of a cluster in the entire d-dimensional feature space
 - Start with full-dimensional clusters
 - Iteratively refine the cluster memberships of points and the subspaces of the cluster
 - PROCLUS[APW+99], ORCLUS[AY00]
- Instance-based approach:
 - Learn for each point its subspace preference in the entire d-dimensional feature space
 - The subspace preference specifies the subspace in which each point "clusters best"
 - Merge points having similar subspace preferences to generate the clusters
 - PREDECON[BKKK04] 4C[BKKZ04]

Top-down Algorithms: The key problem

How should we learn the subspace preference of a cluster or a point?

- Most approaches rely on the so-called "locality assumption"
 - The subspace is usually learned from the local neighborhood of cluster representatives/cluster members in the entire feature space:
 - Cluster-based approach: the *local neighborhood* of each cluster representative is evaluated in the *d*-dimensional space to learn the "correct" subspace of the cluster
 - Instance-based approach: the *local neighborhood* of each point is evaluated in the *d*-dimensional space to learn the "correct" subspace preference of this point (i.e. the subspace in which the cluster exists that accommodates this point)
- The locality assumption: the subspace preference can be learned from the local neighborhood in the d-dimensional space
- Other approaches learn the subspace preference of a cluster or a point from randomly sampled points

Overview of the discussed methods

- Bottom-Up approaches: Subspace Clustering
 - CLIQUE [AGGR98]

- SUBCLU [KKK04]

Find all clusters in all subspaces.

Axis-parallel subspaces

- Top-Down Approaches: Projected Clustering
 - PROCLUS [APW+99]
 - PREDECON[BKKK04]

Each point is assigned to one subspace cluster or noise.

Axis-parallel subspaces

- Top-Down Approaches: Correlation Clustering
 - ORCLUS[AY00]
 - 4C [BKKZ04]

Each point is assigned to one subspace cluster or noise.

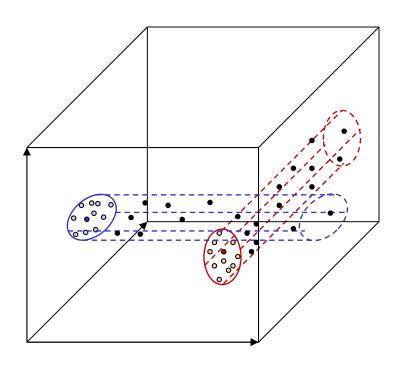
Arbitrary oriented subspaces

Pattern based clustering

PROCLUS [APW+99] 1/6

PROjected CLUStering

- Cluster-based top-down approach: we learn the subspace for each cluster
- K-medoid cluster model
 - Cluster is represented by its medoid
 - To each cluster a subspace (of relevant attributes) is assigned
 - Each point is assigned to the nearest medoid (where the distance to each medoid is based on the corresponding subspace of the medoid)
 - Points that have a large distance to their nearest medoids are classified as noise



PROCLUS: Algorithm –Initialization phase 2/6

- 3-phase algorithm: initialization, iterative phase, refinement
 - Input:
 - The set of data points
 - Number of clusters, denoted by k
 - Average number of dimensions for each clusters, denoted by L
 - Output:
 - o The clusters found, and the their associated dimensions
 - [Phase 1] Initialization of cluster medoids
 - Ideally we want a set of centroids, where each centroid comes from a different cluster.
 - We don't know which are these k points though, so we choose a superset M of b*k medoids such that they are well separated.
 - Chose a random sample (S) of a*k data points
 - Out of S, select b*k points (M) by greedy selection: medoids are picked iteratively so that the current medoid is well separated from the medoids that have been chosen so far.
 - Input parameters a and b are introduced for performance reasons

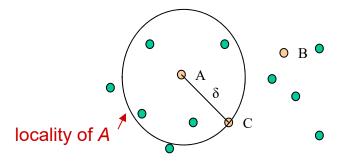
PROCLUS: Algorithm – Iterative phase 3/6

- [Phase 2] Iterative phase (works similar to any k-medoid clustering)
 - k randomly chosen medoids from M are the initial cluster medoids
 - Idea: replace the "bad" medoids with other points in M if necessary → we should be able to evaluate the quality of the clustering by a given set of medoids.
 - Procedure:
 - o Find dimensions related to the medoids
 - Assign data points to the medoids
 - Evaluate the clusters formed
 - o Find the bad medoid, and try the result of replacing bad medoid

PROCLUS: Algorithm - Iterative phase

Find cluster dimensions 4/6

- For each medoid m_i , let δ be the nearest distance to its closest medoid
- All the data points within δ will be assigned to the medoid m_i (L_i , locality of m_i)



- Intuition: to each medoid we want to associate those dimensions where the points are closed to the medoid in that dimension
- Compute the average distance along each dimension from the points in L_i to m_i.
 - Let X_{i,j} be the avg distance along dimension j
- Calculate for m_i the mean $Y_{i,j}$ and standard deviation $\sigma_{i,j}$ of $X_{i,j}$
- Calculate $Z_{i,j} = (X_{i,j} Y_{i,j}) / \sigma_{i,j}$
- Choose $k \times l$ smallest values $Z_{i,j}$ with at least 2 chosen for each medoids
- Output: A set of k medoids and their associated dimensions

PROCLUS: Algorithm – Iterative phase

Assigning data points –evaluate clusters 5/6

- Assign each data point to its closest medoid using Manhattan segmental distance (only relevant dimensions count)
- Manhattan segmental distance (A variance of Manhattan distance): For any two points x1,x2 and any set of dimensions D, $|D| \le d$:

$$d_D(x_1,x_2) = \frac{\sum_{i \in D} \left| x_{1,i} - x_{2,i} \right|}{\left| D \right|}$$
 How to evaluate the clusters?

- - Use average Manhattan segmental distance from the points in C_i to the centroid of C_i along dimension j

$$W_i = \frac{\sum_j Y_{i,j}}{|D_i|} \qquad E = \frac{\sum_{i=k}^k |C_i| \cdot W_i}{N}$$

- Replace bad medoids with random points from M
- Terminate if the clustering quality does not increase after a given number of current medoids have been exchanged with medoids from M (it is not clear, if there is another hidden parameter in that criterion)

PROCLUS: Algorithm – Iterative phase 6/6

• [**Phase 3**] Refinement

- Reassign subspaces to medoids as above (but use only the points assigned to each cluster rather than the locality of each cluster, i.e., C_i not L_i)
- Reassign points to medoids
- Points that are not in the locality of any medoid are classified as noise

PREDECON[BKKK04] 1/3

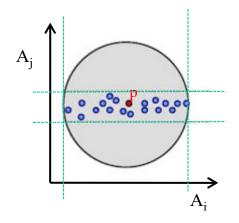
- Instance-based top-down approach: we learn the subspace for each instance
- Extends DBSCAN to high dimensional spaces by incorporating the notion of dimension preferences in the distance function
- For each point p, it defines its subspace preference vector:

$$\overline{\mathbf{w}}_p = (w_1, w_2, \dots w_d) \qquad w_i = \begin{cases} 1 & \text{if} \quad VAR_i > \delta \\ \kappa & \text{if} \quad VAR_i \le \delta \end{cases}$$

• V_{AR_i} is the variance along dimension j in $N_{\epsilon}(p)$:

$$\mathrm{Var}_{A_i}(\mathcal{N}_{\varepsilon}(p)) = \frac{\sum_{q \in \mathcal{N}_{\varepsilon}(p)} (dist(\pi_{A_i}(p), \pi_{A_i}(q)))^2}{|\mathcal{N}_{\varepsilon}(p)|}$$

δ, κ (κ>>1) are input parameters



PREDECON[BKKK04] 2/3

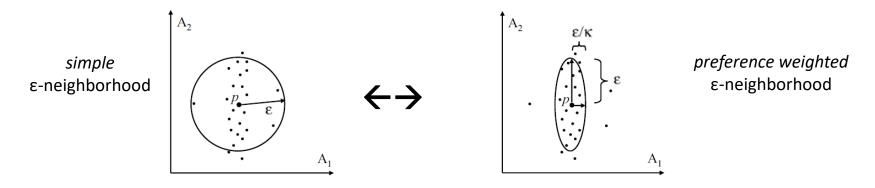
Preference weighted distance function:

$$dist_p(p,q) = \sqrt{\sum_{i=1}^{d} \frac{1}{w_i} \cdot (\pi_{A_i}(p) - \pi_{A_i}(q))^2}$$

$$dist_{pref}(p,q) = \max\{dist_p(p,q), dist_q(q,p)\}$$

• Preference weighted ε-neighborhood:

$$\mathcal{N}_{\varepsilon}^{\bar{\mathbf{w}}_p}(p) = \{ x \in \mathcal{D} \, | \, dist_{pref}(p, x) \leq \varepsilon \}$$

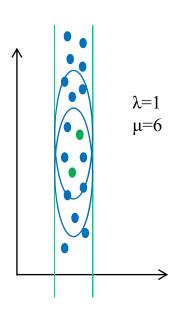


PREDECON[BKKK04] 3/3

Preference weighted core points:

$$\mathsf{Core}_{\mathrm{den}}^{\mathrm{pref}}(p) \Leftrightarrow \mathsf{PDim}(\mathcal{N}_{\varepsilon}(p)) \leq \lambda \wedge |\mathcal{N}_{\varepsilon}^{\bar{\mathbf{w}}_o}(p)| \geq \mu.$$

- Direct density reachability, reachability and connectivity are defined based on preference weighted core points
- A subspace preference cluster is a maximal density connected set of points associated with a certain subspace preference vector.



Overview of the discussed methods

- Bottom-Up approaches: Subspace Clustering -
 - CLIQUE [AGGR98]
 - SUBCLU [KKK04]

Find all clusters in all subspaces.

Axis-parallel subspaces

- Top-Down Approaches: Projected Clustering -
 - PROCLUS [APW+99]
 - PREDECON[BKKK04]

Each point is assigned to one subspace cluster or noise.

Axis-parallel subspaces

- Top-Down Approaches: Correlation Clustering
 - ORCLUS[AY00]
 - 4C [BKKZ04]

Each point is assigned to one subspace cluster or noise.

Arbitrary oriented subspaces

Pattern based clustering

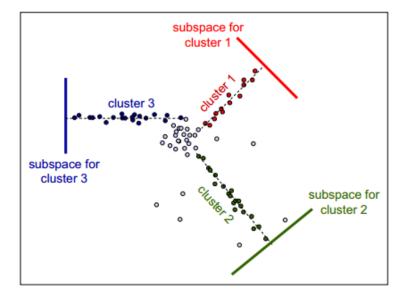
Correlation Clustering

Motivating example:

Cluster 3 exists in an axis-parallel subspace

 Clusters 1 and 2 exist in (different) arbitrarily oriented subspaces: if the cluster members are projected onto the depicted subspaces, the points are "densely

packed"



- Subspace clustering and projected clustering algorithms find axis-parallel subspaces
- Correlation clustering for finding clusters in arbitrary oriented subspaces

ORCLUS[AY00] 1/3

- ORCLUS (arbitrarily ORiented projected CLUSter generation) first approach to generalized projected clustering
- A generalized projected cluster is a set of vectors E and a set of points C such that the
 points in C are closely clustered in the subspace defined by the vectors E.
 - E is a set of orthonormal vectors, |E|≤d

Input:

- The number of clusters k
- The dimensionality of the subspace of the clusters, I (=|E|)

Output

A set of k clusters and their associated subspaces of dimensionality l

Main idea

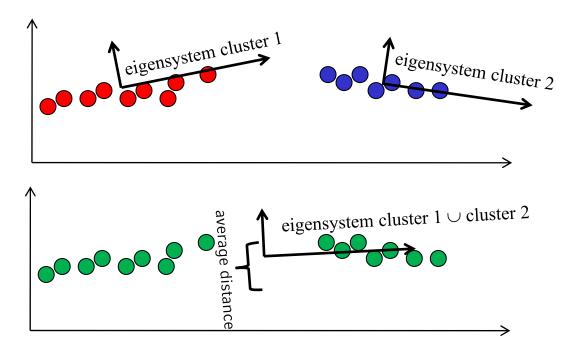
- To find the subspace of a cluster C_i, compute the dxd covariance matrix M_i for C_i and determine the eigenvectors. Pick the I_c eigenvectors with the smallest eigenvalues.
- Relies on cluster-based locality assumption: subspace of each cluster is learned from its members

ORCLUS: Algorithm 2/3

- similar ideas to PROCLUS [APW+99]
- *k*-means like approach
- start with $k_c > k$ seeds
- assign points to clusters according to distance function based on the eigensystem of the current cluster (starting with axes of data space, i.e. Euclidean distance)
- The eigensystem is iteratively adapted based on the updated cluster members
- Reduce the number of clusters k_c in each iteration by merging best-fitting cluster pairs

ORCLUS: Merging clusters 3/3

- Each cluster C_i exists in a possible different subspace S_i, how do we decide what to merge?
- Compute the subspace of their union C_iUC_j (eigenvectors corresponding to the smallest I eigenvalues)
- Check the cluster energy of C_iUC_j in this subspace (mean square distance of the points from the centroid in this subspace) indicator of how well the points combine



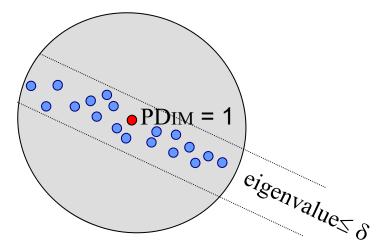
- Assess average distance in all merged pairs of clusters and finally merge the best fitting pair, that with the smallest cluster energy
- Continue until the desired number of clusters, k, is achieved.

4C [BKKZ04]

4C = Computing Correlation Connected Clusters Idea: Integrate PCA into density-based clustering.

Approach:

- Check the core point property of a point p in the complete feature space
- Perform PCA on the local neighborhood S of p to find subspace correlations



PCA factorizes M_p into $M_p = V E V^T$

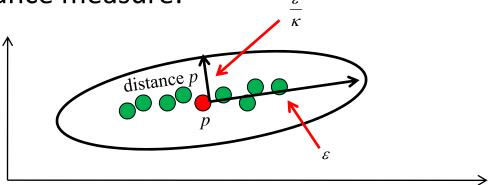
V: eigenvectors

E: eigenvalues

- A parameter δ discerns large from small eigenvalues.
- CorDim(S)=#eigenvalues>δ
- In the eigenvalue matrix of p, large eigenvalues are replaced by 1, small eigenvalues by a value κ
 >>1 → adapted eigenvalue matrix E'_p

4C: Distance measure

effect on distance measure:

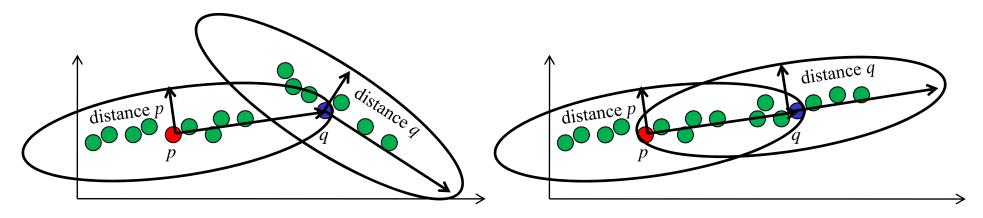


• distance of
$$p$$
 and q w.r.t. p : $\sqrt{(p-q)\cdot V_p\cdot E_p'\cdot V_p^{\mathrm{T}}\cdot (p-q)^{\mathrm{T}}}$

• distance of
$$p$$
 and q w.r.t. q : $\sqrt{(q-p)\cdot V_q\cdot E_q'\cdot V_q^{\mathrm{T}}\cdot (q-p)^{\mathrm{T}}}$

4C: correlation neighbors

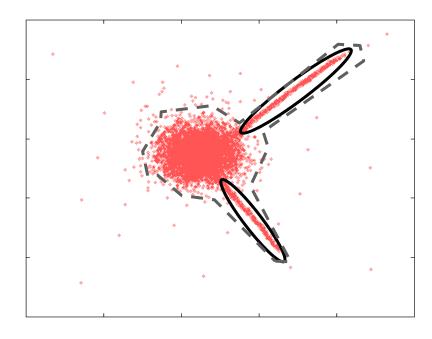
symmetry of distance measure by choosing the maximum:



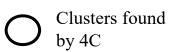
p and q are correlation-neighbors if

$$\max \left\{ \frac{\sqrt{(p-q) \cdot V_p \cdot E_p' \cdot V_p^{\mathrm{T}} \cdot (p-q)^{\mathrm{T}}}}{\sqrt{(q-p) \cdot V_q \cdot E_q' \cdot V_q^{\mathrm{T}} \cdot (q-p)^{\mathrm{T}}}} \right\} \leq \varepsilon$$

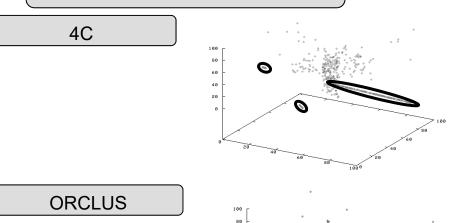
4C vs. DBSCAN

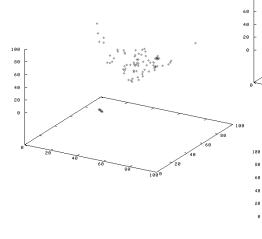


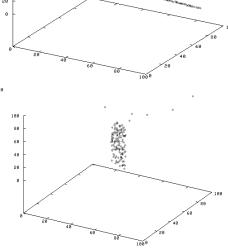
Cluster found by DBSCAN



4C vs. ORCLUS







4C: discussion

- finds arbitrary number of clusters
- requires specification of density-thresholds
 - $-\mu$ (minimum number of points): rather intuitive
 - $-\epsilon$ (radius of neighborhood): hard to guess
- biased to maximal dimensionality λ of correlation clusters (user specified)
- instance-based locality assumption: correlation distance measure specifying the subspace is learned from local neighborhood of each point in the d-dimensional space

enhancements also based on PCA:

- COPAC [ABK+07c] and
- ERiC [ABK+07b]

Correlation clustering with PCA: Discussion

- PCA: mature technique, allows construction of a broad range of similarity measures for local correlation of attributes
- drawback: all approaches suffer from locality assumption
- successfully employing PCA in correlation clustering in "really" high-dimensional data requires more effort henceforth
- So how to overcome the locality assumption???
 - => different method to determine correlation?
 - => Hough transform (computer graphics)

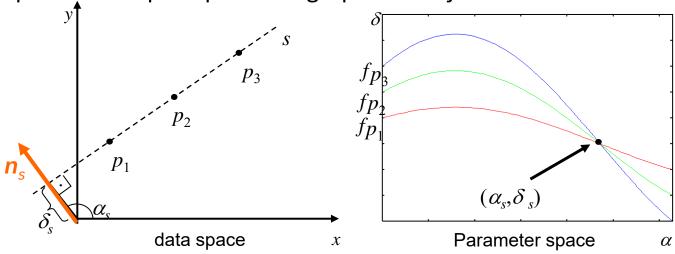
find structures (e.g. lines, circles) in images

CASH [ABKKZ 07]

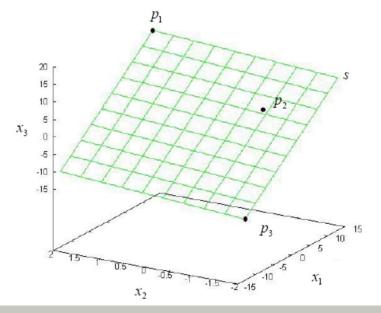
- Basic idea of CASH (= Clustering in Arbitrary Subspaces based on the Hough transform)
 - Transform each object into a so-called parameter space representing all possible subspaces accommodating this object (i.e. all hyper-planes through this object)
 - This parameter space is a continuum of all these subspaces
 - The subspaces are represented by a considerably small number of parameters
 - This transform is a generalization of the Hough Transform (which is designed to detect linear structures in 2D images) for arbitrary dimensions

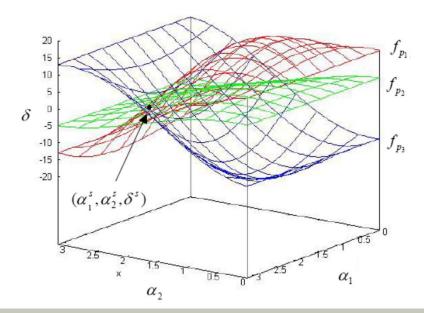
Transform

- For each d-dimensional point p there is an infinite number of (d-1)-dimensional hyper-planes through p
- Each of these hyper-planes s is defined by $(p,\alpha_1,...,\alpha_{d-1})$, where $\alpha_1,...,\alpha_{d-1}$ is the normal vector \mathbf{n}_s of the hyper-plane s
- The function $f_p(\alpha_1,...,\alpha_{d-1})=\delta_s=\langle p,n_s\rangle$ maps p and $\alpha_1,...,\alpha_{d-1}$ onto the distance δ_s of the hyper-plane s to the origin
- The parameter space plots the graph of this function



- Properties of this transform
 - point in the data space = sinusoide curve in the parameter space
 - point in the parameter space = hyper-plane in the data space
 - points on a common hyper-plane in the data space (cluster)
 = sinusoide curves intersecting at *one* point in the parameter space
 - intersection of sinusoide curves in the parameter space
 hyper-plane accommodating the corresponding points in data space





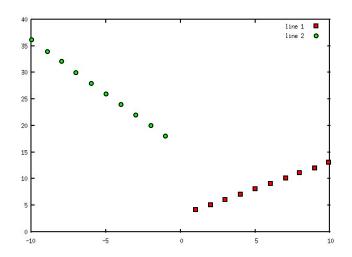
Detecting clusters

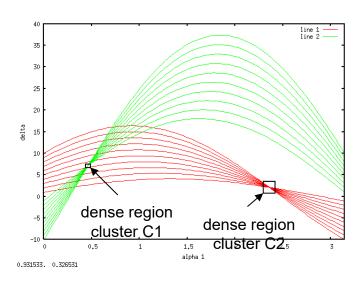
- determine all intersection points of at least m curves in the parameter space
 (d-1)-dimensional cluster
- Exact solution (check all pair-wise intersections) is too costly
- Heuristics are employed

Grid-based bisecting search

=> Find cells with at least *m* curves

- \odot determining the curves that are within a given cell is in $O(d^3)$
- \odot Number of cells $O(r^d)$, where r is the resolution of the grid
- \odot high value for r necessary





- Complexity (c = number of cluster found not an input parameter!!!)
 - Bisecting search

$$O(s \cdot c)$$

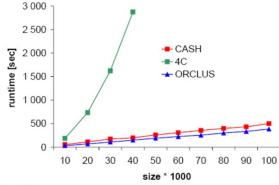
Determination of curves in a cell

$$O(n \cdot d^3)$$

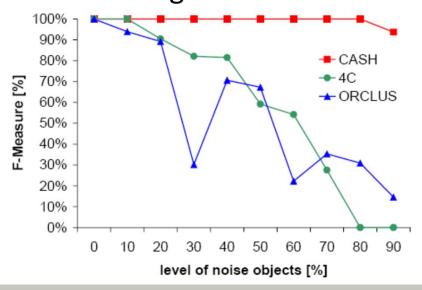
Over all

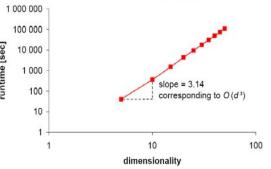
$$O(s \cdot c \cdot n \cdot d^3)$$

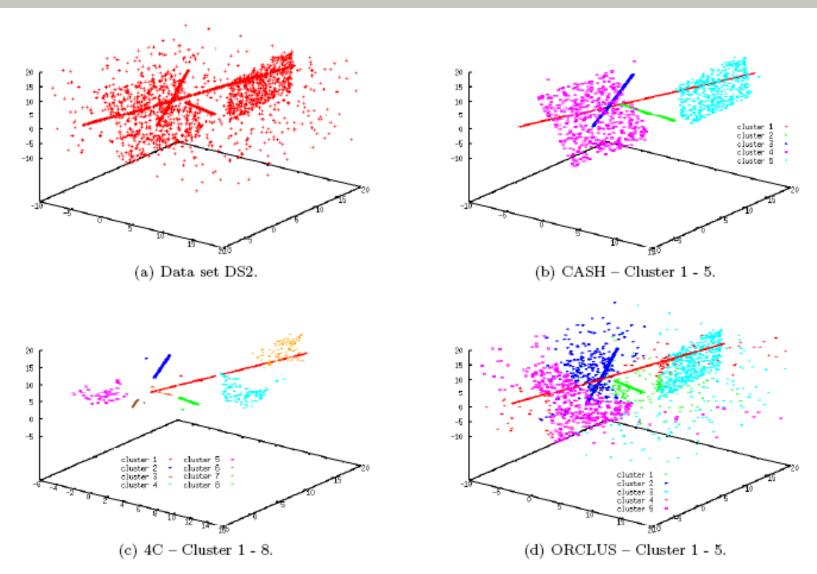
(algorithms for PCA are also in $O(d^3)$)



Robustness against noise







Clustering High Dimensional Data: Discussion 1/2

- Finding clusters in (arbitrarily oriented) subspaces of the original feature space.
- The subspace (where the cluster exists) is part of the cluster definition.
- The challenge is 2-fold: finding the correct subspace for each cluster and the correct cluster in each relevant subspace
 - Integrate subspace search in the clustering process
- Traditional full dimensional clustering paradigms transferred in the high dimensional space.

Clustering High Dimensional Data: Discussion 2/2

- Different types of methods
 - Bottom-Up approaches: Subspace Clustering
 - o Find clusters in all subspaces
 - Restrict the search space by downward closure property
 - Axis-parallel subspaces
 - o CLIQUE [AGGR98], SUBCLU [KKK04]
 - Top-Down Approaches: Projected Clustering
 - o Each point is assigned to one subspace cluster or noise.
 - Subspaces are discovered based on the locality (cluster-based, instance-based)
 - Axis-parallel subspaces
 - PROCLUS [APW+99], PREDECON[BKKK04]
 - Top-Down Approaches: Correlation Clustering
 - Each point is assigned to one subspace cluster or noise.
 - Subspace are discovered based on the locality (cluster-based, instance-based)
 - Arbitrary oriented subspaces
 - ORCLUS[AY00], 4C [BKKZ04], CASH []
 - Pattern based clustering (not covered here)

Literature

[AGGR98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.

Automatic subspace clustering of high dimensional data for data mining applications.

In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Seattle, WA, 1998.

[KKK04 K. Kailing, H.-P. Kriegel, and P. Kröger.

Density-connected subspace clustering for highdimensional data.

In Proceedings of the 4th SIAM International Conference on Data Mining (SDM), Orlando, FL, 2004.

[BKKK04] C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kröger.

Density connected clustering with local subspace preferences.

In Proceedings of the 4th International Conference on Data Mining (ICDM), Brighton, U.K., 2004.

[APW+99] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park.

Fast algorithms for projected clustering.

In Proceedings of the ACM International Conference on Management of Data

(SIGMOD), Philadelphia, PA, 1999.

[AY00] C. C. Aggarwal and P. S. Yu.

Finding generalized projected clusters in high dimensional space.

In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Dallas, TX, 2000.

[BKKZ04] C. Böhm, K. Kailing, P. Kröger, and A. Zimek.

Computing clusters of correlation connected objects.

In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Paris, France, 2004.

[ABKKZ07] Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Arthur Zimek:

Robust, Complete, and Efficient Correlation Clustering. SDM 2007: 413-418