Ludwig Maximilians Universitat Minchen
Institut fir Informatik
Lehr- und Forschungseinheit fur Datenbanksysteme

Skript zur Vorlesung
Knowledge Discovery in Databases ||

Im Sommersemester 2010

Kapitel 3: Clustering in
hochdimensionalen Raumen

Skript basiert auf Tutorial von Hans-Peter Kriegel, Peer Kréger und
Arthur Zimek, ICDM 2007, PAKDD 2008, KDD 2008, VLDB 2008

© 2010 Arthur Zimek

http://www.dbs.ifi.Imu.de/Lehre/KDD ||

Qutline

1. Introduction

2. Axis-paralel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary

69




Outline; Introduction

« Sample Applications
» General Problems and Challenges

* A First Taxonomy of Approaches

70

Sample Applications

» Gene Expression Analysis

« Data % ot
: =) m QG
- Expression level of genes under |
DNA protein

different samples such as

= different individuals (patients)

= different time slots after treatment

= different tissues

= different experimental environments

- Data matrl X. samples (usually ten to hundreds)
4 A N
r
genes B
(usually < ™

several
thousands)

expression level of
the ith gene under
L the jth sample
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Sample Applications

» Task 1: Cluster the rows (i.e. genes) to find groups of genes with similar
expression profilesindicating homogeneous functions

- Challenge: Genel (Y
Gene2 &
genes ugjal Iy ha\/e 2:::3 HE Cluster 1: {G1, G2, G6, G8}
dife t functi Genes o7 Cluster 2: {G4, G5, G6}
ITrerent runctions coned N | Cluster 3: {G5, G6, G7, GO}
n V | I"I Gene8 \\'
u der ary g Gene9

(combinations of) conditions

e Task 2: Cluster the columns (e.g. patients) to find groups with similar
expression profiles indicating homogeneous phenotypes

- Challenge:
different phenotypes ST
depend on different . Cluster 1: {P1, P4, P8, P10}
(Combl natl ons Of) %22 Cluster 2: {P4, P5, P6}
Cluster 3: {P2, P4, P8, P10}
subsets of genes E

72

Sample Applications

d M etabOI i C &rw‘i ng 3-Keto-3-deoxy-ATP 3*Amino-3-deoxy-AMP

M6, M6, O-Triderms thyl-
puromye in-5-phosphate

b Data 3-Kein-3"deoxy-AMP
Tyrosing O
- Concentration of different metabolites N
Flenylalanize, tyosine sud purmmyrin-5-phosphats
in the blood of different test persons (Bmmesne

H-apetyl-O-demethyl

- Example: sty | g
Puromycin O O 211 j—OﬂW—

H-Acetyl-Ho, O-didemethyl-
puromytin-5-phosphate

Bavarian Newborn Screening e
- Datamatrix:
metabolites (usually ten to hundreds) rux
'a A Y

test persons

(usually several < — .
thousands) \ Con_centranon pf
the ith metabolite
in the blood of the
jth test person
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Sample Applications

o Task: Cluster test personsto find groups of individuals with similar
correlation among the concentrations of metabolites indicating homogeneous
metabolic behavior (e.g. disorder)

- Challenge:

different metabolic disorders appear through different correlations of

(subsets of ) metabolites
A \

Concentration 002 % o
of Metabolite 2 © oo

Concentration of Metabolite 1
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Sample Applications

» Customer Recommendation / Target Marketing

 Data
- Customer ratings for given products
- Datamatrix:
products (hundreds to thousands)
A
4 N\
p
customers = ~
(millions) <

rating of the ith
product by the jth
customer

-

» Task: Cluster customersto find groups of persons that share similar
preferences or disfavor (e.g. to do personalized target marketing)

- Challenge:

customers may be grouped differently according to different
preferences/disfavors, i.e. different subsets of products
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General Problems & Challenges

The“ curse of dimensionality” : one buzzword for many problems

» First aspect: Optimization Problem (Bellman).

“[The] curse of dimensionality [ ... is| a malediction that has plagued the
scientistsfrom earliest days.” [Bel61]

» Thedifficulty of any global optimization approach increases exponentially
with an increasing number of variables (dimensions).

» Generd relation to clustering: fitting of functions (each function explaining
one cluster) becomes more difficult with more degrees of freedom.

» Direct relation to subspace clustering: number of possible subspaces
increases dramatically with increasing number of dimensions.
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General Problems & Challenges

» Second aspect: Concentration effect of L -norms

* In[BGRS99,HAKOQ] it isreported that the ratio of (Dmax,— Dminy) to
Dminy converges to zero with increasing dimensionality d

- Dminy = distance to the nearest neighbor in d dimensions
- Dmax = distance to the farthest neighbor in d dimensions

Formally:

Ve>0:lim, P{distd(DmaXd —Dmin, ,0) < g} 1
Dmin,

- Thisholds true for awide range of data distributions and distance
functions
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General Problems & Challenges
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From bottom to top: minimum observed value, average minus standard deviation, average value, average plus standard deviation,
maximum observed value, and maximum possible value of the Euclidean norm of a random vector. The expectation grows, but the
variance remains constant. A small subinterval of the domain of the norm is reached in practice. (Figure and caption: [FWV07])

* The observations stated in [BGRS99,HAK QO] are valid within clusters but
not between different clusters aslong as the clusters are well separated
[BFG99,FWV07,HKK+10].

e Thisisnot the main problem for subspace clustering, although it should be

kept in mind for range queries. -

General Problems & Challenges

» Third aspect: Relevant and Irrelevant attributes
» A subset of the features may be relevant for clustering

» Groupsof similar (“dense”’) points may be identified when considering these
features only

__.___..__

irrelevant attribute

DR S

v

relevant attribute/
relevant subspace

» Different subsets of attributes may be relevant for different clusters
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General Problems & Challenges

» Effect on clustering:
- Usually the distance functions used give equal weight to all dimensions
- However, not al dimensions are of equal importance

- Adding irrelevant dimensions ruins any clustering based on a distance
function that equally weights al dimensions

CooCooo oo o
L= N R L R R R T
T T T T T T T T T

80

General Problems & Challenges
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» again: different attributes are relevant for different clusters




General Problems & Challenges

» Fourth aspect: Correlation among attributes
» A subset of features may be correlated

» Groupsof similar (“dense”’) points may be identified when considering this
correlation of features only

» Different correlations of attributes may be relevant for different clusters
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General Problems & Challenges

* Why not feature selection?
» (Unsupervised) feature selection is global (e.g. PCA)

» Wefacealocal feature relevance/correlation: some features (or combinations
of them) may be relevant for one cluster, but may be irrelevant for a second
one
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General Problems & Challenges

» Usefeature selection before clustering
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General Problems & Challenges
o Cluster first and then apply PCA
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General Problems & Challenges

* Problem Summary

» Curse of dimensionality/Feature relevance and correlation
- Usually, no clustersin the full dimensional space

- Often, clusters are hidden in subspaces of the data, i.e. only a subset of features
isrelevant for the clustering

- E.g. ageneplaysacertain role in a subset of experimental conditions

» Locad feature relevance/correlation

- For each cluster, a different subset of features or a different correlation of
features may be relevant

- E.g. different genes are responsible for different phenotypes
» Overlapping clusters

- Clusters may overlap, i.e. an object may be clustered differently in varying
subspaces

- E.g. agene plays different functional roles depending on the environment
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General Problems & Challenges

» General problem setting of clustering high dimensional data

Search for clustersin
(in general arbitrarily oriented) subspaces
of the original feature space

» Challenges:

 Find the correct subspace of each cluster
- Search space:
= al possible arbitrarily oriented subspaces of afeature space
= infinite
» Find the correct cluster in each relevant subspace
- Search space:
= “Best” partitioning of points (see: minimal cut of the similarity graph)
» NP-complete [SCH75]
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General Problems & Challenges

» Evenworse: Circular Dependency
» Both challenges depend on each other

* Inorder to determine the correct subspace of a cluster, we need to know (at
least some) cluster members

 Inorder to determine the correct cluster memberships, we need to know the
subspaces of all clusters

» How to solve the circular dependency problem?
* Integrate subspace search into the clustering process

e Thus, we need heuristics to solve
- the clustering problem
- the subspace search problem

simultaneously
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General Problems & Challenges

» Solution: integrate variance / covariance analysis into the clustering
process
* Variance analysis.
- Find clustersin axis-parallel subspaces
- Cluster members exhibit low variance

along the relevant dimensions i N
» Covariance/correlation analysis: é@‘ \

- Find clustersin arbitrarily oriented Cluster3 Ve
subspaces Aot L A SO o

- Cluster members exhibit alow covariance 000%0‘%‘;" ‘o
w.r.t. agiven combination of the relevant )
dimensions (i.e. alow variance along the ‘g.,‘
dimensions of the arbitrarily oriented . ° O/(/ LR
subspace corresponding to the given o @féﬁ.“‘g o
combination of relevant attributes) ° >/




A First Taxonomy of Approaches

» So far, we can distinguish between
» Clustersin axis-parallel subspaces
(common assumption to restrict the search space)
Approaches are usually called
- “subspace clustering algorithms”
- “projected clustering algorithms’
- “bi-clustering or co-clustering algorithms”

o Clustersin arbitrarily oriented subspaces
Approaches are usually called
- “bi-clustering or co-clustering algorithms’

- “pattern-based clustering algorithms” oy

- “correlation clustering algorithms”

irrelevant attribute

«
1
1
.
1

«

1
»

'

v

relevant attribute/
relevant subspace
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A First Taxonomy of Approaches

o Afirst big picture
* \We have two problemsto solve

 For both problems we need heuristics that have huge influence on the

properties of the algorithms
- Subspace search

Assumptions ‘m Algorithm

(e.g. axis-parallel only) 'U (e.g. top-down)

Assumption specific

Original search space
9 P search space

(infinite)

- Cluster search

v

Cluster model ‘m Algorithm
(e.g. k-partitioning - U (e.g. k-Means)
clustering) i
Model specific

Original search space search space

(NP-complete)

v

FINAL SUBSPACES

FINAL CLUSTERING
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A First Taxonomy of Approaches

» Note: thistaxonomy considers only the subspace search space
 the clustering search space is equally important

» other important aspects for classifying existing approaches are e.g.
» The underlying cluster model that usually involves
- Input parameters
- Assumptions on number, size, and shape of clusters
- Noise (outlier) robustness
Determinism
Independence w.r.t. the order of objects/attributes
Assumptions on overlap/non-overlap of clusters/subspaces
Efficiency

Extensive survey: [KKZ09]
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Outline: Axis-parallel Subspace Clustering

Challenges and Approaches

Bottom-up Algorithms

Top-down Algorithms

Summary
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Challenges

» What are we searching for?

» Overlapping clusters. points may be grouped differently in different
subspaces

=> “subspace clustering”
» Digoint partitioning: assign points uniquely to clusters (or noise)
=> “projected clustering”
Notes:

» Theterms subspace clustering and proj ected clustering are not used in a
unified or consistent way in the literature
» These two problem definitions are products of the presented algorithms:

- Thefirst “projected clustering algorithm” integrates a distance function
accounting for clustersin subspacesinto a“flat” clustering algorithm (k-medoid)
=> DISIJOINT PARTITION

- Thefirst “subspace clustering algorithm” is an application of the APRIORI
algorithm => ALL CLUSTERSIN ALL SUBSPACES
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Challenges

 The naive solution:

» Given acluster criterion, explore each possible subspace of a d-dimensional
dataset whether it contains a cluster

* Runtime complexity: depends on the search space, i.e. the number of all
possible subspaces of a d-dimensional data set

* What isthe number of all possible subspaces of ad-dimensional data set?
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Challenges

* What isthe number of all possible subspaces of ad-dimensional
data set?

* How many k-dimensional subspaces (k<d) do we have?
The number of all k-tupels of a set of d elementsis

H

A

e Qveral:

k=1

» So the naive solution is computationally infeasible:

We face a runtime complexity of O(29)
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Challenges

o Search spaceford=4

4D

G

ZDRIGIOL I 1Ol IOI INIGI I O]

1D
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Wiederholung: Frequent-ltemset-Mining
Gegeben:
e ene Mengevon Items|
« eine Transaktionsdatenbank DB Uber |
» Ein absoluter support-Grenzwert s
« Findeadlefrequent Itemsetsin DB, d.h.
{X c | | support(X) > s}
TransaktionsID Items Support der 1-Itemsets:
2000 AB,C (A): 75%, (B), (C): 50%, (D), (E), (F): 25%,
1000 A,C Support der 2-1temsets:
4000 AD (A, C): 50%,
5000 B,E,F (A,B),(A,D), (B,C), (B, E), (B, F), (E F): 25%
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Wiederholung: Frequent-ltemset-Mining

,haiver* Algorithmus. zéhle die Haufigkeit aller k-elementigen

Teilmengen von | - ineffizient, da('l'('j solcher Teilmengen

Gesamt-K osten: O(2!')

=> Apriori-Algorithmus und Varianten, Tiefensuch-Algorithmen
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Wiederholung: Frequent-ltemset-Mining
Itemset Cover Sup. | Freq.
tid Xr I {1,2,3.4} 4 100 %
1 {Bier, Chips, Wein} (Bier} (12} 2 50 %
2 {Bier, Chips} { Chips} {124 3 75 %
3 {Pizza, Wein} {Pizza} {34 2 50 %
4 {Chips, Pizza} {Wein} {13 2 50 %
Transaktionsdatenbank {Bier, Chips 12 2 0%
{Bier, Wein} {1 1 25%
{Chips, Pizza} {4} 1 25%
{ Chips, Wein} {1 1 25%
{Pizza, Wein} {3} 1 25%
{Bier, Chips, Wein} {1} 1 25%

Monotonie Eigenschaft von frequent Itemsets

wenn X frequent ist, sind alle Teilmengen Y < X auch frequent

Umkehrung:

wenn X nicht frequent, kbnnen alle Itemsetsdie X al's
Teilmenge enthalten auch nicht mehr frequent sein!
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Wiederholung: Frequent-ltemset-Mining

Suchraum: (Itemset:Support)

{}:4

.

{Bier}:2 {Chips}:3 {Pizza}:2 {Wein}:2

{BierChipst:2 | {Bierpizza}:0 |  {BierWein}:1 i_{Chips,Pizza}:lE { Chips,Wein} :1 i_{Pizza,Wein}:l,

I
{Bier,Chips,Pizza} :0 : {Bier,Chips,Wein}:1 | {Bier,Pizza,Wein}:0 { Chips,Pizza,Wein}:0

{Bier,Chips,Pizza,Wein}:0

! Positive Rand-ltemsets 1 Minimaler Support s=1 Negative Rand-1temsets
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Wiederholung: Frequent-ltemset-Mining:

Apriori Algorithmus [AS94]
» zuerst die ein-elementigen Frequent Itemsets bestimmen, dann die zwei-
elementigen und so weiter (Breitensuche)

Finden von k+1-elementigen Frequent Itemsets:

 nur solche k+1-elementigen Itemsets betrachten, fir die alle k-elementigen
Teilmengen haufig auftreten

» Bestimmung des Supports durch Zahlen auf der Datenbank (ein Scan)
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Approaches

» Basically, there are two different ways to efficiently navigate
through the search space of possible subspaces

* Bottom-up:
- If the cluster criterion implements the downward closure, one can use any
bottom-up frequent itemset mining algorithm (e.g. APRIORI [AS94])

- Key: downward-closure property OR merging-procedure

e Top-down:

- The search startsin the full d-dimensional space and iteratively learns for
each point or each cluster the correct subspace

- Key: procedure to learn the correct subspace

104

Bottom-up Algorithms

» Rational:
« Start with 1-dimensional subspaces and merge them to compute higher
dimensional ones
* Most approaches transfer the problem of subspace search into frequent
item set mining
- The cluster criterion must implement the downward closure property

= |f the criterion holdsfor any k-dimensional subspace S then it also holds for any
(k-=1)-dimensional projection of S
= Usethe reverse implication for pruning:

If the criterion does not hold for a (k—1)-dimensional projection of S, then the
criterion al'so does not hold for S

- Apply any frequent itemset mining algorithm (e.g. APRIORI)
» Some approaches use other search heuristics like best-first-search, greedy-
search, etc.
- Better average and worst-case performance
- No guaranty on the completeness of results
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Bottom-up Algorithms

» Downward-closure property

If Cisadense set of pointsin subspace S,
then C isalso adense set of pointsin any subspace T < S

A MinPts = 4 a

p and q density-connected in { A,B}, { A} and { B} p and g not density-connected in { B} and { A,B}
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Bottom-up Algorithms

» Downward-closure property

the reverse implication does not hold necessarily

A
(o]
A2 e oo
%6
(o)
s Q
& %
Al ... &
[0((0) TO0 [(00)) ._B
BlI B2 B3
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Bottom-up Algorithms

» Thekey limitation: global density thresholds
» Usually, the cluster criterion relies on density

 In order to ensure the downward closure property, the density threshold must
be fixed

» Conseguence: the pointsin a 20-dimensional subspace cluster must be as
dense asin a2-dimensional cluster

» Thisisarather optimistic assumption since the data space grows
exponentially with increasing dimensionality
» Conseguences.

- A strict threshold will most likely produce only lower dimensional
clusters

- A loose threshold will most likely produce higher dimensional clusters
but also a huge amount of (potentially meaningless) low dimensional
clusters
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Bottom-up Algorithms

» Properties (APRIORI-style agorithms):
» Generation of al clustersin all subspaces => overlapping clusters
» Subspace clustering algorithms usually rely on bottom-up subspace search
« Worst-case: complete enumeration of all subspaces, i.e. O(29) time
» Completeresults
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Bottom-up Algorithms

« CLIQUE [AGGR9g]
» Cluster model
Each dimension is partitioned into § equi-sized intervals called units

A k-dimensional unit isthe intersection of k 1-dimensional units (from
different dimensions)

A unit u is considered dense if the fraction of all data pointsin u exceeds
the threshold t

A cluster isamaximal set of connected dense units

£=8
1=0.12

2-dimensional ‘
dense unit \ ° ¢

2-dimensional cluster
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Bottom-up Algorithms

» Downward-closure property holds for dense units
» Algorithm
- All dense cells are computed using APRIORI-style search

- A heuristic based on the coverage of a subspace is used to further prune
unitsthat are dense but are in less interesting subspaces

(coverage of subspace S= fraction of data points covered by the dense
units of )

- All connected dense units in a common subspace are merged to generate
the subspace clusters
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Bottom-up Algorithms

e Discussion

Input: § and T specifying the density threshold
Output: all clustersin all subspaces, clusters may overlap

Uses afixed density threshold for all subspaces (in order to ensure the
downward closure property)

Simple but efficient cluster model
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Bottom-up Algorithms

« ENCLUS[CFZ99]
» Cluster model usesafixed grid similar to CLIQUE
» Algorithm first searches for subspaces rather than for dense units
» Subspaces are evaluated following three criteria
- Coverage (see CLIQUE)
- Entropy

= Indicates how densely the points are packed in the corresponding subspace (the higher
the density, the lower the entropy)

= |mplements the downward closure property

- Correlation
= |ndicates how the attributes of the corresponding subspace are correlated to each other
= |mplements an upward closure property
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Bottom-up Algorithms

» Subspace search algorithm is bottom-up similar to CLIQUE but determines
subspaces having

Entropy<®w and Correlation>¢

[0 Q0

B B OO ® Low correlation (bad cIustering)_I
)

T Low entropy (good clustering)

v High entropy (bad clustering) waf5or

High correlation (good clustering

» Discussion
- Input: thresholds w and €

- Output: all subspaces that meet the above criteria (far less than CLIQUE),
clusters may overlap

- Usesfixed thresholds for entropy and correlation for all subspaces
- Simple but efficient cluster model
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Bottom-up Algorithms

» drawback of grid-based approaches: ! :
choiceof & and t
cluster for 1 =4 © '
(is C2 acluster?) I I N . N S I
for T > 4: no cluster found i .oio i i ° i
(esp. Clislost) ‘.“. _______ ______ :
el
! ! y C2
I S oeees e
6) i o) ’ e

» motivation for density-based approaches
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Bottom-up Algorithms

SUBCLU [KKK04]
o Cluster moddl:
Density-based cluster model of DBSCAN [EK SX96]
Clusters are maximal sets of density-connected points
Density connectivity is defined based on core points
Core points have at least MinPts points in their e-neighborhood

° o MinPts=5 o © ?- MinPts=5
° ° o ° ° ’ 5 ° °
° s ° o, o ‘:P.\ ° o

Detects clusters of arbitrary size and shape (in the corresponding
subspaces)
» Downward-closure property holds for sets of density-connected points
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Bottom-up Algorithms

» Algorithm

- All subspaces that contain any density-connected set are computed using
the bottom-up approach

- Density-connected clusters are computed using a specialized DBSCAN
run in the resulting subspace to generate the subspace clusters

» Discussion
- Input: € and MinPts specifying the density threshold
- Output: al clustersin all subspaces, clusters may overlap
- Uses afixed density threshold for all subspaces
- Advanced but costly cluster model
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Bottom-up Algorithms

e FIRES[KKRWO05]

* Proposes a bottom-up approach that uses different heuristic for subspace
search

o 3-Step algorithm
- Starts with 1-dimensional clusters called base clusters (generated by
applying any traditional clustering algorithm to each 1-dimensional
subspace)
- Mergesthese clusters to generate subspace cluster approximations by

applying a clustering of the base clusters using a variant of DBSCAN
(smilarity between two clusters C1 and C2 isdefined by |C1 n C2|)

- Refines the resulting subspace cluster y
approximations Cc
= Apply any traditional clustering baseclater
agorithm on the points within the
\ ‘.

approximations
= Prunelower dimensional projections

Bottom-up Algorithms

» Discussion
- Input:
= Three parameters for the merging procedure of base clusters
= Parameters for the clustering algorithm to create base clusters and for refinement

- Output: clustersin maximal dimensional subspaces, clusters may overlap

- Allows overlapping clusters (subspace clustering) but avoids complete
enumeration; runtime of the merge step is O(d)

- Output heavily depends on the accuracy of the merge step whichisa
rather smple heuristic and relies on three sensitive parameters

- Cluster model can be chosen by the user
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Bottom-up Algorithms

 DiSH[ABK+074q]
e |dea

- Not considered so far: lower dimensional clusters embedded in higher
dimensional ones

t+ 2DclusterA % 2D cluster B subspace cluster hierarchy

)

LI X Xy

AT L

T E S 2D level 2

s ot I S cluster B
bx i Do
! 1 X! : 1
I 1

IS
1 ny 2 1
RARER A S -X
. 1D cluster D @ @ level 1

- Now: find hierarchies of subspace clusters
- Integrate a proper distance function into hierarchical clustering

X X X XT5
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Bottom-up Algorithms

» Distance measure that captures subspace hierarchies assigns
- 1if both points share acommon 1D subspace cluster
- 2if both points share acommon 2D subspace cluster

» Sharing acommon k-dimensional subspace cluster means
- Both points are associated to the same k-dimensional subspace cluster

- Both points are associated to different (k-1)-dimensional subspace
clustersthat intersect or are parallel (but not skew)

» Thisdistanceis based on the subspace dimensionality of each point p
representing the (highest dimensional) subspace in which p fits best
- Analyze thelocal e-neighborhood of p along each attribute a
=> if it contains more than . points: aisinteresting for p

- Combine all interesting attributes such that the e-neighborhood of p in the
subspace spanned by this combination still contains at least u points (e.g.
use APRIORI agorithm or best-first search)
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Bottom-up Algorithms

» Discussion
- Input: € and u specify the density threshold for computing the relevant
subspaces of a point

- Output: ahierarchy of subspace clusters displayed as a graph, clusters
may overlap (but only w.r.t. the hierarchical structure!)

- Does not rely on aglobal density threshold
- Complex but costly cluster model
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Top-down Algorithms

» Rational:
 Cluster-based approach:
- Learn the subspace of a cluster in the entire d-dimensional feature space
- Start with full-dimensional clusters

- Iteratively refine the cluster memberships of points and the subspaces of
the cluster

* Instance-based approach:

- Learn for each point its subspace preference in the entire d-dimensional
feature space

- The subspace preference specifies the subspace in which each point
“clusters best”

- Merge points having similar subspace preferences to generate the clusters

123




Top-down Algorithms

» Thekey problem: How should we |earn the subspace preference of
acluster or apoint?
» Most approachesrely on the so-called “locality assumption”

- The subspace is usually learned from the local neighborhood of cluster
representatives/cluster membersin the entire feature space:

= Cluster-based approach: the local neighborhood of each cluster representativeis
evaluated in the d-dimensional space to learn the “correct” subspace of the cluster

= |nstance-based approach: the local neighborhood of each point is evaluated in the d-
dimensional space to learn the “ correct” subspace preference of each point

- Thelocality assumption: the subspace preference can be learned from the
local neighborhood in the d-dimensional space

» Other approaches learn the subspace preference of a cluster or a point from
randomly sampled points
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Top-down Algorithms

» Discussion:
» Locality assumption
- Recall the effects of the curse of dimensionality on concepts like “local
nei ghborhood”
- The neighborhood will most likely contain alot of noise points

» Random sampling

- Thelarger the number of total points compared to the number of cluster
pointsis, the lower the probability that cluster members are sampled

» Consequence for both approaches
- Thelearning procedure is often misled by these noise points
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Top-down Algorithms

» Properties:
« Simultaneous search for the “best” partitioning of the data points and the
“best” subspace for each partition => digoint partitioning
» Projected clustering agorithms usually rely on top-down subspace search
» Worst-case:
- Usually complete enumeration of all subspacesis avoided
- Worst-case costs are typically in O(d?)
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Top-down Algorithms

« PROCLUS[APW+99]
» K-medoid cluster model
- Cluster isrepresented by its medoid
- To each cluster a subspace (of relevant attributes) is assigned

- Each point is assigned to the nearest medoid (where the distance to each
medoid is based on the corresponding subspaces of the medoids)

- Points that have alarge distance
to its nearest medoid are
classified as noise

4
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Top-down Algorithms

» 3-Phase Algorithm

- Initialization of cluster medoids

= A superset M of bk medoidsis computed from a sample of a-k data points such that
these medoids are well separated

= krandomly chosen medoids from M are theinitial cluster representatives
= |nput parameters a and b are introduced for performance reasons

- Iterative phase works similar to any k-medoid clustering

= Approximate subspaces for each cluster C

» Thelocality of Cincludesall pointsthat have a distance to the medoid
of C less than the distance between the medoid of C and the medoid of
the neighboring cluster

» Compute standard deviation of distances from the medoid of C to the
pointsin the locality of C along each dimension

» Add the dimensions with the smallest standard deviation to the relevant
3 dimensions of cluster C such that

locality of C1 - insummary k| dimensions are assigned to al clusters
- each cluster has at least 2 dimensions assigned

locality of C2
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Top-down Algorithms

= Reassign points to clusters
» Compute for each point the distance to each medoid taking only the
relevant dimensions into account
» Assign points to a medoid minimizing these distances
= Termination (criterion not really clearly specified in [APW+99])
» Terminate if the clustering quality does not increase after a given
number of current medoids have been exchanged with medoids from M

(itisnot clear, if there is another hidden parameter in that criterion)

- Refinement

= Reassign subspaces to medoids as above (but use only the points assigned to each
cluster rather than the locality of each cluster)

= Reassign points to medoids; points that are not in the locality of their corresponding
medoids are classified as noise
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Top-down Algorithms

» Discussion
- Input:
= Number of clustersk
= Average dimensionality of clusters|
= Factor a to determine the size of the samplein theinitialization step
= Factor b to determine the size of the candidate set for the medoids

- Output: partitioning of pointsinto k digoint clusters and noise, each
cluster has a set of relevant attributes specifying its subspace

- Relies on cluster-based locality assumption: subspace of each cluster is
learned from local neighborhood of its medoid

- Biased to find I-dimensional subspace clusters
- Simple but efficient cluster model
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Top-down Algorithms

* PreDeCon [BKKKO04]
 Cluster model:

- Density-based cluster model of DBSCAN [EK SX96] adapted to
projected clustering

= For each point p a subspace preference indicating the subspace in which p clusters
best is computed

= g-neighborhood of a point p is constrained by the subspace preference of p
= Core points have at |east MinPts other pointsin their e-neighborhood

= Density connectivity is defined based on core points

= Clusters are maximal sets of density connected points

- Subspace preference of apoint p is d-dimensional vector w,=(w,...,Wy),
entry w,, represents dimension i with
_{1 if VAR >0

W, _
Kk if VAR <0

VAR, isthe variance of the e-neighborhood of p in the entire d-
dimensional space, 6 and k >> 1 areinput parameters
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Top-down Algorithms

» Algorithm
- PreDeCon applies DBSCAN with aweighted Euclidean distance function
dist,(p.@)= [ W, (P, -a)°
dist(p,q) = max {dist,(p,q), dist(c,p)}
- Instead of shifting spheres (full-dimensional Euclidean e-neighborhoods),

clusters are expanded by shifting axis-parallel ellipsoids (weighted
Euclidean e-neighborhoods)

- Note: In the subspace of the cluster (defined by the preference of its
members), we shift spheres (but this intuition may be misleading)

A A

AW

@

v
v
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Top-down Algorithms

e Discussion
- Input:
= 9 and x to determine the subspace preference

= ) specifies the maximal dimensionality of a subspace cluster
= ¢ and MinPts specify the density threshold

- Output: adigoint partitioning of datainto clusters and noise

- Relies on instance-based locality assumption: subspace preference of
each point is learned fromits local neighborhood

- Advanced but costly cluster model
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Summary

* Thebig picture

» Basic assumption:
“subspace search space is limited to axis-parallel subspaces”

» Algorithmic view:
- Bottom-up subspace search
- Top-down subspace search

» Problem-oriented view:
- Subspace clustering (overlapping clusters)
- Projected clustering (digoint partitioning)
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Summary

* How do both views relate?
 Subspace clustering algorithms compute overlapping clusters

- Many approaches compute all clustersin all subspaces
= These methods usually implement a bottom-up search strategy alaitemset mining

= These methods usually rely on global density thresholds to ensure the downward
closure property

= These methods usually do not rely on the locality assumption
» These methods usually have aworst case complexity of O(24)

- Other focus on maximal dimensional subspace clusters

= These methods usually implement a bottom-up search strategy based on simple but
efficient heuristics

= These methods usually do not rely on the locality assumption
* These methods usually have aworst case complexity of at most O(d?)
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Summary

* Thebig picture
» Projected clustering algorithms compute a digoint partitioning of the data
They usually implement atop-down search strategy
They usually rely on the locality assumption
They usually do not rely on global density thresholds
They usually scale at most quadratic in the number of dimensions
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Qutline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Outline: Pattern-based Clustering

» Challenges and Approaches, Basic Models for
» Constant Biclusters
» Biclusters with Constant Values in Rows or Columns
 Pattern-based Clustering: Biclusters with Coherent Values
 Biclusters with Coherent Evolutions
» Algorithmsfor
e Constant Biclusters
» Pattern-based Clustering: Biclusters with Coherent Values
e Summary
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Challenges and Approaches, Basic Models

Pattern-based clustering relies on patterns in the data matrix.
» Simultaneous clustering of rows and columns of the data matrix
(hence biclustering).
o Datamatrix A = (X,Y) with set of rows X and set of columns'Y
* a, istheelementinrow x and columny.

 submatrix A,; = (I,J) with subset of rows | c X and subset of columnsJc Y
contains those elements ; withi e lundj e J

Y
Av — Y ] - J={yj}

[/

X7 x i A

| = {i,x} 3y
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Challenges and Approaches, Basic Models

Genera aim of biclustering approaches:
Find a set of submatrices{(l,,J,),(I5,J),....,(1,,J)} of the matrix
A=(X,Y) (withl,c X and J c Y fori = 1,...,k) where each
submatrix (= bicluster) meets a given homogeneity criterion.
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Challenges and Approaches, Basic Models

» Some values often used by bicluster

models:
* mean of row i: » mean of al elements:
iJ ‘J JEZJ au IJ 3 Za”
‘ H iel,jed
. meanofcolumnj' Za”

Z aQ ‘ jed
= i
‘ iel ‘ Zau

iel
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Challenges and Approaches, Basic Models

Different types of biclusters (cf. [MOO04]):
» constant biclusters

e biclusterswith
e constant values on columns
e constant values on rows

 biclusters with coherent values (aka. pattern-based clustering)
 biclusterswith coherent evolutions
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Challenges and Approaches, Basic Models

Constant biclusters
» al pointsshareidentical value in selected attributes.

» The constant valueu isatypical value for the cluster.

e Cluster model:

» Obviously a special case of an axis-parallel subspace cluster.
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Challenges and Approaches, Basic Models

» example —embedding 3-dimensional space:

a2
al az ad 3 |
P1 1 1 35 . a3
P2 1 1 23 S
: 9 _ o
* 3
P4 | 1] 1 |07 1 spead 2
1
| 1 I - al
1 2 3
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Challenges and Approaches, Basic Models

« example—2-dimensional subspace:

a2
al az -‘-
P1 1 1
P2 1 1 q 5
2 _|
P4 1 1
14

 pointslocated on the bisecting line of participating attributes
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Challenges and Approaches, Basic Models

» example—transposed view of attributes:

val ue
al az ad H1
Pl | 1 1 | 38 3 4
=¥,
= 1 1 23 5 _|
1 _
P4 1 1 07 . 5
, , : g attribute
al a2 a3

 pattern: identical constant lines
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Challenges and Approaches, Basic Models

real-world constant biclusters will not be perfect
cluster model relaxes to:

Optimization on matrix A = (X,Y) may lead to |X|-|Y| singularity-biclusters each
containing one entry.

Challenge: Avoid thiskind of overfitting.
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Challenges and Approaches, Basic Models

Biclusters with constant values on columns

* Cluster model for A;; = (1,J):
a, =M+C,
Viel,jeJ

* adjustment value ¢ for columnj e J

e resultsin axis-parallel subspace clusters
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Challenges and Approaches, Basic Models

» example— 3-dimensiona embedding space:

al

a3d

F1

3.5

F2

23

P4

0.7

az2
A
4 | -
3 _| /. 1'r33
2_.____."{ /
: 4
' 3
1 4 : 3
1
I - al
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Challenges and Approaches, Basic Models

» example—2-dimensional subspace:

al az az
M| 1 | 2 i
p2 1 2
3
pr [ 1 | 2 2] ®
1 _
T T T - 21
1 2 3
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Challenges and Approaches, Basic Models

» example—transposed view of attributes:

val ue
al aZ a3 =8}
P1 1 2 35 3 -
P2 1 2 23 ol P
2 -
P4 | 1 2 |07 1 - 4543\\»
P4
| —— g attribute

al a2 a3

o pattern: identical lines
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Challenges and Approaches, Basic Models

Biclusters with constant values on rows
* Cluster model for A;; = (1,J):

a = [+
Viel,jeJ H

» adjustment valuer; for rowi e |
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Challenges and Approaches, Basic Models

» example— 3-dimensiona embedding space:

al al ad
1 1 1 3.5
P2 2 2 23

P4 4 4 a.7

 inthe embedding space, points build a sparse hyperplane parallel to
irrelevant axes
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Challenges and Approaches, Basic Models

» example—2-dimensional subspace:

a2
A
al a2 4 - *»
P1 1 1
B 2 | 2 3 -
2 - @
4 | 4 4
1 4 1]

 points are accommodated on the bisecting line of participating
attributes
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Challenges and Approaches, Basic Models

» example—transposed view of attributes:

value
al aZ a3 4
P1 1 1 35 =
P2 2 2 23 3 — —_—
. P2
2 ]
P4 4 4 0.7
s P4
| — - attribute
al £ a3

» pattern: parallel constant lines

155




Challenges and Approaches, Basic Models

Biclusters with coherent values

» based on aparticular form of covariance between rows and

columns

» gspecial cases.
« ¢ =0forall j > constant values on rows
e r,=0forall i = constant values on columns

a, = 1+T1 +C,
Viel,je J

u
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Challenges and Approaches, Basic Models

» embedding space: sparse hyperplane parallel to axes of irrelevant

attributes

al

az

ad

F1

35

23

P4

07
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Challenges and Approaches, Basic Models

» subspace: increasing one-dimensional line

al

az

F1

P4

158

Challenges and Approaches, Basic Models

 transposed view of attributes:

al

ad

P1

308

23

P4

07

o pattern: paralel lines

value

F1

P2

P4
y P3

- attribute

159




Challenges and Approaches, Basic Models

Biclusters with coherent evolutions

» forall rows, al pairs of attributes change simultaneously
» discretized attribute space: coherent state-transitions
» changein same direction irrespective of the quantity

NN
"4
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Challenges and Approaches, Basic Models

» Approacheswith coherent state-transitions: [TSS02,M K 03]
 reduces the problem to grid-based axis-parallel approach:

al

az

a3

P1

05

1.5

35

P2

07

1.3

23

P4

035

21

0.7
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Challenges and Approaches, Basic Models

al a2 al a2 a3
F1 0 + F1 045 15 35
P2 | 0 [ + P2 [ 07|13 ] 23
PA | 0 | + Ps [ o8] 21|07
a2 value
A i
P‘|
3 - 3 5
+ 2 =]
2" 2 -
I. 1
T1— % 7
0 0 \ .
— - 8 —— 2 attribute
1 2 3 al a2 a3
“‘T‘D o pattern: all lines cross border between

states (in the same direction)
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Challenges and Approaches, Basic Models

» changein same direction — general idea: find a subset of rows and
columns, where a permutation of the set of columns exists such that
the valuesin every row are increasing

 clusters do not form a subspace but rather half-spaces
 related approaches:

 (uantitative association rule mining [Web01,RRK04,GRRKO05]
 adaptation of formal concept analysis [GW99] to numeric data [Pfa07]
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Challenges and Approaches, Basic Models

» example— 3-dimensional embedding space

al

a2

ad

F1 05 | 15 35
P2 oE | 13 23
P4 18 1 21 0.7
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Challenges and Approaches, Basic Models

» example— 2-dimensional subspace

3l

P1

05

15

P2

0.7

1

P4

1.8

21
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Challenges and Approaches, Basic Models

» example—transposed view of attributes

« pattern: all linesincreasing

value
al az a3
F1
F1 05 15 35 3 |
F2 07 13 P
: ; 2 =]
P4 18| 21 0.7 1
T ="
o A
: IH“““I F3 e attribute
al a2 a3
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Challenges and Approaches, Basic Models
M atrix-Pattern Bicluster Model Spatial Pattern
4 axis-paralel, located
_.?’; no change of values Constant Bicluster on bisecting line
©
O 5 .
2 g change of values axis-parallel
only on / -
columns axis-parallel sparse =
or only Constant Columns Constant Rows hyperplane — projected %
on rows T space: bisecting line o
()
axis-parallel sparse hyperplane - %
(t:)ha;%e]: eo f L\J/:lnﬁs Coherent Values | projected space: increasing line S
(;I/wi e F? attern)y (positive correlation) =
= state-transitions:
L3 - grid-based axis-parallel
g & | change c:;‘. Valtl_’es Coherent Evolutions change in same direction:
vin same direction

half-spaces (no classica
cluster-pattern)
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Algorithms for Constant Biclusters

classical problem statement by Hartigan [Har72]
quality measure for a bicluster: variance of the submatrix A, ;:

VAR (A; )= > (ai,- ~a, )

iel,jed

avoids partitioning into |[X|-|Y| singularity-biclusters (optimizing the sum of
squares) by comparing the reduction with the reduction expected by chance
recursive split of data matrix into two partitions

each split chooses the maximal reduction in the overall sum of squaresfor al
biclusters
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Biclusters with Constant VValues in Rows or Columns

simple approach: normalization to transform the biclustersinto
constant biclusters and follow the first approach (e.g. [GLDO0Q])

some application-driven approaches with special assumptionsin the
bioinformatics community (e.g. [CST00,SMDO03,STG+01])

constant values on columns: general axis-parallel
subspace/projected clustering

constant values on rows. special case of general correlation
clustering

both cases special case of approaches to biclusters with coherent
values
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Algorithms for Biclusters with Coherent Values

classical approach: Cheng& Church [CCOQ]
* introduced the term biclustering to analysis of gene expression data
» quality of abicluster: mean squared residue value H

1
H(l 1J):— Z(aij —; —a "‘au)z
“ H‘] iel,jed

o submatrix (1,J) is considered abicluster, if H(1,J) <o
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Algorithms for Biclusters with Coherent Values

* =0 -> perfect bicluster:
» each row and column exhibits absolutely consistent bias
* biasof row i w.r.t. other rows:

aiJ _ aIJ

+ themodel for a perfect bicluster predicts value a; by arow-constant, a column-

constant, and an overall cluster-constant:

a; =a; +a; —aq

Bu=ay.n=a, = —4

N
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Algorithms for Biclusters with Coherent Values

» for anon-perfect bicluster, the prediction of the model deviates from the true
value by aresidue:

a; = res(aij)+aiJ +a; —a;

0

res(aij) =a; —a; —q; +t4q,

» Thisresidueisthe optimization criterion:

1
H(I ’J):— Z(aij —a,; —aq, +aIJ)2
‘I H‘J iel,jed
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Algorithms for Biclusters with Coherent Values

* Theoptimization is also possible for the row-residue of row i or
the column-residue of column j.
o Algorithm:

1. find ao -bicluster: greedy search by removing the row or column (or the set
of rows/columns) with maximal mean sgquared residue until the remaining
submatrix (1,J) satisfies H(I,J)< d.

2. find amaximal é -bicluster by adding rows and columnsto (I,J) unlessthis
would increase H.

3. replace the values of the found bicluster by random numbers and repeat the
procedure until k 6 -biclusters are found.
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Algorithms for Biclusters with Coherent Values

Weak points in the approach of Cheng& Church:

1. Onecluster at atimeisfound, the cluster needs to be masked in
order to find a second cluster.

2. This procedure bears an inefficient performance.
The masking may lead to less accurate results.

4. The masking inhibits simultaneous overlapping of rows and
columns.

5. Missing values cannot be dealt with.
6. The user must specify the number of clusters beforehand.

w
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Algorithms for Biclusters with Coherent Values

p-cluster model [WWY'Y 02]
» p-cluster model: deterministic approach
» gspecializes o -bicluster-property to a pairwise property of two

objectsin two attributes:
F2
< /I

=]

‘(ailjl —a, )— (aizjl —a,j, )

—

difference <&

al a2

o submatrix (I1,J) isad -p-cluster if this property isfulfilled for any
2x2 submatrix ({iy, 1o}, {1, Jo}) where{i,, i,} € | and{j, j,} €J.
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Algorithms for Biclusters with Coherent Values

Algorithm:

1.
2.

3.
4.

Problem: complete enumeration approach
Addressed issues:

create maximal set of attributes for each pair of objectsforming a
d -p-cluster

create maximal set of objects for each pair of attributes forming a
O -p-cluster

pruning-step P
search in the set of submatrices

A A

| ——p
SR
&3

+j

4—pw
4\

1. multiple clusters simultaneously
4. dlows for overlapping rows and columns
6. allows for arbitrary number of clusters v

«—
A—p K
-4
-
X N

Related approaches. FLOC [YWWY 02],
MaPle [PZC+03]
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Summary

Biclustering models do not fit exactly into the spatial intuition
behind subspace, projected, or correlation clustering.

Models make sense in view of adata matrix.

Strong point: the models generally do not rely on the locality
assumption.

Models differ substantially - fair comparison is anon-trivial task.
Comparison of five methods: [PBZ+06]

Rather specialized task — comparison in a broad context
(subspace/projected/correlation clustering) is desirable.

Biclustering performs generally well on microarray data— for a
wealth of approaches see [MO04].
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Outline: Arbitrarily-oriented Subspace Clustering

e Challenges and Approaches
« Correlation Clustering Algorithms
e Summary and Perspectives
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Challenges and A pproaches

 Pattern-based approaches find simple positive correlations
* negative correlations. no additive pattern

value
a2 A
A
6 P1
64 m
S P2
5 ®
4 -
4 -
3 P3
3
2 . 2 P4
1 A 1 -
— T 21 | — e attribute
1 2 3 4 &5 &6 al a2
180
Challenges and A pproaches
» more complex correlations. out of scope of pattern-based
approaches
al-2a2+a3=0
a2 value
i
5 — ———
al az al o
F1 3 2 1 P1
2 4 3 —
9 _ P2
P4 3 4 g - / .
T T T T T T T T L ! T T PSE—- attribute
1 2 3 4 5 6 T 8 al a2 a3
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Challenges and A pproaches

 Pattern-based approaches find simple positive correlations
» More general approach: oriented clustering aka. generalized

subspace/projected clustering aka. correlation clustering

* Note: different notion of “Correlation Clustering” in machine learning
community, e.g. cf. [BBCO4]

» Assumption: any cluster islocated in an arbitrarily oriented affine
subspace St+a of R
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Challenges and A pproaches

« Affinesubspace Sta, S c R, affinity acRd isinteresting if a
set of points clusters within this subspace

» Points may exhibit high variance in perpendicular subspace
(RI\ 9+a
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Challenges and A pproaches

high variance in perpendicular subspace (R4\ §+a —> pointsform
a hyperplane within RY located in this subspace (R4\ 9+a

Points on a hyperplane appear to follow linear dependencies among
the attributes participating in the description of the hyperplane
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Challenges and A pproaches

Directions of high/low variance: PCA (local application)

locality assumption: local selection of points sufficiently reflects
the hyperplane accommodating the points

general approach: build covariance matrix X, for a selection D of
points (e.g. k nearest neighbors of a point)

L5 (x=x0) (X=X, )

‘D xeD

Xp: centroidof D properties of X:

@ .. «dxd
.l. @ * symmetric
()
® 9

Sy =

* positive semidefinite

* Op, (vdueat row i, column j) = covariance
® between dimensionsi and

* 0, = varianceinith dimension
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Challenges and A pproaches

« decomposition of X to eigenvalue matrix E; and eigenvector
matrix Vp: .
2p =V EpVp
» E,: diagonal matrix, holding eigenvalues of X in decreasing order
in itsdiagonal elements

* Vp: orthonormal matrix with eigenvectors of X, ordered
correspondingly to the eigenvaluesin E,

* Vp:new basis, first eigenvector = direction
of highest variance

« E: covariance matrix of D when
represented in new axis system V,
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Challenges and A pproaches

 pointsforming A-dimensional hyperplane - hyperplaneis
spanned by the first A eigenvectors (called “strong” eigenvectors
— notation:V, )

 subspace where the points cluster densely is spanned by the

remaining d-A eigenvectors (called “weak” eigenvectors —
notation: y; )

for the eigensystem, the sum of the
smallest d-A eigenvalues  >.e,

iIsminimal under all possible
transformations = points cluster optimally
dense in this subspace
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Challenges and A pproaches

model for correlation clusters [ABK+06]:

« A-dimensional hyperplane accommodating the points of a
correlation cluster Cc R is defined by an equation system of d-A
equations for d variables and the affinity (e.g. the mean point x. of
all cluster members):

~ ~

VI x=VJ X,
» eguation system approximately fulfilled for all points xe C
» quantitative model for the cluster allowing for probabilistic
prediction (classification)
» Note: correlations are observable, linear dependencies are merely

an assumption to explain the observations — predictive model
allows for evaluation of assumptions and experimental refinements
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Correlation Clustering Algorithms

ORCLUS[AYO0Q]:

first approach to generalized projected clustering
e similar ideasto PROCLUS [APW+99]

» k-means like approach

o start with k. > k seeds

» assign cluster members according to distance function based on the
eigensystem of the current cluster (starting with axes of data space,
I.e. Euclidean distance)

 reducek. in each iteration by merging best-fitting cluster pairs
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Correlation Clustering Algorithms

» best fitting pair of clusters: least average distance in the projected
space spanned by weak eigenvectors of the merged clusters

ter 1
m clus! .
: sensyst eigeng
.\W ... YStem clygge,. 2
.. o 0¥ @

@ ®e® & ©

eigensystem cluster 1 U cluster 2
()
{[——""‘ o

» assess average distance in all merged pairs of clusters and
finally merge the best fitting pair

20uBISIP aZeIoAR
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Correlation Clustering Algorithms

» adapt eigensystem to the updated cluster

new iteration: assign points according to updated eigensystems
(distance along weak eigenvectors)

dimensionality gradually reduced to a user-specified value |
initially exclude only eigenvectors with very high variance

191




Correlation Clustering Algorithms

properties:

 findsk correlation clusters (user-specified)

 higher initial k. = higher runtime, probably better results

» biased to average dimensionality | of correlation clusters (user
specified)

 cluster-based locality assumption: subspace of each cluster is
learned from its current members (starting in the full dimensional

space)
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Correlation Clustering Algorithms

4C [BKKZ04]
» density-based cluster-paradigm (cf. DBSCAN [EKSX96])

» extend acluster from a seed aslong as a density-criterion is
fulfilled — otherwise pick another seed unless all data base objects
are assigned to a cluster or noise

» dengity criterion: minimal required number of pointsin the
neighborhood of a point

» neighborhood: distance between two points ascertained based on
the eigensystems of both compared points
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Correlation Clustering Algorithms

» egensystem of apoint p based on its e-neighborhood in Euclidean
Space

o threshold ¢ discernslarge from small eigenvalues

* ineigenvalue matrix E,replace large eigenvalues by 1, small
eigenvalues by x>>1

» adapted eigenvalue matrix yields a correlation similarity matrix for
point p:

V. EV!

P—p"P
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Correlation Clustering Algorithms

» effect on distance measure;

« distance of p and gw.r.t. p: \/(p—CI)'Vp'E;'VpT'(p_q>T

« distanceof pandqw.r.t. g: \/(q— p)-Vq ' E; ‘VqT '(q_ p)T
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Correlation Clustering Algorithms

» symmetry of distance measure by choosing the maximum:

» pand qare correlation-neighborsif

J(p—a)v, E,-v] -(p-q),
max- > < E

J@-p)V, -E, V] -(a-p)

\§ J
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Correlation Clustering Algorithms

properties:
 finds arbitrary number of clusters
 requires specification of density-thresholds

e u (minimum number of points): rather intuitive
¢ (radius of neighborhood): hard to guess

 biased to maximal dimensionality A of correlation clusters (user
specified)

 Instance-based locality assumption: correlation distance measure
specifying the subspace is learned from local neighborhood of each
point in the d-dimensional space

enhancements also based on PCA:

« COPAC[ABK+07c] and

. ERIC [ABK+07h]
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Correlation Clustering Algorithms

different correlation primitive: Hough-transform
» pointsin data space are mapped to functions in the parameter space

,1' (5
s ———

re |
i < Py .}Jp_+ !
Es ./fl.nz
P2 -
g .)fpI
),-’/ .

- v o ('.:1.;"55)
AN A ,

picture space * parameter space

fo(on,....aq)=(p,n) =iZ:: P - lijsin(aj) .cos(e, )

» functionsin the parameter space define all lines possibly crossing
the point in the data space

o
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Correlation Clustering Algorithms

» Properties of the transformation
» Point in the data space = sinusoidal curve in parameter space
» Point in parameter space = hyper-plane in data space
» Points on acommon hyper-plane in data space = sinusoidal curves through a
common point in parameter space

» Intersections of sinusoidal curvesin parameter space = hyper-plane through the
corresponding points in data space

P
-

ot T o

bl i
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Correlation Clustering Algorithms

Algorithm based on the Hough-transform: CASH [ABD+0§]

|

o

)

line 1 B
lire 2 @

o

i

dense region
cluster C1

dense’region -
cluster C2

dense regions in parameter space correspond to linear structuresin
data space
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Correlation Clustering Algorithms

|dea: find dense regionsin parameter space

construct agrid by recursively splitting the parameter space (best-
first-search)

identify dense grid cells as intersected by many parametrization
functions

dense grid represents (d-1)-dimensional linear structure

transform corresponding data objectsin corresponding (d-1)-
dimensional space and repeat the search recursively
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Correlation Clustering Algorithms

properties:

finds arbitrary number of clusters
requires specification of depth of search (number of splits per axis)
requires minimum density threshold for agrid cell

Note: this minimum density does not relate to the locality
assumption: CASH is aglobal approach to correlation clustering

search heuristic: linear in number of points, but ~ d*
But: complete enumeration in worst case (exponential in d)
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Summary and Perspectives

PCA: mature technique, allows construction of a broad range of
similarity measures for local correlation of attributes

drawback: all approaches suffer from locality assumption

successfully employing PCA in correlation clustering in “really”
high-dimensional data requires more effort henceforth

new approach based on Hough-transform:
» doesnot rely on locality assumption
 but worst case again complete enumeration
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Summary and Perspectives

« some preliminary approaches base on concept of self-similarity
(intrinsic dimensionality, fractal dimension):
[BCOO,PTTFO02,GHPTO05]

 interesting idea, provides quite a different basis to grasp
correlations in addition to PCA

» drawback: self-similarity assumes locality of patterns even by
definition
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Summary and Perspectives

comparison: correlation clustering — biclustering:

» model for correlation clusters more general and meaningful

» modelsfor biclusters rather specialized

* ingenera, biclustering approaches do not rely on locality
assumption

» non-local approach and specialization of models may make
biclustering successful in many applications

 correlation clustering is the more general approach but the
approaches proposed so far are rather afirst draft to tackle the
complex problem
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Summary

o Let'stakeaglobal view:
» Traditional clustering in high dimensional spacesis most likely meaningless
with increasing dimensionality (curse of dimensionality)
» Clusters may be found in (generally arbitrarily oriented) subspaces of the data
space
» So the general problem of clustering high dimensional datais:

“find a partitioning of the data where each cluster may exist in itsown
subspace”
- The partitioning need not be unique (clusters may overlap)
- The subspaces may be axis-parallel or arbitrarily oriented
» Analysisof thisgenera problem:
- A naive solution would examine all possible subspacesto look for clusters
- The search space of al possible arbitrarily oriented subspacesisinfinite
- We need assumptions and heuristics to develop afeasible solution
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Summary

* What assumptions did we get to know here?
- The search spaceisrestricted to certain subspaces

A clustering criterion that implements the downward closure property enables
efficient search heuristics

The locality assumption enables efficient search heuristics
Assuming simple additive models (“ patterns’) enables efficient search heuristics

* Remember: also the clustering model may rely on further assumptions that
have nothing to do with the infinite search space
- Number of clusters need to be specified
- Results are not deterministic e.g. due to randomized procedures

» We can classify the existing approaches according to the assumptions they
made to conguer the infinite search space
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Summary

* Theglobal view
- Subspace clustering/projected clustering:
= The search spaceisrestricted to axis-parallel subspaces

= A clustering criterion that implements the downward closure property is defined
(usually based on a global density threshold)

= Thelocality assumption enables efficient search heuristics
- Bi-clustering/pattern-based clustering:
= The search spaceis restricted to special forms and locations of subspaces or half-
spaces
= Qver-optimization (e.g. singularity clusters) is avoided by assuming a predefined
number of clusters
- Correlation clustering:
= Thelocality assumption enables efficient search heuristics

» Any of the proposed methodsis based on at |east one assumption because
otherwise, it would not be applicable
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Summary

* Theglobal view

- Subspace clustering/projected clustering:
» Search space restricted to axis-parallel subspaces

= Clustering criterion implementing the downward closure property (usually based on
aglobal density threshold)

= Locality assumption
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Summary

» Theglobal view
- Bi-clustering/pattern-based clustering:
» Search space restricted to special forms and locations of subspaces or half-spaces
» Greedy-search heuristics based on statistical assumptions
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Summary

* Theglobal view

- Correlation clustering:
» Locality assumption
= Greedy-search heuristics
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Summary
» Theglobal view
Matrix-Pattern Problem Spatial Pattern
value
$ y Constant values _
14 e in columns, Subspace / Projected |  Axis-parallel
z . change of values Clusteri ng hyperplanes
1 7\ = onlyonrows
al a2 ad
e From constant ' )
valuesin rows Special cases N
and columns (no ) of axis-parallel
change of values) Pattern-based / Bi- | tospecia .
to arbitrary Clusteri ng cases of ;
change of values arbitrarily '
in common oriented
direction hyperplanes
A
] No particular Corréelation Arbitrarily
attern . oriented
N - P Clustering hyperplanes

al a2 a¥

- al

L T
1 2 3 4 56 8 7 8

213




214

1SN QI s10U

1SNQOT 35 10U

uonelawnua 22[duwos Surproae

uonelawnua Mapdwoos Furproae

2NN [BAIOIC T ]

AMNIINIE (R TYIT LTSI

Ayreuoisuawnip aoedsqns Aenigie

Aeuorsuawrp aoedsqns Arengre

saowdsqns pue s1asn[o
Surddereao Arsnosueynuins

a W.,./.._.K..ﬁnw..r._._.—um pue sIa)sns
Swuddepiaao A[snosueinurrs

soowdsqns Suiddepiono

saoedsqne Surddepraso

siaysn(o Suiddepraao

srasn[o Surddzpraao

SISO J0 J2qUUINU ATenigre

SINSA[D JO Jaquinu LIengre

DNS UL S

NS UL 2P

g10algo 10 J8pIo
11w uapuadaput

s1oalqo jo aapio
i Juapuadepun

SINQLINE JO I2PI0
713 Juapuadapun

SENgINE JO IapIo
Sy Juapuadapur

proysay Asuap aandepe

proys amng) sisuap aandepe

vondunsse Lreasor uo SwATaI 10U

vonduwmsse Lmeac] uo Surijas jou

[aered srxe

[arrened stxe

uonjejariod aanedau apduns

uone@Iod asnedou apduns

uoneauod aansod ajduns

uone[ariod aanisod apduars

suone @0 xapduwoo

suoneanos xarduos

Summary

CLIQUE [AGGR9S]
ENCLUS [CFZ99]

Aleorithm

)SA [FM04]
[PIAMO2]

3C [MSE06]
oC

SUBCLU [KKK04]
PROCLUS [APWT09]
PreDeCon [BKKK04]
DiSH [ABKT07a]
FIRES [KKRW035]

MAFTA [NGCOT]
I

P
C(

Summary

Aloorithm
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Summary

not relyving on locality assumption

4

arbitrary subspace dimensicnality

complete enumeration
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