

Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme

Knowledge Discovery in Databases II Winter Term 2015/2016

Optional Lecture: Pattern Mining & High-D Data Mining

Lectures : Prof. Dr. Peer Kröger, Yifeng Lu Tutorials: Yifeng Lu

Script © 2015, 2017 Eirini Ntoutsi, Matthias Schubert, Arthur Zimek, Peer Kröger, Yifeng Lu

http://www.dbs.ifi.lmu.de/cms/Knowledge_Discovery_in_Databases_II_(KDD_II)

- Frequent Itemset Mining
 - Recap
 - Relationship with subspace clustering
- Rare pattern mining
 - Relationship with subspace outlier detection
- Sequential Pattern Mining
 - Recap
 - Relationship with high dimensional data mining

Frequent Itemset Mining: Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.

- Given:
 - A set of items $I = \{i_1, i_2, \dots, i_m\}$
 - A database of transactions D, where a transaction $T \subseteq I$ is a set of items
- <u>Task 1:</u> find all subsets of items that occur together in many transactions.
 - E.g.: 85% of transactions contain the itemset {milk, bread, butter}
- <u>Task 2:</u> find all rules that correlate the presence of one set of items with that of another set of items in the transaction database.
 - E.g.: 98% of people buying tires and auto accessories also get automotive service done
- Applications: Basket data analysis, cross-marketing, recommendation systems, etc.

Recap: Frequent Itemset Mining (KDD1)

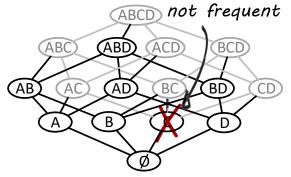
- Transaction database
 - D= {{butter, bread, milk, sugar};
 {butter, flour, milk, sugar};
 {butter, eggs, milk, salt};
 {eggs};
 {butter, flour, milk, salt, sugar}}
 NOTE: no quantity
- Question of interest:
 - Which items are bought together frequently?
- Applications
 - Improved store layout
 - Cross marketing
 - Focused attached mailings / add-on sales
 - * ⇒ Maintenance Agreement
 (What the store should do to boost Maintenance Agreement sales)
 - Home Electronics \Rightarrow * (What other products should the store stock up?)

items	frequency
{butter}	4
{milk}	4
{butter, milk}	4
{sugar}	3
{butter, sugar}	3
{milk, sugar}	3
{butter, milk, sugar}	3
{eggs}	2

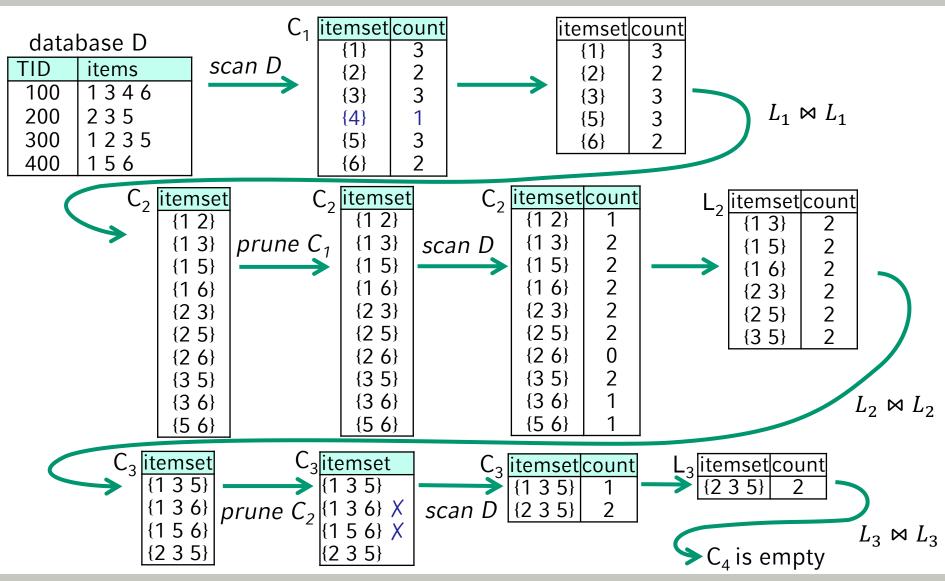
- Naïve Algorithm
 - count the frequency of all possible subsets of I in the database
 - \rightarrow too expensive since there are 2^m such itemsets for |I| = m items
- The *Apriori* principle (anti-monotonicity):

Any non-empty subset of a frequent itemset is frequent, too! $A \subseteq I$ with support(A) \geq minSup $\Rightarrow \forall A' \subset A \land A' \neq \emptyset$: support(A') \geq minSup Any superset of a non-frequent itemset is non-frequent, too! $A \subseteq I$ with support(A) < minSup $\Rightarrow \forall A' \supset A$: support(A') < minSup

- Method based on the apriori principle
 - First count the 1-itemsets, then the 2-itemsets, then the 3-itemsets, and so on
 - When counting (k+1)-itemsets, only consider those (k+1)-itemsets where all subsets of length k have been determined as frequent in the previous step



Recap: Naïve Algorithm - BFS



Recap: Advanced Algorithm - DFS

- Idea: Divide and Conqure
- Recursively breaking down the problem into sub-problems of the same or related type
 - Breaking down a large database into smaller database
 - Mining frequent pattern on small database
 - Summing up the result
- Consider frequent patterns in previous section:

itemset	count
{1}	3
{2}	2
{3}	3
{5}	3
{6}	2

itemset	count
{1 3}	2
{1 5}	2
{1 6}	2
{2 3}	2
{2 5}	2
{3 5}	2

itemset	count
{2 3 5}	2

- All patterns can be divided into different sets:
 - {Contain 1}, {Contain 2 | no 1}, {Contain 3 | no 1,2}, ...
 - $i.e. \{ \{1\}, \{13\}, \{15\}, \{16\} \}, \{ \{2\}, \{23\}, \{25\}, \{235\} \}, \{ \{3\}, \{35\} \}, \dots$
- Same strategy could also be applied on database:
 - Subset contain 1
 - Subset contain 2, no 1
 - Subset contain 3, no 1,2
 - ...
- Each subdatabase is responsible for generating a set of frequent patterns
- Combine all frequent patterns will give the full frequent pattern set
 - Could be applied recursively on subset

• Assume items in each transaction is ordered, e.g.: alphabet order

TID	items
100	1346
200	235
300	1235
400	156

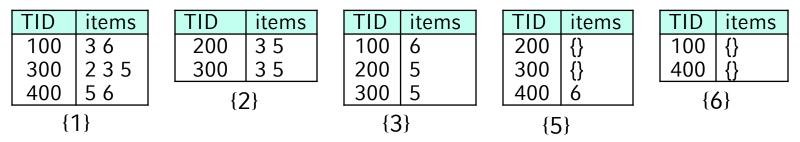
minSup=0.5

• Delete infrequent items

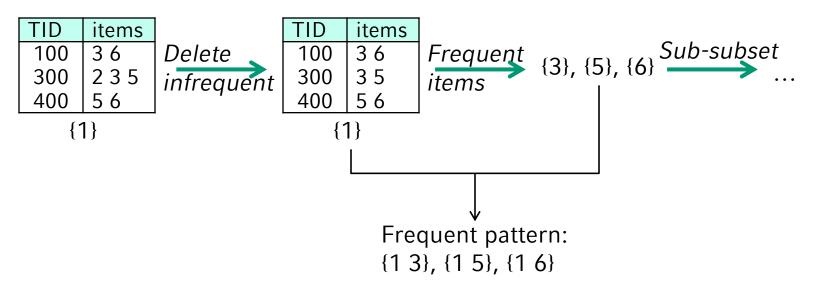
TID	items
100	136
200	235
300	1235
400	156

- Generate all single frequent items:
 - $\quad \{1\}, \{2\}, \{3\}, \{5\}, \{6\}$

• Each frequent item results in a sub-dataset



• For each subsets, repeat the process above



Recap: Association Rule Mining

- Question of interest:
 - If milk and sugar are bought, will the customer always buy butter as well?
 milk, sugar ⇒ butter ?
 - In this case, what would be the probability of buying butter?
- Association rule: An association rule is an implication of the form $X \Rightarrow Y$ where $X, Y \subseteq I$ are two itemsets with $X \cap Y = \emptyset$.
- $confidence(X \Rightarrow Y) = P(Y|X) = \frac{|\{T \in D | X \cup Y \subseteq T\}|}{|\{T \in D | X \subseteq T\}|} = \frac{support(X \cup Y)}{support(X)}$ "conditional probability that a transaction in *D* containing the itemset *X* also contains itemset *Y*"

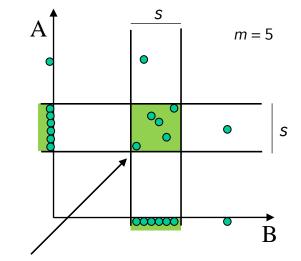
•
$$\operatorname{corr}_{A,B} = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(B|A)}{P(B)} = \frac{\operatorname{conf}(A \Rightarrow B)}{\operatorname{supp}(B)} = \operatorname{corr}_{B,A}$$

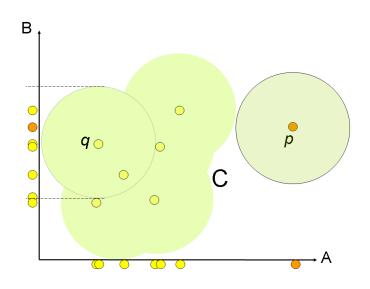
- Frequent Itemset Mining
 - Recap
 - Relationship with subspace clustering
- Rare pattern mining
 - Relationship with subspace outlier detection
- Sequential Pattern Mining
 - Recap
 - Relationship with high dimensional data mining

- Find clusters in all subspaces:
 - First: search for subspaces
 - Second: find clusters in the subspace
- Monotonicity Property (Apriori) applied
- Frequent Itemset Mining as High-D Subspace Clustering:
 - Items as entries:

TidABCD1101120110

MinSup as "density threshold"





- Main steps of subspace clustering in our lecture:
 - Generate all 1-D clusters
 - Generate (k + 1)-D clusters form k-D clusters
 - Generate (k + 1)-dimensional candidate subspaces *Cand* from S_k
 - Test candidates and generate (k + 1)-dimensional clusters
- Breadth First Search in dimensional space
 - Apriori algorithm (Naïve algorithm) in FIM
 - Inefficient with candidate generation step
- Depth First Search based algorithm is possible for subspace clustering

- FIM vs. Subspace Clustering => Binary (Categorical) vs. Numerical
- More advanced FIM: High Utility Itemset Mining

transaction database with quantities

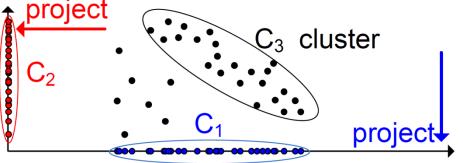
Trans.	items
T ₀	a(1), b(5), c(1), d(3), (e,1)
T ₁	b(4), c(3), d(3), e(1)
T ₂	a(1), c(1), d(1)
T ₃	a(2), c(6), e(2)
T ₄	b(2), c(2), e(1)

u	nit pr	ofit table
	item	unit profit
	а	5\$
	b	2\$
	с	1\$
	d	2\$
	е	3\$

High utility	itemsets
{a,c} : 28\$	{a,c,e}: 31 \$
{a,b,c,d,e}: 25 \$	{b,c} : 28 \$
{b,c,d}: 34 \$	{b,c,d,e}: 40 \$
{b,c,e} : 37 \$	{b,d} : 30 \$
{b,d,e} : 36 \$	{b,e}: 31 \$
{c, e}: 27\$	

- Number of items => Value of each attribute
- Unit profit => Dimension weight
- High Utility Itemset Mining => Weighted Subspace Clustering?

- Association Rule Mining tells the relationship across dimensions
- Not all frequent itemset but those with high confidence, etc. are more interesting
- Subspace Clustering
 - Clusters in arbitrary subsets of dimensions.
 - Exponential number of possible subspaces.
 - Inefficient: $O(2^{D})$ cluster operations



- High dimensional clusters appear in lower dimensional projections
- Highly redundant information!

Basic Ideas and Challenges:

- Exclude redundant information (similar clusters)
- How to define redundancy?
- How to use redundancy for pruning?

Overview of approaches:

- INSCY: excludes lower dimensional redundant projections¹
- RESCU: global optimization to include only relevant clusters²
- OSCLU: allows to detect multiple, non-redundant views on the data³
- StatPC: includes statistically descriptive clusters⁴

¹Assent I., Krieger R., Müller E., Seidl T.: INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy, ICDM, 2008 ²Müller E., Assent I., Günnemann S., Krieger R., Seidl T.: Relevant Subspace Clustering: Mining the Most Interesting Non-Redundant Concepts in High Dimensional data, ICDM, 2009

⁴Moise, G. and Sander, J.: Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering, KDD, 2008

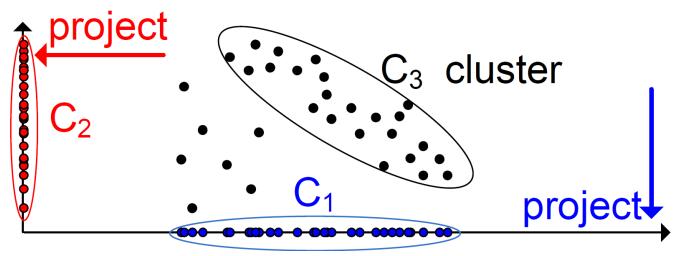
³S. Günnemann, E. Müller, I. Färber, and T. Seidl, Detection of Orthogonal Concepts in Subspaces of High Dimensional Data, CIKM, 2009

Redundancy Definition

- A cluster C = (O, S) is redundant if $\exists C'(O', S'): S' \supseteq S \land O' \subseteq O \land$
 - $\exists C'(O',S'): S' \supset S \land O' \subseteq O \land |O'| \ge |O| \cdot R$
- The redundant cluster **C** in subspace **S** is covered to a degree of redundancy *R* by a cluster $C' |O'| \ge R \cdot |O|$ in a higher-dimensional subspace $S' \supset S$

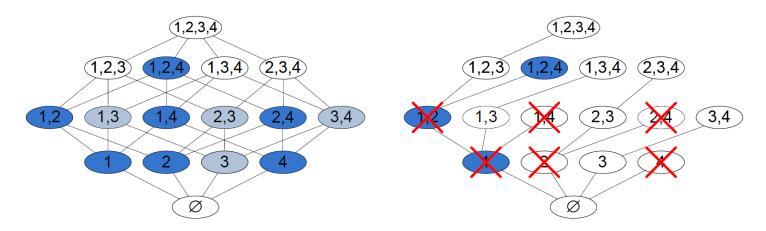
Notice: $R = \frac{|O'|}{|O|}$ => The same as the definition of confidence!

• Higher dimensional clusters are preferred =>



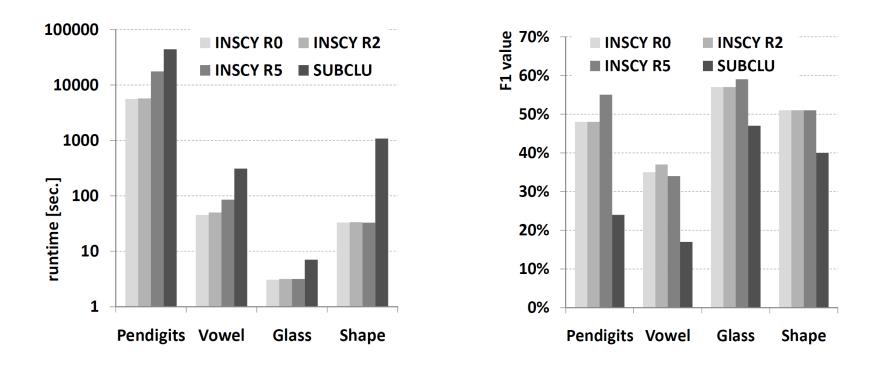
INSCY: Depth First Search

• **Depth-First Processing** enables in-process pruning of redundant clusters.



- Lower dimensional projections of clusters can be efficiently pruned.
- \rightarrow Expensive data base scans can be reduced.
- INSCY additionally introduces an index structure to further reduce the number of data base scans

• INSCY outperforms SUBCLU in terms of efficiency and accuracy



- Concepts in FIM have a good mapping to concepts in High-D subspace clustering
 - FIM searches the possible dense subspaces
 - High dimensional clustering do clustering based on the result of FIM

or

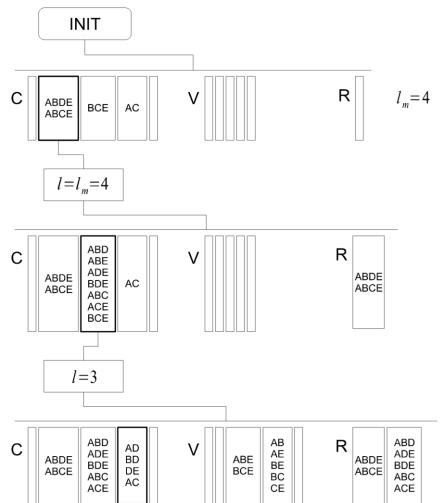
- FIM is a special case of high dimensional clustering
- Question: What about High-D projection clustering / correlation clustering?

- Frequent Itemset Mining
 - Recap
 - Relationship with subspace clustering
- Rare pattern mining
 - Relationship with subspace outlier detection
- Sequential Pattern Mining
 - Recap
 - Relationship with high dimensional data mining

- Outlier detection always come together with clustering
 Frequent Itemset Mining <> High Dimensional Subspace Clustering
 Rare Itemset Mining <> High Dimensional Subspace Outlier Detection
- As you can image, high dimensional outlier detection also includes two parts:
 - Finding subspaces (Rare Itemset Mining)
 - Finding outliers in subspaces
- Overview of Rare Itemset Mining Approaches:
 - Arima¹
 - Rarity²
 - RP-Tree³

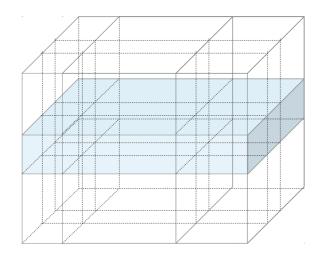
¹Szathmary, L., Napoli, A., & Valtchev, P. (2007). Towards rare itemset mining. In *Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI* (Vol. 1, pp. 305–312). https://doi.org/10.1109/ICTAI.2007.30
 ²Troiano, L., Scibelli, G., & Birtolo, C. (2009). A fast algorithm for mining rare itemsets. In *ISDA 2009 - 9th International Conference on Intelligent Systems Design and Applications* (pp. 1149–1155). https://doi.org/10.1109/ISDA.2009.55
 ³Tsang, Sidney, Yun Sing Koh, and Gillian Dobbie. "RP-Tree: rare pattern tree mining." *International Conference on Data Warehousing and Knowledge Discovery*. Springer Berlin Heidelberg, 2011.

• Inverse of Apriori Algorithm ($\leq minSup$)



Subspace Outlier Detection

- First subspace outlier detection algorithm¹ is similar with CLIQUE
 - resembles a grid-based subspace clustering approach but not searching dense but sparse grid cells
 - report objects contained within sparse grid cells as outliers
 - evolutionary search for those grid cells (Apriori-like search not possible, complete search not feasible)



- \succ divide data space in φ equi-depth cells
- each 1-dim. hyper-cuboid contains f = N/φ objects
- > expected number of objects in k-dim. hyper-cuboid: $N \cdot f^k$
- > standard deviation: $\sqrt{N \cdot f^k(1-f^k)}$
- "sparse" grid cells: contain unexpectedly few data objects

¹Aggarwal, Charu C., and Philip S. Yu. "Outlier detection for high dimensional data." ACM Sigmod Record. Vol. 30. No. 2. ACM, 2001.

Summary

- Key words mentioned up to now
 Frequent Itemset Mining ⇔ Subspace Clustering
 Association Rule Mining ⇔ Non-redundant Subspace Clustering
 Rare Pattern Mining ⇔ Subspace Outlier Detection
- More related algorithms can be found in ELKI: http://elki.dbs.ifi.lmu.de/

- Frequent Itemset Mining
 - Recap
 - Relationship with subspace clustering
- Rare pattern mining
 - Relationship with subspace outlier detection
- Sequential Pattern Mining
 - Recap
 - Relationship with high dimensional data mining

Recap: Frequent Sequential Pattern Mining (KDD1)

- Both can be applied on similar dataset
 - Each customer has a customer id and aligned with transactions.
 - Each transaction has a transaction id and belongs to one customer.
 - Based on the transaction id, each customer also aligned to a transaction sequence.

Cid	Tid	ltem
	1	{butter}
1	2	{milk}
	3	{sugar}
	4	{butter, sugar}
2	5	{milk, sugar}
Z	6	{butter, milk, sugar}
	7	{eggs}
	8	{sugar}
3	9	{butter, milk}
3	10	{eggs}
	11	{milk}

Cid	Item
1	{butter} ,{milk}, {sugar}
2	{butter, sugar}, {milk, sugar}, {butter, milk, sugar}, {eggs}
3	{sugar}, {butter, milk}, {eggs}, {milk}

Frequent itemset mining

 No temporal importance in the order of items happening together

4
5
2

sequences	frequency
{butter}	4
{butter, milk}	2
{butter},{milk}	4
{milk},{butter}	1
{butter},{butter,milk}	1

- Breadth-first search based
 - GSP (Generalized Sequential Pattern) algorithm¹
 - SPADE²

- ...

- Depth-first search based
 - PrefixSpan³
 - SPAM⁴

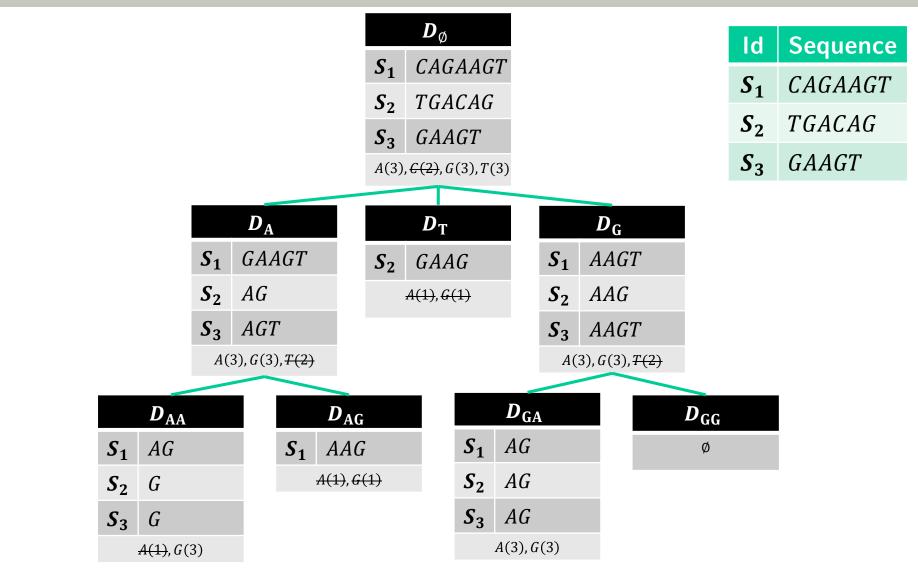
- ..

¹Sirkant & Aggarwal: *Mining sequential patterns: Generalizations and performance improvements.* EDBT 1996 ²Zaki M J. *SPADE: An efficient algorithm for mining frequent sequences[J].* Machine learning, 2001, 42(1-2): 31-60. ³Pei at. al.: *Mining sequential patterns by pattern-growth: PrefixSpan approach.* TKDE 2004 ⁴Ayres, Jay, et al: *Sequential pattern mining using a bitmap representation.* SIGKDD 2002.

Recap: PrefixSpan

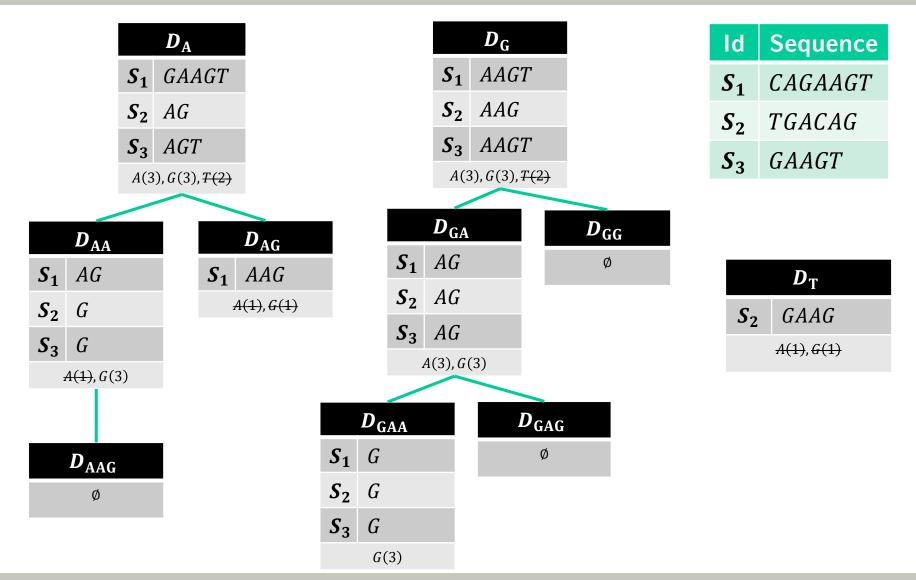
- The *PrefixSpan* algorithm computes the support for only the individual items in the projected databased D_s
- Then performs recursive projections on the frequent items in a depth-first manner
- Initialization: $D_R \leftarrow D$, $\mathbf{R} \leftarrow \emptyset$, $\mathcal{F} \leftarrow \emptyset$
 - $PrefixSpan(D_R, \mathbf{R}, minSup, \mathcal{F})$
 - For each $s \in \Sigma$ such that $\sup(s, D_R) \ge minSup$ do
 - $R_s = R + s$ // append s to the end of R
 - $\mathcal{F} \leftarrow \mathcal{F} \cup \{(\mathbf{R}_s, \sup(s, D_R))\}$ // calculate the support of s for each \mathbf{R}_s within D_R
 - $D_s \leftarrow \emptyset$ // create projected data for s
 - For each $S_i \in D_R$ do
 - $S'_i \leftarrow \text{projection of } S_i \text{ w.r.t. item } s$
 - Remove an infrequent symbols from S'_i
 - If $S'_i \neq \emptyset$ then $D_s = D_s \cup S'_i$
 - If $D_s \neq \emptyset$ then $PrefixSpan(D_s, \mathbf{R}_s, minSup, \mathcal{F})$

Recap: Example



Knowledge Discovery in Databases II: High-Dimensional Data

Recap: Example



- In each SPM, each item can exist multiple times
 - More complicate in high dimensional view: same dimension might happened multiple times
- Sequence with temporal information: trace

$$A \xrightarrow{5.6} B \xrightarrow{2.1} C$$
 [A(1.1), B(6.7), C(8.8)]

- Existing algorithms introduce heuristics:
 - No noise or noise will not affect the order of events
 - Thus, SPM like algorithm can be applied to find "subspace" first
 - Then, clustering based on the temporal information