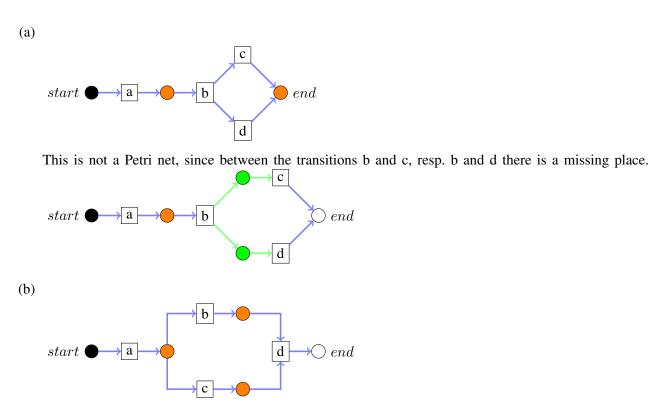
Ludwig-Maximilians-Universität München Institut für Informatik Prof. Dr. Thomas Seidl Janina Sontheim, Maximilian Hünemörder

Knowledge Discovery in Databases WS 2019/20

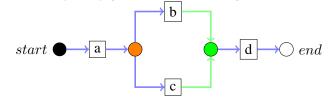
Exercise 12: Process Mining

Exercise 12-1 Petri Nets

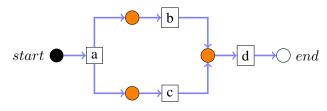
Explain if the following graphs are petri nets, workflow nets, or even sound workflow nets. Further express the graph as a sound workflow net if the graph is not yet a sound workflow net.



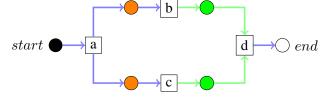
This is a Petri net and a workflow net, but it is not sound, since there are **deadlocks**. The OR-Split after the transition a gets closed by an AND-JOIN which causes a deadlock. Transition d can not fire since it will always only get one token from eighter b or c.



(c)

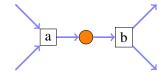


This is a Petri net and a Workflow net but it is not sound, due to the violation of the **proper completion** constraint. It can terminate while there is still a token in an other place than the output place.

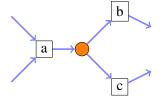


Exercise 12-2 α -Miner

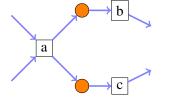
- (a) For the α-Miner algorithm, we use the relations >, →, ||, # to denote direct successions, causality, parallelism or choice. Considering the set of activities {a, b, c}, give notion (graphically) about the following patterns and associate the right relations with them according to the activities having been used:
 - Sequence Pattern Sequence: $a \rightarrow b$



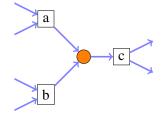
 XOR-Split and XOR-Join pattern XOR-split: a → b, a → c and b#c



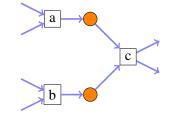
• AND-split and AND-join pattern AND-split: $a \rightarrow b, a \rightarrow c$ and b || c



XOR-join: $a \rightarrow c, b \rightarrow c$ and b # c



AND-join: $a \to c, b \to c$ and $a \| b$



(b) Given the trace $L_1 = [\langle a, b, c, d \rangle, \langle a, c, b, d \rangle, \langle a, e, d \rangle]$. Determine the following sets:

• Set of activities: $T_L = \{t \in T | \exists_{\sigma \in L} t \in \sigma\}$ Each activity in L corresponds to a transition in $\alpha(L)$: $T_L = \{a, b, c, d, e\}$

- Set of start activities: T_I = {t ∈ T |∃_{σ∈L}t = first(σ)}
 Fix the set of start activities that is, the first elements of each trace: T_I = {a}
- Set of end activities: T_O = {t ∈ T |∃_{σ∈L}t = last(σ)}
 Fix the set of end activities that is, elements that appear last at a trace: T_O = {d}
- Set of paired activities:

$$\begin{split} X_L &= \{ (A,B) | A \subseteq T_L \land A \neq \emptyset \land \\ B \subseteq T_L \land B \neq \emptyset \land \\ \forall_{a \in A} \forall_{b \in B} a \to_L b \land \\ \forall_{a_1, a_2 \in A} a_1 \#_l a_2 \land \forall_{b_1, b_2 \in B} b_1 \#_L b_2 \} \end{split}$$

Find pairs (A, B) of sets of activities such that every element $a \in A$ and every element $b \in B$ are causally related (i.e. $a \to_L b$), all elements in A are independent $(a_1 \# a_2)$, and all elements in B are independent $(b_1 \#_L b_2)$ as well:

$$\begin{split} X_L =& \{(\{a\},\{b\}),(\{a\},\{c\}),(\{a\},\{e\}),(\{a\},\{b,e\}),\\ & (\{a\},\{c,e\}),(\{b\},\{d\}),(\{c\},\{d\}),(\{e\},\{d\}),\\ & (\{b,e\},\{d\}),(\{c,e\},\{d\})\} \end{split}$$

• Set of paired activities that are maximal:

$$Y_L = \{ (A, B) \in X_L | \forall_{(A', B') \in X_L} A \subseteq A' \land B \subseteq B' \implies (A, B) = (A', B') \}$$

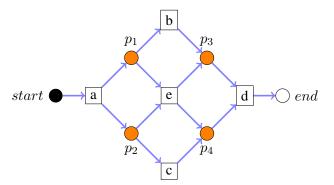
Delete from X_L all pairs (A, B) that are not maximal.

$$Y_L = \{(\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}$$

- Set of places: P_L = {p_(A,B) | (A, B) ∈ Y_L} ∪ {i_L, o_L}
 Determine the place set: Each element (A, B) of Y_L is a place. To ensure the worklow structure, add a source place i_L and a target place o_L. p_L = {p_({a},{b,e}), p_({a},{c,e}), p_({b,e},{d}), p_({c,e},{d})}
- Flow relations:

$$F_{L} = \{(a, p_{(A,B)}) | (A, B) \in Y_{L} \land a \in A\} \cup \\ \{(p_{(A,B)}, b) | (A, B) \in Y_{L} \land b \in B\} \cup \\ \{(i_{L}, t) | t \in T_{I}\} \cup \{(t, o_{L}) | t \in T_{O}\}$$

Determine the flow relation: Connect each place $p_{(A,B)}$ with each element a of its set A or source transition and with each element of its set B of target transitions. In addition, draw an arc from the source place i_L to each start transition $t \in T_I$ and an arc from each end transition $t \in T_O$ to the sink place o_L .



- Definition (no task): α -Miner on event log L is then defined as: $\alpha(L) = (P_L, T_L, F_L)$
- (c) Construct the Footprint Table for trace L_1 .

	a	b	с	d	e
a	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
c	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$