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Challenges and Approaches, Basic Models

Pattern-based clustering relies on patterns in the data matrix.

• Simultaneous clustering of rows and columns of the data matrix 
(hence biclustering).
• Data matrix A = (X,Y) with set of rows X and set of columns Y

• axy is the element in row x and column y.

• submatrix AIJ = (I,J) with subset of rows I ⊆ X and subset of columns J ⊆ Y 
contains those elements aij with i ∈ I und j ∈ J
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Challenges and Approaches, Basic Models

General aim of biclustering approaches:

Find a set of submatrices {(I1,J1),(I2,J2),...,(Ik,Jk)} of the matrix 
A=(X,Y) (with Ii ⊆ X and Ji ⊆ Y for i = 1,...,k) where each 
submatrix (= bicluster) meets a given homogeneity criterion.
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Challenges and Approaches, Basic Models

• Some values often used by bicluster
models:
• mean of row i: 

• mean of column j:
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Challenges and Approaches, Basic Models

Different types of biclusters (cf. [MO04]):

• constant biclusters

• biclusters with
• constant values on columns

• constant values on rows

• biclusters with coherent values (aka. pattern-based clustering)

• biclusters with coherent evolutions
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Challenges and Approaches, Basic Models

Constant biclusters
• all points share identical value in selected attributes.

• The constant value μ is a typical value for the cluster.

• Cluster model:

• Obviously a special case of an axis-parallel subspace cluster.

μ=ija
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Challenges and Approaches, Basic Models

• example – embedding 3-dimensional space:
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Challenges and Approaches, Basic Models

• example – 2-dimensional subspace:

• points located on the bisecting line of participating attributes
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Challenges and Approaches, Basic Models

• example – transposed view of attributes:

• pattern: identical constant lines
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Challenges and Approaches, Basic Models

• real-world constant biclusters will not be perfect

• cluster model relaxes to:

• Optimization on matrix A = (X,Y) may lead to |X|·|Y| singularity-biclusters each 
containing one entry.

• Challenge: Avoid this kind of overfitting.

μ≈ija
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Challenges and Approaches, Basic Models

Biclusters with constant values on columns
• Cluster model for AIJ = (I,J):

• adjustment value cj for column j ∈ J

• results in axis-parallel subspace clusters
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Challenges and Approaches, Basic Models

• example – 3-dimensional embedding space:
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Challenges and Approaches, Basic Models

• example – 2-dimensional subspace:
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Challenges and Approaches, Basic Models

• example – transposed view of attributes:

• pattern: identical lines
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Challenges and Approaches, Basic Models

Biclusters with constant values on rows
• Cluster model for AIJ = (I,J):

• adjustment value ri for row i ∈ I
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Challenges and Approaches, Basic Models

• example – 3-dimensional embedding space:

• in the embedding space, points build a sparse hyperplane parallel to 
irrelevant axes
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Challenges and Approaches, Basic Models

• example – 2-dimensional subspace:

• points are accommodated on the bisecting line of participating 
attributes
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Challenges and Approaches, Basic Models

• example – transposed view of attributes:

• pattern: parallel constant lines
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Challenges and Approaches, Basic Models

Biclusters with coherent values

• based on a particular form of covariance between rows and 
columns

• special cases:
• cj = 0 for all j constant values on rows

• ri = 0 for all i constant values on columns
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Challenges and Approaches, Basic Models

• embedding space: sparse hyperplane parallel to axes of irrelevant 
attributes
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Challenges and Approaches, Basic Models

• subspace: increasing one-dimensional line
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Challenges and Approaches, Basic Models

• transposed view of attributes:

• pattern: parallel lines
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Challenges and Approaches, Basic Models

Biclusters with coherent evolutions

• for all rows, all pairs of attributes change simultaneously
• discretized attribute space: coherent state-transitions

• change in same direction irrespective of the quantity
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Challenges and Approaches, Basic Models

• Approaches with coherent state-transitions: [TSS02,MK03]

• reduces the problem to grid-based axis-parallel approach:
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Challenges and Approaches, Basic Models

pattern: all lines cross border between 
states (in the same direction)
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Challenges and Approaches, Basic Models

• change in same direction – general idea: find a subset of rows and 
columns, where a permutation of the set of columns exists such that 
the values in every row are increasing

• clusters do not form a subspace but rather half-spaces

• related approaches:
• quantitative association rule mining [Web01,RRK04,GRRK05]

• adaptation of formal concept analysis [GW99] to numeric data [Pfa07]
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Challenges and Approaches, Basic Models

• example – 3-dimensional embedding space
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Challenges and Approaches, Basic Models

• example – 2-dimensional subspace
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Challenges and Approaches, Basic Models

• example – transposed view of attributes

• pattern: all lines increasing



156

Challenges and Approaches, Basic Models

Constant Bicluster

Constant Columns Constant Rows

Coherent Values

Coherent Evolutions
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Algorithms for Constant Biclusters

• classical problem statement by Hartigan [Har72]

• quality measure for a bicluster: variance of the submatrix AIJ:

• avoids partitioning into |X|·|Y| singularity-biclusters (optimizing the sum of 
squares) by comparing the reduction with the reduction expected by chance

• recursive split of data matrix into two partitions

• each split chooses the maximal reduction in the overall sum of squares for all 
biclusters
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Biclusters with Constant Values in Rows or Columns

• simple approach: normalization to transform the biclusters into 
constant biclusters and follow the first approach (e.g. [GLD00])

• some application-driven approaches with special assumptions in the 
bioinformatics community (e.g. [CST00,SMD03,STG+01])

• constant values on columns: general axis-parallel 
subspace/projected clustering

• constant values on rows: special case of general correlation 
clustering

• both cases special case of approaches to biclusters with coherent 
values
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Algorithms for Biclusters with Coherent Values

classical approach: Cheng&Church [CC00] 
• introduced the term biclustering to analysis of gene expression data

• quality of a bicluster: mean squared residue value H

• submatrix (I,J) is considered a bicluster, if H(I,J) < δ
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Algorithms for Biclusters with Coherent Values

• δ =0 perfect bicluster:
• each row and column exhibits absolutely consistent bias

• bias of row i w.r.t. other rows: 

• the model for a perfect bicluster predicts value aij by a row-constant, a column-
constant, and an overall cluster-constant:
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Algorithms for Biclusters with Coherent Values

• for a non-perfect bicluster, the prediction of the model deviates from the true 
value by a residue:

• This residue is the optimization criterion:
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Algorithms for Biclusters with Coherent Values

• The optimization is also possible for the row-residue of row i or 
the column-residue of column j.

• Algorithm:
1. find a δ -bicluster: greedy search by removing the row or column (or the set 

of rows/columns) with maximal mean squared residue until the remaining 
submatrix (I,J) satisfies H(I,J)< δ.

2. find a maximal δ -bicluster by adding rows and columns to (I,J) unless this 
would increase H.

3. replace the values of the found bicluster by random numbers and repeat the 
procedure until k δ -biclusters are found.
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Algorithms for Biclusters with Coherent Values

Weak points in the approach of Cheng&Church:

1. One cluster at a time is found, the cluster needs to be masked in 
order to find a second cluster.

2. This procedure bears an inefficient performance.

3. The masking may lead to less accurate results.

4. The masking inhibits simultaneous overlapping of rows and 
columns.

5. Missing values cannot be dealt with.

6. The user must specify the number of clusters beforehand.



164

Algorithms for Biclusters with Coherent Values

p-cluster model [WWYY02]

• p-cluster model: deterministic approach

• specializes δ -bicluster-property to a pairwise property of two 
objects in two attributes:

• submatrix (I,J) is a δ -p-cluster if this property is fulfilled for any 
2x2 submatrix ({i1, i2}, {j1, j2}) where {i1, i2} ∈ I  and {j1, j2} ∈J.

( ) ( ) δ≤−−−   
22122111 jijijiji aaaa
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Algorithms for Biclusters with Coherent Values

Algorithm:
1. create maximal set of attributes for each pair of objects forming a 

δ -p-cluster
2. create maximal set of objects for each pair of attributes forming a 

δ -p-cluster
3. pruning-step
4. search in the set of submatrices

Problem: complete enumeration approach
Addressed issues:

1. multiple clusters simultaneously
4. allows for overlapping rows and columns
6. allows for arbitrary number of clusters

Related approaches: FLOC [YWWY02],
MaPle [PZC+03]
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Summary

• Biclustering models do not fit exactly into the spatial intuition 
behind subspace, projected, or correlation clustering.

• Models make sense in view of a data matrix.

• Strong point: the models generally do not rely on the locality 
assumption.

• Models differ substantially fair comparison is a non-trivial task.

• Comparison of five methods: [PBZ+06]

• Rather specialized task – comparison in a broad context 
(subspace/projected/correlation clustering) is desirable.

• Biclustering performs generally well on microarray data – for a 
wealth of approaches see [MO04].
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Challenges and Approaches

• Pattern-based approaches find simple positive correlations

• More general approach: oriented clustering aka. generalized 
subspace/projected clustering aka. correlation clustering
• Note: different notion of “Correlation Clustering” in machine learning 

community, e.g. cf. [BBC04]

• Assumption: any cluster is located in an arbitrarily oriented affine 
subspace S+a of Rd
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Challenges and Approaches

• Affine subspace S+a, S ⊂ Rd, affinity a∈Rd is interesting if a 
set of points clusters within this subspace

• Points may exhibit high variance in perpendicular subspace 
(Rd \ S)+a

S+a

projec
tio

n

S+a

a a

(R
d \ S)+a
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Challenges and Approaches

• high variance in perpendicular subspace (Rd \ S)+a points form 
a hyperplane within Rd located in this subspace (Rd \ S)+a

• Points on a hyperplane appear to follow linear dependencies among 
the attributes participating in the description of the hyperplane

S+
a

projection

a

(R d\ S)+a

a

(R d\ S)+a

S+
a



172

Challenges and Approaches

• Directions of high/low variance: PCA (local application)

• locality assumption: local selection of points sufficiently reflects 
the hyperplane accommodating the points

• general approach: build covariance matrix ΣD for a selection D of 
points (e.g. k nearest neighbors of a point)
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• d x d
• symmetric
• positive semidefinite
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between dimensions i and j
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Challenges and Approaches

• decomposition of ΣD to eigenvalue matrix ED and eigenvector 
matrix VD:

• ED : diagonal matrix, holding eigenvalues of ΣD in decreasing order 
in its diagonal elements

• VD : orthonormal matrix with eigenvectors of ΣD ordered 
correspondingly to the eigenvalues in ED

T
DDDD VEV=Σ

• VD : new basis, first eigenvector = direction 
of highest variance

• ED : covariance matrix of D when 
represented in new axis system VD



174

Challenges and Approaches

• points forming λ-dimensional hyperplane hyperplane is 
spanned by the first λ eigenvectors (called “strong” eigenvectors 
– notation:     )

• subspace where the points cluster densely is spanned by the 
remaining d-λ eigenvectors (called “weak” eigenvectors –
notation:     )

for the eigensystem, the sum of the 
smallest d-λ eigenvalues

is minimal under all possible 
transformations points cluster optimally 
dense in this subspace
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Challenges and Approaches

model for correlation clusters [ABK+06]:

• λ-dimensional hyperplane accommodating the points of a 
correlation cluster C⊂ Rd is defined by an equation system of d-λ
equations for d variables and the affinity (e.g. the mean point xC of 
all cluster members):

• equation system approximately fulfilled for all points x∈C
• quantitative model for the cluster allowing for probabilistic 

prediction (classification)

• Note: correlations are observable, linear dependencies are merely 
an assumption to explain the observations – predictive model 
allows for evaluation of assumptions and experimental refinements

CCC xVxV TT ˆˆ =
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Correlation Clustering Algorithms

ORCLUS [AY00]:

first approach to generalized projected clustering
• similar ideas to PROCLUS [APW+99]

• k-means like approach

• start with kc > k seeds

• assign cluster members according to distance function based on the 
eigensystem of the current cluster (starting with axes of data space, 
i.e. Euclidean distance)

• reduce kc in each iteration by merging best-fitting cluster pairs
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Correlation Clustering Algorithms

• best fitting pair of clusters: least average distance in the projected 
space spanned by weak eigenvectors of the merged clusters

• assess average distance in all merged pairs of clusters and 
finally merge the best fitting pair

average distance

eigensystem cluster 1
eigensystem cluster 2

eigensystem cluster 1 ∪ cluster 2
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Correlation Clustering Algorithms

• adapt eigensystem to the updated cluster

• new iteration: assign points according to updated eigensystems
(distance along weak eigenvectors)

• dimensionality gradually reduced to a user-specified value l
• initially exclude only eigenvectors with very high variance
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Correlation Clustering Algorithms

properties:

• finds k correlation clusters (user-specified)

• higher initial kc higher runtime, probably better results

• biased to average dimensionality l of correlation clusters (user 
specified)

• cluster-based locality assumption: subspace of each cluster is 
learned from its current members (starting in the full dimensional 
space)
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Correlation Clustering Algorithms

4C [BKKZ04]

• density-based cluster-paradigm (cf. DBSCAN [EKSX96])

• extend a cluster from a seed as long as a density-criterion is 
fulfilled – otherwise pick another seed unless all data base objects 
are assigned to a cluster or noise

• density criterion: minimal required number of points in the 
neighborhood of a point

• neighborhood: distance between two points ascertained based on 
the eigensystems of both compared points
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Correlation Clustering Algorithms

• eigensystem of a point p based on its ε-neighborhood in Euclidean 
space

• threshold δ discerns large from small eigenvalues

• in eigenvalue matrix Ep replace large eigenvalues by 1, small 
eigenvalues by κ>>1

• adapted eigenvalue matrix yields a correlation similarity matrix for 
point p:

T
ppp VEV ′
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Correlation Clustering Algorithms

• effect on distance measure:

• distance of p and q w.r.t. p:

• distance of p and q w.r.t. q:
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• symmetry of distance measure by choosing the maximum:

• p and q are correlation-neighbors if

Correlation Clustering Algorithms
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properties:
• finds arbitrary number of clusters
• requires specification of density-thresholds

• μ (minimum number of points): rather intuitive
• ε (radius of neighborhood): hard to guess

• biased to maximal dimensionality λ of correlation clusters (user 
specified)

• instance-based locality assumption: correlation distance measure 
specifying the subspace is learned from local neighborhood of each 
point in the d-dimensional space

enhancements also based on PCA:
• COPAC [ABK+07c] and
• ERiC [ABK+07b]

Correlation Clustering Algorithms

185

Correlation Clustering Algorithms

different correlation primitive: Hough-transform

• points in data space are mapped to functions in the parameter space

• functions in the parameter space define all lines possibly crossing 
the point in the data space
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Correlation Clustering Algorithms

• Properties of the transformation
• Point in the data space = sinusoidal curve in parameter space

• Point in parameter space = hyper-plane in data space

• Points on a common hyper-plane in data space = sinusoidal curves through a 
common point in parameter space

• Intersections of sinusoidal curves in parameter space = hyper-plane through the 
corresponding points in data space
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Correlation Clustering Algorithms

Algorithm based on the Hough-transform: CASH [ABD+08]

dense regions in parameter space correspond to linear structures in 
data space
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Correlation Clustering Algorithms

Idea: find dense regions in parameter space

• construct a grid by recursively splitting the parameter space (best-
first-search)

• identify dense grid cells as intersected by many parametrization
functions

• dense grid represents (d-1)-dimensional linear structure

• transform corresponding data objects in corresponding (d-1)-
dimensional space and repeat the search recursively
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Correlation Clustering Algorithms

properties:

• finds arbitrary number of clusters

• requires specification of depth of search (number of splits per axis)

• requires minimum density threshold for a grid cell

• Note: this minimum density does not relate to the locality 
assumption: CASH is a global approach to correlation clustering

• search heuristic: linear in number of points, but ~ d4

• But: complete enumeration in worst case (exponential in d)
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Summary and Perspectives

• PCA: mature technique, allows construction of a broad range of 
similarity measures for local correlation of attributes

• drawback: all approaches suffer from locality assumption

• successfully employing PCA in correlation clustering in “really”
high-dimensional data requires more effort henceforth

• new approach based on Hough-transform:
• does not rely on locality assumption

• but worst case again complete enumeration
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Summary and Perspectives

• some preliminary approaches base on concept of self-similarity 
(intrinsic dimensionality, fractal dimension): 
[BC00,PTTF02,GHPT05]

• interesting idea, provides quite a different basis to grasp 
correlations in addition to PCA

• drawback: self-similarity assumes locality of patterns even by 
definition



192

Summary and Perspectives

comparison: correlation clustering – biclustering:

• model for correlation clusters more general and meaningful

• models for biclusters rather specialized

• in general, biclustering approaches do not rely on locality 
assumption

• non-local approach and specialization of models may make 
biclustering successful in many applications

• correlation clustering is the more general approach but the 
approaches proposed so far are rather a first draft to tackle the 
complex problem
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Summary

• Let’s take a global view:
• Traditional clustering in high dimensional spaces is most likely meaningless 

with increasing dimensionality (curse of dimensionality)

• Clusters may be found in (generally arbitrarily oriented) subspaces of the data 
space

• So the general problem of clustering high dimensional data is:

“find a partitioning of the data where each cluster may exist in its own 
subspace”

- The partitioning need not be unique (clusters may overlap)

- The subspaces may be axis-parallel or arbitrarily oriented

• Analysis of this general problem:
- A naïve solution would examine all possible subspaces to look for clusters

- The search space of all possible arbitrarily oriented subspaces is infinite

- We need assumptions and heuristics to develop a feasible solution
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Summary

• What assumptions did we get to know here?
- The search space is restricted to certain subspaces

- A clustering criterion that implements the downward closure property enables 
efficient search heuristics

- The locality assumption enables efficient search heuristics

- Assuming simple additive models (“patterns”) enables efficient search heuristics

- …

• Remember: also the clustering model may rely on further assumptions that 
have nothing to do with the infinite search space

- Number of clusters need to be specified

- Results are not deterministic e.g. due to randomized procedures

- …

• We can classify the existing approaches according to the assumptions they 
made to conquer the infinite search space
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Summary

• The global view
- Subspace clustering/projected clustering:

The search space is restricted to axis-parallel subspaces

A clustering criterion that implements the downward closure property is  defined 
(usually based on a global density threshold)

The locality assumption enables efficient search heuristics

- Bi-clustering/pattern-based clustering:
The search space is restricted to special forms and locations of subspaces or half-
spaces

Over-optimization (e.g. singularity clusters) is avoided by assuming a predefined 
number of clusters

- Correlation clustering:
The locality assumption enables efficient search heuristics

• Any of the proposed methods is based on at least one assumption because 
otherwise, it would not be applicable
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Summary
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