

## **Outline**



- 1. Introduction and challenges of high dimensionality
- 2. Feature Selection

- 3. Feature Reduction and Metric Learning
- 4. Clustering in High-Dimensional Data





- Customer Recommendation / Target Marketing
  - Data
    - Customer ratings for given products
    - Data matrix:



- Task: Cluster customers to find groups of persons that share similar preferences or disfavor (e.g. to do personalized target marketing)
  - Challenge:
    - customers may be grouped differently according to different preferences/disfavors, i.e. different subsets of products





- Relevant and irrelevant attributes
  - Not all features, but a subset of the features may be relevant for clustering
  - Groups of similar ("dense") points may be identified when considering only these features



Different subsets of attributes may be relevant for different clusters





## Effect on clustering:

- Traditional distance functions give equal weight to all dimensions
- However, not all dimensions are of equal importance
- Adding irrelevant dimensions ruins any clustering based on a distance function that equally weights all dimensions







## again: different attributes are relevant for different clusters







**Task**: Cluster test persons to find groups of individuals with similar correlation among the concentrations of metabolites indicating homogeneous metabolic behavior (e.g. disorder)

 Challenge: different metabolic disorders appear through different correlations of (subsets of) metabolites







- Correlation among attributes
  - A subset of features may be correlated
  - Groups of similar ("dense") points may be identified when considering this correlation of features only



Different correlations of attributes may be relevant for different clusters





## Why not feature selection/reduction?

- (Unsupervised) feature selection/reduction is global (e.g. PCA)
- We face a local feature relevance/correlation: some features (or combinations of them) may be relevant for one cluster, but may be irrelevant for a second one



















## **Problem Summary**

- Feature relevance and correlation
  - Usually, no clusters in the full dimensional space
  - Often, clusters are hidden in subspaces of the data, i.e. only a subset of features is relevant for the clustering
  - E.g. a gene plays a certain role in a subset of experimental conditions
- Local feature relevance/correlation
  - For each cluster, a different subset of features or a different correlation of features may be relevant
  - E.g. different genes are responsible for different phenotypes
- Overlapping clusters
  - Clusters may overlap, i.e. an object may be clustered differently in varying subspaces
  - E.g. a gene plays different functional roles depending on the environment





General problem setting of clustering high dimensional data

# Search for clusters in (in general arbitrarily oriented) subspaces of the original feature space

- Challenges:
  - Find the correct subspace of each cluster
    - Search space:
      - all possible arbitrarily oriented subspaces of a feature space
      - infinite
  - Find the correct cluster in each relevant subspace
    - Search space:
      - "Best" partitioning of points (see: minimal cut of the similarity graph)
      - NP-complete [SCH75]





- Even worse: *Circular Dependency* 
  - Both challenges depend on each other:
    - In order to determine the correct subspace of a cluster, we need to know (at least some) cluster members
    - In order to determine the correct cluster memberships, we need to know the subspaces of all clusters
- How to solve the circular dependency problem?
  - Integrate subspace search into the clustering process
  - Thus, we need heuristics to solve
    - the subspace search problem
    - the clustering problem

## simultaneously



## Overview of the discussed methods



- Bottom-Up approaches: Subspace Clustering -
  - CLIQUE [AGGR98]
  - SUBCLU [KKK04]

Find all clusters in all subspaces.

Axis-parallel subspaces

- Top-Down Approaches: Projected Clustering
  - PROCLUS [APW+99]
  - PREDECON[BKKK04]

Each point is assigned to one subspace cluster or noise.

Axis-parallel subspaces

- Top-Down Approaches: Correlation Clustering
  - ORCLUS[AY00]
  - 4C [BKKZ04]

Each point is assigned to one subspace cluster or noise.

Arbitrary oriented subspaces

Pattern based clustering



## Overview of the discussed methods



- Bottom-Up approaches: Subspace Clustering
  - CLIQUE [AGGR98]
  - SUBCLU [KKK04]

Find all clusters in all subspaces.

Axis-parallel subspaces

- Top-Down Approaches: Projected Clustering +
  - PROCLUS [APW+99]
  - PREDECON[BKKK04]

Each point is assigned to one subspace cluster or noise.

Axis-parallel subspaces

- Top-Down Approaches: Correlation Clustering
  - ORCLUS[AY00]
  - 4C [BKKZ04]

Each point is assigned to one subspace cluster or noise.

Arbitrary oriented subspaces

Pattern based clustering



## **Bottom-up Algorithms**



## • Rational:

- Similar to Branch-and-Bound feature selection: Start with 1-dimensional subspaces or subspace clusters and merge them to compute higher dimensional ones.
- Most approaches transfer this problem into frequent item set mining.
  - The cluster criterion must implement the downward closure (monotonicity) property:
    - If the criterion holds for a k-dimensional subspace S, then it also holds for any (k–1)-dimensional projection of S
    - Use the reverse implication for pruning: If the criterion does not hold for a (k-1)-dimensional projection of S, then the criterion also does not hold for S
- Some approaches use other search heuristics (especially if monotonicity does not hold) like best-first-search, greedy-search, etc.
  - Better average and worst-case performance
  - No guaranty on the completeness of results



## **Bottom-up Algorithms**



## Downward-closure property: example

- Simple cluster criterion (density of grid cells):
  - If a cell C of side length s contains more than m points, it represents a cluster
- Monotonicity:
  - if C contains more than m points in subspace S then C also contains more than m points in any subspace  $T \subset S$
  - Example: monotonicity (left) and reverse implication (right)



Cell *C* contains more than m=5 points in subspace "AB" => Also in subspaces "A"  $\subset$  "AB" and "B"  $\subset$  "AB"



Cell *C* contains less than *m*=5 points in subspace "A" => Also in subspace "AB"



## **CLIQUE [AGGR98]**



CLIQUE is probably the first bottom-up algorithm; it uses a density-grid-based cluster model.

#### Cluster Model

- Clusters are "dense regions" in the feature space
- Partition the feature space into  $\xi$  equal sized parts in dimension (implicitly fixing side length s).
- A *unit* is the intersection of one interval from each dimension



Clusters are maximal sets of connected dense units (e.g., A U B)

## 2-step Approach:

- 1. Find subspaces (with dense units)
- 2. Find subspace clusters (union of connected dense units in the same subspace)





## **CLIQUE:**

# 1. Identify subspaces containing clusters



## 1. Task: Find subspaces with dense units

- Greedy approach (Bottom-Up), comparable to APRIORI for finding frequent itemsets (Downward Closure):
  - Determine 1-dimensional dense units D<sub>1</sub>
  - Candidate generation procedure:
    - Based on  $D_{k-1}$ , the set of (k-1) dimensional dense units, generate candidate set  $C_k$  by self joining  $D_{k-1}$ 
      - Join condition: units share first k-2 dimensions
    - Discard those candidates which have a k-1 projection not included in  $D_{k-1}$
    - For the remaining candidates: check density





## **CLIQUE: 2. Identify clusters**



#### 2. Task: Find maximal sets of connected dense units

Given: a set of dense units *D* in the same *k*-dimensional subspace *S* 

Output: A partition of D into clusters  $D_1$ , ...,  $D_k$  of connected dense units

- The problem is equivalent to finding connected components in a graph
  - Nodes: dense units
  - Edge between two nodes if the corresponding dense units have a common face (neighboring units)
  - Depth-first search algorithm: Start with a unit u in D, assign it to a new cluster ID and find all the units it is connected to. Repeat if there are nodes not yet visited



## **CLIQUE: Discussion**



- Input parameters:  $\xi$  and  $\tau$  specifying the density threshold
- Output: all clusters in all subspaces, clusters may overlap/be redundant
- Simple but efficient cluster model: Uses a fixed density threshold for all subspaces (in order to ensure the downward closure property) => to represent a cluster, a unit in 10D must contain as many points (or more) as in 2D ...





# **SUBCLU [KKK04] 1/6**



#### **Motivation:**

Drawbacks of a grid-based clustering model:

- Positioning of the grid influences the clustering
- Only rectangular regions
- Selection of  $\xi$  and  $\tau$  is very sensitive Example:

```
Cluster for \tau = 4

(is C_2 a cluster?)

for \tau > 4: no cluster

( C_1 is lost)
```



- ⇒ define regions based on the neighborhood of data points
- ⇒ use density-based clustering



## **SUBCLU: Cluster model 2/6**



- Density-based cluster model of DBSCAN
- Clusters are maximal sets of density-connected points
- Density connectivity is defined based on core points
- Core points have at least *MinPts* points in their  $\varepsilon$ -neighborhood



- Detects clusters of arbitrary shapes and positionings (in the corresponding subspaces)
- Naïve approach: Apply DBSCAN in all possible subspaces  $\rightarrow$  exponential (2<sup>d</sup>)
- Idea: Exploit clustering information from previous step (subspaces)
  - Density-connected clusters are not monotonic
  - But, density connected sets are monotonic!



# **SUBCLU: Downward closure of density connected** sets 3/6



If C is a density connected set in subspace S then C is a density connected set in any subspace  $T \subset S$ .

- But, if C is a cluster in S, it need not to be a cluster in  $T \subset S$  maximality might be violated
- All clusters in a higher-dimensional subspace will be subsets of the clusters detected in this first clustering.

MinPts = 4



(a) p and q are density-connected via o

p and q density connected in {A,B}. Thus, they are also density connected in {A} and {B}



(b) p and q are not density-connected

p and q not density connected in {B}. Thus, they are not density connected in{A,B}, although they are density connected in {A}.



## **SUBCLU: Discussion 6/6**



## Algorithm

- All subspaces that contain any density-connected set are computed using the bottom-up approach (similar to CLIQUE/APRIORI)
- Density-connected clusters are computed using a specialized DBSCAN run in the resulting subspace to generate the subspace clusters

#### Discussion

- Input: ε and MinPts specifying the density threshold
- Output: all clusters in all subspaces, clusters may overlap
- Uses a fixed density threshold for all subspaces
- Advanced but costly cluster model



## **Bottom-up Algorithms: Discussion**



## The key limitation: *global density thresholds*

- Usually, the cluster criterion relies on density
- In order to ensure the downward closure property, the density threshold must be fixed
- Consequence: the points in an e.g. 20-dimensional subspace cluster must be as dense as in an e.g. 2-dimensional cluster
- This is a rather optimistic assumption since the data space grows exponentially with increasing dimensionality (see "curse" discussion)
- Consequences:
  - A strict threshold will most likely produce only lower dimensional clusters
  - A loose threshold will most likely produce higher dimensional clusters but also a huge amount of (potentially meaningless) low dimensional clusters



## Overview of the discussed methods



- Bottom-Up approaches: Subspace Clustering -
  - CLIQUE [AGGR98]

- SUBCLU [KKK04]

Find all clusters in all subspaces.

Axis-parallel subspaces

- Top-Down Approaches: Projected Clustering
  - PROCLUS [APW+99]
  - PREDECON[BKKK04]

Each point is assigned to one subspace cluster or noise.

Axis-parallel subspaces

- Top-Down Approaches: Correlation Clustering
  - ORCLUS[AY00]

- 4C [BKKZ04]

Each point is assigned to one subspace cluster or noise.

Arbitrary oriented subspaces

Pattern based clustering



## **Top-down Algorithms**



### Rational:

- Cluster-based approach:
  - Learn the subspace of a cluster in the entire d-dimensional feature space
  - Start with full-dimensional clusters
  - Iteratively refine the cluster memberships of points and the subspaces of the cluster
  - PROCLUS[APW+99], ORCLUS[AY00]
- Instance-based approach:
  - Learn for each point its subspace preference in the entire d-dimensional feature space
  - The subspace preference specifies the subspace in which each point "clusters best"
  - Merge points having similar subspace preferences to generate the clusters
  - PREDECON[BKKK04] 4C[BKKZ04]



# **Top-down Algorithms: The key problem**



## How should we learn the subspace preference of a cluster or a point?

- Most approaches rely on the so-called "locality assumption"
  - The subspace is usually learned from the local neighborhood of cluster representatives/cluster members in the entire feature space:
    - Cluster-based approach: the *local neighborhood* of each cluster representative is evaluated in the *d*-dimensional space to learn the "correct" subspace of the cluster
    - Instance-based approach: the *local neighborhood* of each point is evaluated in the *d*-dimensional space to learn the "correct" subspace preference of this point (i.e. the subspace in which the cluster exists that accommodates this point)
- The locality assumption: the subspace preference can be learned from the local neighborhood in the d-dimensional space
- Other approaches learn the subspace preference of a cluster or a point from randomly sampled points



## Overview of the discussed methods



- Bottom-Up approaches: Subspace Clustering
  - CLIQUE [AGGR98]

- SUBCLU [KKK04]

Find all clusters in all subspaces.

Axis-parallel subspaces

- Top-Down Approaches: Projected Clustering
  - PROCLUS [APW+99]
  - PREDECON[BKKK04]

Each point is assigned to one subspace cluster or noise.

Axis-parallel subspaces

- Top-Down Approaches: Correlation Clustering
  - ORCLUS[AY00]
  - 4C [BKKZ04]

Each point is assigned to one subspace cluster or noise.

Arbitrary oriented subspaces

Pattern based clustering



# **PROCLUS [APW+99] 1/6**



## PROjected CLUStering

- Cluster-based top-down approach: we learn the subspace for each cluster
- K-medoid cluster model
  - Cluster is represented by its medoid
  - To each cluster a subspace (of relevant attributes) is assigned
  - Each point is assigned to the nearest medoid (where the distance to each medoid is based on the corresponding subspace of the medoid)
  - Points that have a large distance to their nearest medoids are classified as noise





# PROCLUS: Algorithm –Initialization phase 2/6



- 3-phase algorithm: initialization, iterative phase, refinement
  - Input:
    - The set of data points
    - Number of clusters, denoted by k
    - Average number of dimensions for each clusters, denoted by L
  - Output:
    - o The clusters found, and the their associated dimensions
  - [Phase 1] Initialization of cluster medoids
    - Ideally we want a set of centroids, where each centroid comes from a different cluster.
    - We don't know which are these k points though, so we choose a superset M of b\*k medoids such that they are well separated.
      - Chose a random sample (S) of a\*k data points
      - Out of S, select b\*k points (M) by greedy selection: medoids are picked iteratively so that the current medoid is well separated from the medoids that have been chosen so far.
    - Input parameters a and b are introduced for performance reasons



## PROCLUS: Algorithm – Iterative phase 3/6



- [Phase 2] Iterative phase (works similar to any k-medoid clustering)
  - k randomly chosen medoids from M are the initial cluster medoids
  - Idea: replace the "bad" medoids with other points in M if necessary → we should be able to evaluate the quality of the clustering by a given set of medoids.
  - Procedure:
    - o Find dimensions related to the medoids
    - Assign data points to the medoids
    - Evaluate the clusters formed
    - o Find the bad medoid, and try the result of replacing bad medoid



# PROCLUS: Algorithm - Iterative phase

# Find cluster dimensions 4/6



- For each medoid  $m_i$ , let  $\delta$  be the nearest distance to its closest medoid
- All the data points within  $\delta$  will be assigned to the medoid  $m_i$  ( $L_i$ , locality of  $m_i$ )



- Intuition: to each medoid we want to associate those dimensions where the points are closed to the medoid in that dimension
- Compute the average distance along each dimension from the points in L<sub>i</sub> to m<sub>i</sub>.
  - Let X<sub>i,j</sub> be the avg distance along dimension j
- Calculate for  $m_i$  the mean  $Y_{i,j}$  and standard deviation  $\sigma_{i,j}$  of  $X_{i,j}$
- Calculate  $Z_{i,j} = (X_{i,j} Y_{i,j}) / \sigma_{i,j}$
- Choose  $k \times l$  smallest values  $Z_{i,j}$  with at least 2 chosen for each medoids
- Output: A set of k medoids and their associated dimensions



## **PROCLUS: Algorithm – Iterative phase**

# Assigning data points –evaluate clusters 5/6



- Assign each data point to its closest medoid using Manhattan segmental distance (only relevant dimensions count)
- Manhattan segmental distance (A variance of Manhattan distance): For any two points x1,x2 and any set of dimensions D,  $|D| \le d$ :

$$d_D(x_1,x_2) = \frac{\sum_{i \in D} \left| x_{1,i} - x_{2,i} \right|}{\left| D \right|}$$
 How to evaluate the clusters?

- - Use average Manhattan segmental distance from the points in C<sub>i</sub> to the centroid of C<sub>i</sub> along dimension j

$$W_i = \frac{\sum_j Y_{i,j}}{|D_i|} \qquad E = \frac{\sum_{i=k}^k |C_i| \cdot W_i}{N}$$

- Replace bad medoids with random points from M
- Terminate if the clustering quality does not increase after a given number of current medoids have been exchanged with medoids from M (it is not clear, if there is another hidden parameter in that criterion)



# PROCLUS: Algorithm – Iterative phase 6/6



## • [**Phase 3**] Refinement

- Reassign subspaces to medoids as above (but use only the points assigned to each cluster rather than the locality of each cluster, i.e., C<sub>i</sub> not L<sub>i</sub>)
- Reassign points to medoids
- Points that are not in the locality of any medoid are classified as noise



## PREDECON[BKKK04] 1/3



- Instance-based top-down approach: we learn the subspace for each instance
- Extends DBSCAN to high dimensional spaces by incorporating the notion of dimension preferences in the distance function
- For each point p, it defines its subspace preference vector:

$$\overline{\mathbf{w}}_p = (w_1, w_2, \dots w_d) \qquad w_i = \begin{cases} 1 & \text{if} \quad VAR_i > \delta \\ \kappa & \text{if} \quad VAR_i \le \delta \end{cases}$$

•  $V_{AR_i}$  is the variance along dimension j in  $N_{\epsilon}(p)$ :

$$\mathrm{Var}_{A_i}(\mathcal{N}_{\varepsilon}(p)) = \frac{\sum_{q \in \mathcal{N}_{\varepsilon}(p)} (dist(\pi_{A_i}(p), \pi_{A_i}(q)))^2}{|\mathcal{N}_{\varepsilon}(p)|}$$

δ, κ (κ>>1) are input parameters





## PREDECON[BKKK04] 2/3



Preference weighted distance function:

$$dist_p(p,q) = \sqrt{\sum_{i=1}^{d} \frac{1}{w_i} \cdot (\pi_{A_i}(p) - \pi_{A_i}(q))^2}$$

$$dist_{pref}(p,q) = \max\{dist_p(p,q), dist_q(q,p)\}$$

• Preference weighted ε-neighborhood:

$$\mathcal{N}_{\varepsilon}^{\bar{\mathbf{w}}_p}(p) = \{ x \in \mathcal{D} \, | \, dist_{pref}(p, x) \leq \varepsilon \}$$





## PREDECON[BKKK04] 3/3



Preference weighted core points:

$$\mathsf{Core}_{\mathrm{den}}^{\mathrm{pref}}(p) \Leftrightarrow \mathsf{PDim}(\mathcal{N}_{\varepsilon}(p)) \leq \lambda \wedge |\mathcal{N}_{\varepsilon}^{\bar{\mathbf{w}}_o}(p)| \geq \mu.$$

- Direct density reachability, reachability and connectivity are defined based on preference weighted core points
- A subspace preference cluster is a maximal density connected set of points associated with a certain subspace preference vector.





#### Overview of the discussed methods



- Bottom-Up approaches: Subspace Clustering -
  - CLIQUE [AGGR98]
  - SUBCLU [KKK04]

Find all clusters in all subspaces.

Axis-parallel subspaces

- Top-Down Approaches: Projected Clustering -
  - PROCLUS [APW+99]
  - PREDECON[BKKK04]

Each point is assigned to one subspace cluster or noise.

Axis-parallel subspaces

- Top-Down Approaches: Correlation Clustering
  - ORCLUS[AY00]
  - 4C [BKKZ04]

Each point is assigned to one subspace cluster or noise.

Arbitrary oriented subspaces

Pattern based clustering



## **Correlation Clustering**



Motivating example:

Cluster 3 exists in an axis-parallel subspace

 Clusters 1 and 2 exist in (different) arbitrarily oriented subspaces: if the cluster members are projected onto the depicted subspaces, the points are "densely

packed"



- Subspace clustering and projected clustering algorithms find axis-parallel subspaces
- Correlation clustering for finding clusters in arbitrary oriented subspaces



# **ORCLUS[AY00] 1/3**



- ORCLUS (arbitrarily ORiented projected CLUSter generation) first approach to generalized projected clustering
- A generalized projected cluster is a set of vectors E and a set of points C such that the
  points in C are closely clustered in the subspace defined by the vectors E.
  - E is a set of orthonormal vectors, |E|≤d

#### Input:

- The number of clusters k
- The dimensionality of the subspace of the clusters, I (=|E|)

#### Output

A set of k clusters and their associated subspaces of dimensionality l

#### Main idea

- To find the subspace of a cluster C<sub>i</sub>, compute the dxd covariance matrix M<sub>i</sub> for C<sub>i</sub> and determine the eigenvectors. Pick the I<sub>c</sub> eigenvectors with the smallest eigenvalues.
- Relies on cluster-based locality assumption: subspace of each cluster is learned from its members



# ORCLUS: Algorithm 2/3



- similar ideas to PROCLUS [APW+99]
- *k*-means like approach
- start with  $k_c > k$  seeds
- assign points to clusters according to distance function based on the eigensystem of the current cluster (starting with axes of data space, i.e. Euclidean distance)
- The eigensystem is iteratively adapted based on the updated cluster members
- Reduce the number of clusters  $k_c$  in each iteration by merging best-fitting cluster pairs



# **ORCLUS: Merging clusters 3/3**



- Each cluster C<sub>i</sub> exists in a possible different subspace S<sub>i</sub>, how do we decide what to merge?
- Compute the subspace of their union C<sub>i</sub>UC<sub>j</sub> (eigenvectors corresponding to the smallest I eigenvalues)
- Check the cluster energy of C<sub>i</sub>UC<sub>j</sub> in this subspace (mean square distance of the points from the centroid in this subspace) indicator of how well the points combine



- Assess average distance in all merged pairs of clusters and finally merge the best fitting pair, that with the smallest cluster energy
- Continue until the desired number of clusters, k, is achieved.



# **4C [BKKZ04]**



4C = Computing Correlation Connected Clusters Idea: Integrate PCA into density-based clustering.

#### Approach:

- Check the core point property of a point p in the complete feature space
- Perform PCA on the local neighborhood S of p to find subspace correlations



PCA factorizes  $M_p$  into  $M_p = V E V^T$ 

V: eigenvectors

E: eigenvalues

- A parameter  $\delta$  discerns large from small eigenvalues.
- CorDim(S)=#eigenvalues>δ
- In the eigenvalue matrix of p, large eigenvalues are replaced by 1, small eigenvalues by a value κ
   >>1 → adapted eigenvalue matrix E'<sub>p</sub>



## 4C: Distance measure



effect on distance measure:



• distance of 
$$p$$
 and  $q$  w.r.t.  $p$ :  $\sqrt{(p-q)\cdot V_p\cdot E_p'\cdot V_p^{\mathrm{T}}\cdot (p-q)^{\mathrm{T}}}$ 

• distance of 
$$p$$
 and  $q$  w.r.t.  $q$ :  $\sqrt{(q-p)\cdot V_q\cdot E_q'\cdot V_q^{\mathrm{T}}\cdot (q-p)^{\mathrm{T}}}$ 



## 4C: correlation neighbors



symmetry of distance measure by choosing the maximum:



p and q are correlation-neighbors if

$$\max \left\{ \frac{\sqrt{(p-q) \cdot V_p \cdot E_p' \cdot V_p^{\mathrm{T}} \cdot (p-q)^{\mathrm{T}}}}{\sqrt{(q-p) \cdot V_q \cdot E_q' \cdot V_q^{\mathrm{T}} \cdot (q-p)^{\mathrm{T}}}} \right\} \leq \varepsilon$$





### 4C vs. DBSCAN



Cluster found by DBSCAN



### 4C vs. ORCLUS









## **4C:** discussion



- finds arbitrary number of clusters
- requires specification of density-thresholds
  - $-\mu$  (minimum number of points): rather intuitive
  - $-\epsilon$  (radius of neighborhood): hard to guess
- biased to maximal dimensionality  $\lambda$  of correlation clusters (user specified)
- instance-based locality assumption: correlation distance measure specifying the subspace is learned from local neighborhood of each point in the d-dimensional space

#### enhancements also based on PCA:

- COPAC [ABK+07c] and
- ERiC [ABK+07b]



# Correlation clustering with PCA: Discussion



- PCA: mature technique, allows construction of a broad range of similarity measures for local correlation of attributes
- drawback: all approaches suffer from locality assumption
- successfully employing PCA in correlation clustering in "really" high-dimensional data requires more effort henceforth
- So how to overcome the locality assumption???
  - => different method to determine correlation?
  - => Hough transform (computer graphics)

find structures (e.g. lines, circles) in images



## CASH [ABKKZ 07]



- Basic idea of CASH (= Clustering in Arbitrary Subspaces based on the Hough transform)
  - Transform each object into a so-called parameter space representing all possible subspaces accommodating this object (i.e. all hyper-planes through this object)
  - This parameter space is a continuum of all these subspaces
  - The subspaces are represented by a considerably small number of parameters
  - This transform is a generalization of the Hough Transform (which is designed to detect linear structures in 2D images) for arbitrary dimensions





#### Transform

- For each d-dimensional point p there is an infinite number of (d-1)-dimensional hyper-planes through p
- Each of these hyper-planes s is defined by  $(p,\alpha_1,...,\alpha_{d-1})$ , where  $\alpha_1,...,\alpha_{d-1}$  is the normal vector  $\mathbf{n}_s$  of the hyper-plane s
- The function  $f_p(\alpha_1,...,\alpha_{d-1})=\delta_s=\langle p,n_s\rangle$  maps p and  $\alpha_1,...,\alpha_{d-1}$  onto the distance  $\delta_s$  of the hyper-plane s to the origin
- The parameter space plots the graph of this function







- Properties of this transform
  - point in the data space = sinusoide curve in the parameter space
  - point in the parameter space = hyper-plane in the data space
  - points on a common hyper-plane in the data space (cluster)
     = sinusoide curves intersecting at *one* point in the parameter space
  - intersection of sinusoide curves in the parameter space
     hyper-plane accommodating the corresponding points in data space









## Detecting clusters

- determine all intersection points of at least m curves in the parameter space
   (d-1)-dimensional cluster
- Exact solution (check all pair-wise intersections) is too costly
- Heuristics are employed

## Grid-based bisecting search

=> Find cells with at least *m* curves

- $\odot$  determining the curves that are within a given cell is in  $O(d^3)$
- $\odot$  Number of cells  $O(r^d)$ , where r is the resolution of the grid
- $\odot$  high value for r necessary









- Complexity (c = number of cluster found not an input parameter!!!)
  - Bisecting search

$$O(s \cdot c)$$

Determination of curves in a cell

$$O(n \cdot d^3)$$

Over all

$$O(s \cdot c \cdot n \cdot d^3)$$

(algorithms for PCA are also in  $O(d^3)$ )



Robustness against noise













# Clustering High Dimensional Data: Discussion 1/2



- Finding clusters in (arbitrarily oriented) subspaces of the original feature space.
- The subspace (where the cluster exists) is part of the cluster definition.
- The challenge is 2-fold: finding the correct subspace for each cluster and the correct cluster in each relevant subspace
  - Integrate subspace search in the clustering process
- Traditional full dimensional clustering paradigms transferred in the high dimensional space.



# Clustering High Dimensional Data: Discussion 2/2



- Different types of methods
  - Bottom-Up approaches: Subspace Clustering
    - o Find clusters in all subspaces
    - Restrict the search space by downward closure property
    - Axis-parallel subspaces
    - o CLIQUE [AGGR98], SUBCLU [KKK04]
  - Top-Down Approaches: Projected Clustering
    - o Each point is assigned to one subspace cluster or noise.
    - Subspaces are discovered based on the locality (cluster-based, instance-based)
    - Axis-parallel subspaces
    - PROCLUS [APW+99], PREDECON[BKKK04]
  - Top-Down Approaches: Correlation Clustering
    - Each point is assigned to one subspace cluster or noise.
    - Subspace are discovered based on the locality (cluster-based, instance-based)
    - Arbitrary oriented subspaces
    - ORCLUS[AY00], 4C [BKKZ04], CASH []
  - Pattern based clustering (not covered here)



#### Literature



[AGGR98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.

Automatic subspace clustering of high dimensional data for data mining applications.

In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Seattle, WA, 1998.

[KKK04 K. Kailing, H.-P. Kriegel, and P. Kröger.

Density-connected subspace clustering for highdimensional data.

In Proceedings of the 4th SIAM International Conference on Data Mining (SDM), Orlando, FL, 2004.

[BKKK04] C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kröger.

Density connected clustering with local subspace preferences.

In Proceedings of the 4th International Conference on Data Mining (ICDM), Brighton, U.K., 2004.

[APW+99] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park.

Fast algorithms for projected clustering.

In Proceedings of the ACM International Conference on Management of Data

(SIGMOD), Philadelphia, PA, 1999.

[AY00] C. C. Aggarwal and P. S. Yu.

Finding generalized projected clusters in high dimensional space.

In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Dallas, TX, 2000.

[BKKZ04] C. Böhm, K. Kailing, P. Kröger, and A. Zimek.

**Computing clusters of correlation connected objects.** 

In Proceedings of the ACM International Conference on Management of Data (SIGMOD), Paris, France, 2004.

[ABKKZ07] Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Arthur Zimek:

Robust, Complete, and Efficient Correlation Clustering. SDM 2007: 413-418