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* Feature Transform

— Consider the following spaces:
— U denotes the universe of data objects
— F < R” denotes an n-dimensional feature space

— Afeature transformation is a mapping f : U - R” of objects from U to
the feature space F.

* Similarity Model
— Asimilarity model S:UxU-> R is defined for all objects p,q€U as:

S(p,q)=sim(f(p).f(q))

where
sim:R"xR" > R

is a similarity measure or a dissimilarity (distance) measure in F.

Knowledge Di y in Datab II: High-Di ional Data 3
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* Small but important difference
— Asimilarity measure (sim) assigns high values to similar objects:
sim(p,q) = sim(p,r)

— Adissimilarity measure (5) assigns low values to similar objects:
8(p,a) < 6(p,r)

object p object q object r

Knowledge Di y in Datak 1I: High-Di ional Data 4
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* Dissimilarity measures follow the idea of the geometric approach

— objects are defined by their perceptual representations in a perceptual
space

— perceptual space = psychological space

— geometric distance between the perceptual representations defines the
(dis)similarity of objects

* Within the scope of Feature-based similarity:
— perceptual space = feature space F or feature representation space R”
— geometric distance = distance function

Knowledge Di y in Datak 1I: High-Di ional Data
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* Distance Space

— The tuple (IF,8) is called a distance space if § is a distance function, i.e. it
satisfies reflexivity, non-negativity, and symmetry.

* Metric Space

— The tuple (FF,8) is called a metric space if § is a metric function, i.e. it is a
distance function (see above) and it satisfies the triangle inequality

Knowledge Discovery in Datak 1I: High-Di ional Data
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* Discussion
— Sound mathematical interpretation
— (Metric) distance functions allow domain experts to model their notion of
dissimilarity
— Allow to tune efficiency of data mining approaches
(particularly the utilization of the triangle inequality)

— Powerful and general: independent adaptation/utilization without knowing the
inner-workings of a (metric) distance function

— Long-lasting discussion of whether the distance properties and in particular the
metric properties reflect the perceived dissimilarity correctly, see the following
contradicting example:

* +
no properties shared alike similar w.r.t. roundness similar w.r.t. luminosity
Knowledge Di y in Datak 1I: High-Di ional Data
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* Similarity function
— quantifies the similarity between two objects
— corresponds to the notion that nothing is more similar than the same
— satisfies the symmetry and maximum self-similarity properties

Knowledge Discovery in Datak 1I: High-Di ional Data
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* Transformation
— Let FF be a feature space and §: F x [F - R be a distance function
— Any monotonically decreasing function f: R - R defines a similarity function
s:FxF - Ras follows:

Vx,yEX:s(x,y)=f(6(x,y))

* Some prominent similarity functions (x,y € F ):
— exponential: s(x,y)=e-5(x,y) )
— logarithmic: s(x,y)=1-log(1+4(x,y))

=== s{ny)=exp(-50yh)

— linear: s(x,y)=1-6(x,y) o - = = stuyle1-logl18te])
gt el ernens suy)el-By)
< 06 “.‘ .“'-..__‘ s
0. bt~ -
02 b “;
0.0 R i imasigs
00 10 ~ 0 30
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U
* Similarity (x,y € F < RY):
—  Dot-Product x-yT =38 x -y, = llxll - Iyl - cos
3T d oy
- Cosine T = e
JZ‘iiﬂ xiz'\}zidﬂ vt
—  Pearson Correlation iz (= %) 0= 5D
D SR
—  Kernels ...
* Distance (x,y € F c R9):
1
— Lp-norms (aka Minkowski metric) b Ly(ny) = Crcisalti — yilP)P
Fractional Minkowski Dist. (p < 1), Manhattan Dist. (p = 1), Euclidean Dist. (p = 2), Chebyshev/Maximum Dist. (p = o)
— Mabhalanobis (aka quadratic forms)
— Hamming: HammingDist(x, y) = Zl<i<d{ 1oifx #y,
=240 else
Knowledge Discovery in Datak 11: High-Di i | Data 10
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e Motivating Example: baby shapes game (truly motivating for
students ...)
OO =
Based on shape grouping Based on color grouping

What about grouping based on both shape and color?

Knowledge Discovery in Datak 1I: High-Di ional Data
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* The good old days of data mining ...
— Data generation and, to some extend, data storage was costly (sic!)
— Domain experts carefully considered which features/variables to measure
before designing the experiment/the feature transform/...
— Consequence: also data sets were well designed and potentially
contained only a small number of relevant features

* Nowadays, data science is also about integrating everything
— Generating and storing data is easy and cheap

— People tend to measure everything they can and even more (including
even more complex feature transformations)

— The Data Science mantra is often interpreted as “analyze data from as
many sources as (technically) possible”

— Consequence: data sets are high-dimensional containing a large number
of features; the relevancy of each feature for the analysis goal is not clear
a priori

Ki ledge Di y in Datak II: High-Di ional Data 13
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* Image data

— low-level image descriptors
(color histograms, textures, shape information ...)

— If each pixel a feature, a 64x64 image = 4,096 features
— Regional descriptors
— Between 16 and 1,000 features

* Metabolome data =
. . /
— feature = concentration of one metabolite ‘
— The term metabolite usually restricted to small molecules, that are

intermediates and products of metabolism.
— The Human Metabolome Database contains 41,993 metabolite entries

— Bavaria newborn screening (For each newborn in Bavaria, the blood
concentrations of 43 metabolites are measured in the first 48 hours after birth)

— between 50 and 2,000 features

Knowledge Discovery in Datak 1I: High-Di ional Data 14
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* Microarray data
— Features correspond to genes
— Thousands or tens of thousands of
genes in a single experiment
— Up to 20,000 features
— Dimensionality is much higher than the sample size

*  Text data
— Features correspond to words/terms
— Different documents have different words
— between 5,000 and 20,000 features

— Very often, esp. in social media,
— Abbreviations (e.g., Dr)
— colloquial language (e.g., luv)
— Special words (e.g, hashtags, @TwitterUser)

Excerpt from LMU website:
http://tinyurl.com/qhq6byz

Ki ledge Di y in Datak II: High-Di ional Data 15
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e Data objects (e.g. images) are m

represented as d-dimensional feature
vectors (e.g. color histograms) l

e 2-dimensional example:
— aand b are 2-dimensional vectors I
-

— The Euclidean distance between a and b is:
dist,[(1,2), (4,3)] =
JA-4)2+(2-3)2=+10

and it corresponds to the norm of 1.2 b
the difference vector ¢

lell, = V32 + 12 gD

High Dimensional Data Mining: Distances 16
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e With increasing dimensionality, distances grow, too:
— Example: dist,[(1,2),(4,3)] = V10
double the feature vector length (double the original features)
dist,[(1,2,1,2), (4,3,4,3)] =+/32 + 12 + 32 + 12 =20
— Effect seems not so important, values might be only in a larger scale?

e Contrast is lost in high dimensional data:
— Distances grow more and more alike
— Distances concentrate in small value range (low variance)
-> No clear distinction between clustered objects

High Dimensional Data Mining: Distances 17
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e Concentration phenomenon:
As dimensionality grows, the contrast provided by usual metrics
decreases. In other words, the distribution of norms in a given
distribution of points tends to concentrate

e Example: Euclidean norm of vectors consisting of several variables
that are independent and identically distributed :

yll, = Jyf +yi++ys

* |n high dimensional spaces this norm behaves unexpectedly

High Dimensional Data Mining: Distances 18
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Theorem

Let y be a d-dimensional vector [y, ..., y4] ; all components y;, 1 < i <
d, are independent and identically distributed:

Then the mean and the variance of the Euclidean norm are:
1
Myl = vad — b + O(d_l) and Ollyll = b+0(d?2)

where a and b are parameters depending only on the central moments
of order 1, 2, 3, 4.

—>The norm of random variables grows proportionally to Vd,
but the variance remains constant for sufficiently large d

—>with growing dimensionality, the relative error made by taking
Iy instead of ||y|| becomes negligible

High Dimensional Data Mining: Distances 19
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¢ Using neighborhoods is based on a key assumption:
— Objects that are similar to an object o are in its neighborhood
— Object that are dissimilar to o are not in its neighborhood

e What if all objects are in the same neighborhood?
— Consider effect on distances: kNN distances are almost equal to each other
- k nearest neighbor is a random object

High Dimensional Data Mining: Distances 20
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e Curse of Dimensionality

nearestNeighborDist

farthestNeighborDist

0 feature space (FS) 1

smet | Challenges due to high dimensionality: overview

IMU

Distance to the nearest and the farthest neighbor converge

The likelihood that a data object is located on the margin of the data space
exponentially increases with the dimensionality

1D: Py =11=1 10D: p, =1=1
Peore =08'=038 Pee =0.810=0.107
Prnargin =1-08 =02 Prnargin = 1-0.107=0.893
2D: P =12=1
Peore =0.82=0.64
P margin =1-0.64 = 0.36
3D: Py =13=1
Poore =0.83=0.512
P margin =1-0.512 = 0.488
K ledge Di y in D: 11: High-Di | Data 21
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Definition: .t
+ A NN-query is unstable for a given € if Tl L
the distance from the query point to Ve e s DMIN
most data points is less than (1 + ¢) . :N;Y o
times the dlstange from the query point .o .
to its nearest neighbor. .
:‘ Nearest Neighbor
e We will show that with \ t.
growing
. . . H e ™.
dlmenSIOI’lahty, the * ' * Query Point
. . " : .
pro bab|l|ty that a query Is . \ - Center of Circle
unstable converges to 1 -
. .
High Dimensional Data Mining: Distances 22

11



S

wmanse | NN Instability Result

SYSTEMS
GROUP

LMU

e Consider a d-dim. query point Q and N d-dim. sample points

¥ o= DMIN

X1, X5, 0, Xy N

(independent and identically distributed) e,
e We define: . <

DMIN, = min{dist,(X;, Q)|1 < i < N} e NS

T (146)DMIN

DMAX,; = max{dist,(X;,Q)|1 <i < N}

. im (Per(dist(XuQ)Y _
Theorem: If (}1_{{}0 ( Eldist,(X;,Q)]? ) =0

ThenVe >0  lim P[DMAXy < (1+€)DMIN,] = 1

If the precondition holds (e.g., if the variance of the distance values remains
more or less constant for a sufficiently large d) all points converge to the same

distance from the query

—> the concept of the nearest neighbor is no longer meaningful

High Dimensional Data Mining: Distances
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¢ Pairwise distances example: sample of 10° instances drawn from a uniform [0,

1] distribution, normalized (1/ sqrt(d)).

- o T T T T T TT ‘ T T T T TTT | T T T T TTT
09 |— N . Mean +- stddev —— Actual min — = Actual max - - _ |
’ h
0.8 — N . —
RS

o 0.7 — Ta Lt —
E T
206 -,
= N [ - ]
3 N e \
= ~
3 0.5 — Yoo N _
= i I
=
E 04 frenvnnanmnneanrocoozza —
| - o=
Z .—/vh""""""ﬂ

0.3 |+ AT —

Wit
0.2 — - ~—{ —
LY
-
0.1 |— - —
-
-
0 e R R MR ‘ | | | 1 1111 | | | I I
1 10 100 1000
Dimensionality
Source: Tutorial on Outlier Detection in High-Dimensional Data, Zimek et al, ICDM 2012
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Further explanation of the Curse of Dimensionality:
e Consider the feature space of d relevant features for a given application
=> truly similar objects display small distances in most features
* Now add d*x additional features being independent of the initial feature space

e With increasing x the distance in the independent subspace will dominate the
distance in the complete feature space

= How many relevant features must be similar to indicate object similarity?
= How many relevant features must be dissimilar to indicate dissimilarity?

= With increasing dimensionality the likelihood that two objects are similar in
every respect gets smaller.

Ki ledge Di y in Datak II: High-Di ional Data
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§ Challenges due to high dimensionality:
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e The more features, the larger the hypothesis space

1D 2D 3D

e The lower the hypothesis space
— the easier to find the correct hypothesis
— the less examples you need

Knowledge Discovery in Datak 1I: High-Di ional Data
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e Patterns and models on high-dimensional data are often hard to interpret.
— e.g., long decision rules

e [Efficiency in high-dimensional spaces is often limited
— index structures degenerate
— distance computations are much more expensive

e Pattern might only be observable in subspaces or projected spaces

Genel

Recall the baby shapes!

Gene2

Gened

Gened

Gene5
Genef
Gene?
Geneg

Geneg

e Cligues of correlated features dominate the object description

Ki ledge Di y in Datak II: High-Di i | Data 27
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¢ Inlow dimensional spaces we have some (intuitive) assumptions
on
— Behavior of volumes (sphere, cube, etc.)
— Distribution of data objects

e Basic assumptions do not hold in high dimensional spaces:
— Space becomes sparse or even empty
-> Probability of one object inside a fixed range tends to become zero
— Distribution of data has a strange behavior
e E.g. a normal distribution has only few objects in its center
- Tails of distributions become more important

High Dimensional Data Mining: Empty Space Problem 28
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e Consider a d-dimensional space d=1
ith partitions of constant size —
with parti - N=4
e The number of cells N increases
exponentially in d: N = m? d=2
e Suppose x points are randomly placed in this N=42=16
space
¢ Inlow-dimensional spaces there are few d=3
empty partitions and many points per N=4’—64
partitions - T
¢ In high-dimensional spaces there are far
more partitions than points
- there are many empty partitions
High Dimensional Data Mining: Empty Space Problem 29
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¢ Consider a simple partitioning scheme, which splits the data in each dimension
in 2 halves

¢ For d dimensions we obtain 2¢ partitions
e Consider N = 10° samples in this space
e Ford < 10 such a partition makes sense

e Ford =100 there are around 103° partitions, so most partitions are empty

[WSB98] Roger Weber, Hans-Jorg Schek and Stephen Blott: A quantitative analysis and performance study for similarity-search methods in high-
dimensional spaces. In VLDB ’98: Proceedings of the 24rd International Conference on Very Large Data Bases.

High Dimensional Data Mining: Empty Space Problem 30
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Data Space is sparsely populated

Consider a hypercube range query with
length s in all dimensions, placed
arbitrarily in the data space [0,1]¢

E is the event that an arbitrary point lies
within this range query

The probability for £ is Pr[E] = s¢ "

with increasing dimensionality, 5e 4

even very large hyper-cube range
queries are not likely to contain
a point, [WsB%8]

Probability
2

=

MU

YT

—— () 0

Humber of dimensions

High Dimensional Data Mining: Empty Space Problem
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Consider the largest spherical query that fits
entirely within a d-dimensional data space

Thus for a hypercube with side length 2r, the
sphere has radius r
E is the event that an arbitrary point lies within
this spherical query
The probability for E is:

PI‘[E] — Vsphere (7")
chbe(r)

We have:
Wm )
Vsphere )= 4
ra+ 7)

Veupe(21) = (Zr)d

High Dimensional Data Mining: Empty Space Problem

MU
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. Vsphere(T)
m-—-—-——=
—00 Veype(21)

e For a growing dimensionality we obtain: (}
e Consider Vyype(2r) = 1,thenr = 0.5 and (}im Vsphere = 0

- The volume of the sphere vanishes with increasing dimensionality
[ ]

The fraction of the volume of the cube contained in the hypersphere is:
P Vadrd  Vnd
‘ r<1 +%) (2rd r(1 +%) 24

Dimensionality d 1

2 3 4 5 6

7
0.785 0.524 0.308 0.164 0.081

0.037

Fraction Volume f; 1

Since the relative volume of the sphere becomes smaller and smaller, it

becomes improbable that any point will be found within this sphere in high
dimensional spaces

[WSB98] Roger Weber, Hans-Jorg Schek and Stephen Blott: ”A quantitative analysis and performance study for similarity-search methods in high-
dimensional spaces”. In VLDB "98: Proceedings of the 24rd International Conference on Very Large Data Bases.
[LV07] John A Lee and Michel Verleysen: “Nonlinear Dimensionality Reduction”. Springer, 2007.
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Fracticn woing

L] 10 0 b 1] 40 50
Hrarber of dimenshas

= with increasing dimensionality the center of the hypercube becomes less
important and the volume concentrates in its corners

- distortion of space compared to our 3D way of thinking

High Dimensional Data Mining: Empty Space Problem 34
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Intuition for low dimensional data:

e Consider standard density
function f

Probability

e Consider f’:

o~ _ |0, f(x) <0.01supf
fe) = {f(x), else o

=3 -l -lo & e Ir 3o

e Rescaling f’ to a density function will make very little difference in the one
dimensional case, since very few data points occur in regions where fis very
small

High Dimensional Data Mining: Empty Space Problem
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For high dimensional data:
e More than half of the data has less then 1/100 of the maximum density f{0)
(for u=0)
¢ Example: 10-dimensional Gaussian distribution X:
FQ) _ 3032k

2
f(0)
since the median of the y%, distribution is 9.34,
. fx, -3
the medianof —=ise 2z = 0.0094
1

e Thus, most objects occur at the tails of the distribution

- in contrast to the low dimensional case, regions of relatively very low density
can be extremely important parts

[S86] B.W. Silverman: "Density Estimation for Statistics and Data Analysis”. Chapman and Hall/CRC, 1986.

High Dimensional Data Mining: Empty Space Problem
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T VP PV, [ 1-dimensional standard nomal |

é-.. | distributian f

g @ o |

Ea [ |

1 1

Mo-cimansional standard neemal |

:du\mumon 1

] 1

L . | |

e Normal distribution ; '

| ]

(u=0, 0=1) T A, !
ijuso;saﬂe:e

= 1-dimensional : 90% of the mass of the distribution lies between -1.6 and 1.6

= 10-dimensional: 99% of the mass of the distribution is at points whose distance from the
origin is greater than 1.6

- itis difficult to estimate the density, except for enormous samples

-> in very high dimensions virtually the entire sample will be in the tails

High Dimensional Data Mining: Empty Space Problem
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e Consider fa multivariate normal distribution
e The aim is to estimate f at the point 0
¢ The relative mean square error should be fairly small:
R 2
E[f O -fO] _

£(0)? 0.1

Dimensionality Required sample size

4
19
768

43700

10 842000

0 U1 N =

- in the 1,2-dimensional space the given accuracy is obtained from very small samples,
whereas in the 10-dimensional space nearly a million observations are required

[S86] B.W. Silverman: "Density Estimation for Statistics and Data Analysis”. Chapman and Hall/CRC, 1986.

High Dimensional Data Mining: Empty Space Problem
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5. Clustering in High-Dimensional Data
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e Atask to remove irrelevant and/or redundant features

— Irrelevant features: not useful for a given task
e Relevant vs irrelevant

— Redundant features: a relevant feature may be redundant in the presence
of another relevant feature with which it is strongly correlated.

¢ Deleting irrelevant and redundant features can improve the efficiency as well
as the quality of the found methods and patterns.

e New feature space: Delete all useless features from the original feature space.

¢ Feature selection # Dimensionality reduction
¢ Feature selection # Feature extraction

Knowledge Discovery in Datak 1I: High-Di ional Data 40
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Irrelevant and redundant features
(unsupervised learning case)

Irrelevance e Redundancy
4 Yy
,,,,,,,,,,,,,,,,,,,,,, . 2 I
x o
xxxﬁﬁz‘é’z% % ‘i&wx’% -3’%,‘1
ey gé‘ofx‘ ﬁxx"- ,,,,,,,,,,,,,,,,,,,,,,,,,L?}?}
SRS & E N i
1 T O 1
: o b |
: S T S AR
- T x : L
b L o : P
x T H : :

Features x and y are redundant,
because x provides the same
information as feature y with regard
to discriminating the two clusters

Feature y is irrelevant, because if we
omit x, we have only one cluster,
which is uninteresting.

Source: Feature Selection for Unsupervised Learning, Dy and Brodley, Journal of Machine Learning Research 5 (2004)
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Irrelevant and redundant features
(supervised learning case)

¢ Irrelevance
a Feature y separates well the two classes.
& a A a Feature x is irrelevant.
™ . ] o . . ] Its addition “destroys” the class separation.

Features x and y are redundant.

¢ Individually irrelevant,

together relevant
. _

Source: http://www com/2014/03/machine-learning-7-pictures.html

Knowledge Discovery in Datak 11: High-Di
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* Input: Vector space F =d;X..x d, with dimensions D ={d,,..,d,}.
e Output: a minimal subspace M over dimensions D'c D which is optimal for a
giving data mining task.
— Minimality increases the efficiency, reduces the effects of the curse of
dimensionality and increases interpretability.

Challenges:
e Optimality depends on the given task
e There are 29 possible solution spaces (exponential search space)
¢ There is often no monotonicity in the quality of subspace
(Features might only be useful in combination with certain other features)

= For many popular criteria, feature selection is an exponential problem
= Most algorithms employ search heuristics

Ki ledge Di y in Datak II: High-Di ional Data 43
§ 2 main components '
DATABASE v
1. Feature subset generation
— Single dimensions
— Combinations of dimensions (subpaces)
2. Feature subset evaluation
— Importance scores like information gain, x?
— Performance of a learning algorithm
Knowledge Discovery in Datak 1I: High-Di ional Data 44
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Feature selection methods 1/4
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¢ Filter methods

— Explores the general characteristics of the data, independent of the learning
algorithm.

e Wrapper methods

— The learning algorithm is used for the evaluation of the subspace

Embedded methods

— The feature selection is part of the learning algorithm

Ki ledge Di y in Datak II: High-Di ional Data 45
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Feature selection methods 2/4

MU

Filter methods

— Basic idea: assign an “importance” score to each feature to filter out the
useless ones

— Examples: information gain, y?-statistic, TF-IDF for text
— Disconnected from the learning algorithm.
— Pros:
O Fast
0 Simple to apply
— Cons:

0 Doesn'’t take into account interactions between features
0 Individually irrelevant features, might be relevant together (recall slide 14)

Knowledge Discovery in Datak 1I: High-Di ional Data 46
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e Wrapper methods

— Alearning algorithm is employed and its performance is used to determine
the quality of selected features.
— Pros:
0 the ability to take into account feature dependencies.

0 interaction between feature subset search and model selection
— Cons:
0 higher risk of overfitting than filter techniques

0 very computationally intensive, especially if building the classifier has a high
computational cost.
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e Embedded methods

— Such methods integrate the feature selection in model building

— Example: decision tree induction algorithm: at each decision node, a
feature has to be selected.

— Pros:

0 less computationally intensive than wrapper methods.
— Cons:
0 specific to a learning method
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