Knowledge Discovery in Databases WS 2019/20

Exercise 11: Association Rules, Prefix Span, Interestingness

Exercise 11-1 Association Rules

Given the following frequent itemsets extract all strong association rules with a minimum confidence of minConf = 80%. Which candidates can be pruned based on anti-monotonicity?

Itemset	Support	
А	1.00	
В	1.00	
D	0.75	
AB	1.00	
AD	0.75	
BD	0.75	
ABD	0.75	

#	Candidate Rule	Pruned?	Confidence	Strong	
	from 2-itemsets				
1	$A \Rightarrow B$		1.00	\checkmark	
2	$A \Rightarrow D$		0.75		
3	$B \Rightarrow A$		1.00	\checkmark	
4	$B \Rightarrow D$		0.75		
5	$D \Rightarrow A$		1.00	\checkmark	
6	$D \Rightarrow B$		1.00	\checkmark	
	f	rom 3-itemset	ES .		
7	$AB \Rightarrow D$		0.75		
8	$AD \Rightarrow B$		1.00	\checkmark	
9	$BD \Rightarrow A$		1.00	\checkmark	
10	$A \Rightarrow BD$	with #2, #7			
11	$B \Rightarrow AD$	with #4, #7			
12	$D \Rightarrow AB$		1.00	\checkmark	

Exercise 11-2 R-Interestingness

Given the following item hierarchy and frequent itemsets decide whether the these association rules are R-interesting using R = 1.6 and explain why.

Itemset	Support	clothes	
{clothes} {outerwear} {jackets} {shoes}	20 10 4 15	outerwear shirts jackets jeans	shoes sneakers boots
{clothes, shoes} {outerwear, shoes} {jackets, shoes}	10 9 4		

- (a) clothes \Rightarrow shoes
- (b) outerwear \Rightarrow shoes
- (c) jackets \Rightarrow shoes
- (a) clothes \Rightarrow shoes Interesting! Rule has no ancestors.
- (b) outerwear ⇒ shoesInteresting! (wrt. support and rule (a)):

$$R \cdot \mathbb{E}(P(jackets \cup shoes)) = 1.6 \cdot 10 \cdot \frac{10}{20} = 8 < supp(outerwear \Rightarrow shoes) = 9$$

(c) jackets \Rightarrow shoes **Support**:

$$R \cdot \mathbb{E}(P(jackets \cup shoes)) = 1.6 \cdot 9 \cdot \frac{4}{10} = 5.75 > 4 = supp(jackets \Rightarrow shoes)$$

Not Interesting! Confidence:

$$R \cdot \mathbb{E}(P(shoes|jackets)) = 1.6 \cdot 0.9 \cdot \frac{4}{10} = 0.575 < 1.0 = conf(jackets \Rightarrow shoes)$$

Interesting! \Rightarrow Rule is 1.6-interesting!

Exercise 11-3 Sequential Pattern Mining

Let D be a database that contains the following five sequences.

SID	Sequence	
1	ABBA	
2	BBACA	
3	CBAA	
4	ACA	
5	BAAB	

In addition let $min_sup = 40\%$, i.e. there need to be 2 sequences supporting a pattern.

(a) Find all frequent sequence patterns using the *PrefixSpan* algorithm.

Start by constructing the project database for the empty prefix and count the support of 1-sequences.

	D_{\emptyset}	
SID	Sequence	
1	ABBA	
2	BBACA	
3	CBAA	
4	ACA	
5	BAAB	
A(5)B(4)C(3)		

Hence, all 1-sequences are frequent and none of those can be pruned (i.e. A, B, C are frequent). Next, create projected databases for all remaining items.

SID	$D_{\mathbb{A}}$	D_{B}	$D_{ extsf{C}}$
1	BBA	BA	-
2	CA	BACA	A
3	A	AA	BAA
4	CA	-	А
5	AB	AAB	-
	A(5)B(2)C(2)	A(4)B(3)C(1)	A(3)B(1)C(0)

These yield the following frequent 2-sequences: AA, AB, AC, BA, BB, CA. Continue by constructing the projected databases for the 3-sequences.

SID	$D_{ m AA}$	$D_{ t A t B}$	$D_{ t A extsf{C}}$	$D_{\scriptscriptstyle BA}$	$D_{ m BB}$	D_{CA}
1	-	BA	-	-	A	-
2	-	-	A	А	AA	-
3	-	-	-	А	-	А
4	-	-	A	-	-	-
5	В	-	-	AB	-	-
	A(0)B(1)C(0)	A(1)B(1)C(0)	$\mathbb{A}(2)\mathbb{B}(0)\mathbb{C}(0)$	A(3)B(1)C(0)	$\mathbb{A}(2)\mathbb{B}(0)\mathbb{C}(0)$	A(1)B(0)C(0)

We can see that the frequent 3-sequences are ACA, BAA, BBA. Finally, the projections for the 4-sequences are given by

SID	$D_{ t ACA}$	$D_{\mathtt{BAA}}$	$D_{\mathtt{BBA}}$	
1	-	-	-	
2	-	-	А	
3	-	-	-	
4	-	-	-	
5	-	В	-	
	A(0)B(0)C(0)	A(0)B(1)C(0)	A(1)B(0)C(0)	

In total, the frequent patterns are:

k	Pattern	Absolute Support	Closed	Maximal
0	-	5		
	А	5		
1	В	4		
	С	3		
	AA	5	\checkmark	
	AB	2	\checkmark	\checkmark
2	AC	2		
2	BA	4	\checkmark	
	BB	3	\checkmark	
	CA	3	\checkmark	
	ACA	2	\checkmark	\checkmark
3	BAA	3	\checkmark	\checkmark
	BBA	2	\checkmark	\checkmark

(b) Which patterns are maximal? Which are closed?c.f. (a)