
Ludwig-Maximilians-Universität München
Institut für Informatik
Prof. Dr. Thomas Seidl
Janina Sontheim, Maximilian Hünemörder

Knowledge Discovery in Databases
WS 2019/20

Exercise 10: Apriori, FP-Growth, Hash-Tree

Exercise 10-1 Apriori Algorithm

Given a set of items {a, b, c, d, e, f, g, h} and a set of transactions T according to the following table

TID Items
1 ag
2 bcg
3 eg
4 dg
5 dfg
6 dg
7 ag
8 ag
9 ae
10 ag
11 afh
12 af
13 ade
14 dfg

(a) Using the Apriori algorithm, compute all frequent itemsets for minSup = 0.1 (i.e. 2 transactions are
needed for an itemset to be frequent).

1



k candidate prune count threshold closed maximal

1

a 8 a X
b 1
c 1
d 5 d X
e 3 e X
f 4 f X
g 10 g X
h 1

2

ad 1
ae 2 ae X X
af 2 af X X
ag 4 ag X X
de 1
df 2 df
dg 4 dg X
ef 0
eg 1
fg 2 fg

3

aef with ef
aeg with eg
afg 0
dfg 2 dfg X X

(b) Which of the found frequent itemsets are closed/maximal? Is there a dependency between those two
concepts?

Maximal implies closed. To this end, observe that if X is frequent and maximal, then for all Y ⊃ X
holds supp(Y ) < minSup. As X is frequent, supp(X) ≥ minSup. Hence, for all Y ⊃ X holds
supp(Y ) < minSup ≤ supp(X), which implies X being closed.

Exercise 10-2 Hash-Tree

(a) Construction. Using the hash function

h(x) = x mod 3 (1)

construct a hash tree with maximum number of itemsets in inner nodes equal to 4 given the following set
of candidates:

(1, 9, 11) (2, 5, 10) (3, 6, 8) (4, 7, 9) (6, 12, 13) (9, 12, 14)
(1, 10, 12) (2, 5, 12) (3, 7, 10) (4, 7, 13) (6, 12, 14) (10, 11, 15)

(2, 4, 7) (2, 9, 10) (3, 12, 14) (5, 7, 9) (8, 11, 11) (12, 12, 15)
(2, 5, 8) (3, 3, 5) (4, 5, 8) (5, 7, 13) (8, 11, 15) (14, 14, 15)

In the root node, the itemsets are splitted according to the hash value of the first item in the itemset.
Hence, after the root node we have 3 child nodes with content:

2



N0 N1 N2

(3, 3, 5) (1, 9, 11) (2, 4, 7)
(3, 6, 8) (1, 10, 12) (2, 5, 8)
(3, 7, 10) (4, 5, 8) (2, 5, 10)
(3, 12, 14) (4, 7, 9) (2, 5, 12)
(6, 12, 13) (4, 7, 13) (2, 9, 10)
(6, 12, 14) (10, 11, 15) (5, 7, 9)
(9, 12, 14) (5, 7, 13)

(12, 12, 15) (8, 11, 11)
(8, 11, 15)
(14, 14, 15)

As the fill degree of all nodes is larger 4, all have to be split, now according to the second item.

N00 N∗
01 N∗

10 N∗
11 N∗

12 N∗
20 N∗

21 N22

(3, 3, 5) (3, 7, 10) (1, 9, 11) (1, 10, 12) (4, 5, 8) (2, 9, 10) (2, 4, 7) (2, 5, 8)
(3, 6, 8) (4, 7, 9) (10, 11, 15) (5, 7, 9) (2, 5, 10)

(3, 12, 14) (4, 7, 13) (5, 7, 13) (2, 5, 12)
(6, 12, 13) (8, 11, 11)
(6, 12, 14) (8, 11, 15)
(9, 12, 14) (14, 14, 15)
(12, 12, 15)

Here, only N00 and N22 have a higher fill degree than allowed (the leaf nodes are marked with ∗). Hence,
they are splitted again, this time using the third item.

N∗
000 N∗

001 N∗
002 N∗

220 N∗
221 N∗

222

(12, 12, 15) (6, 12, 13) (3, 3, 5) (2, 5, 12) (2, 5, 10) (2,5,8)
(3, 6, 8) (8, 11, 15) (8, 11, 11)

(3, 12, 14) (14, 14, 15)
(6, 12, 14)
(9, 12, 14)

Although N002’s fill degree is larger then 4, there is no remaining item to be used for further splitting.
Hence, the hash-tree construction finishes. The final hash-tree is depicted below:

0 1 2

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2

(12, 12, 15) (6, 12, 13)

(3, 3, 5)
(3,6,8)

(3,12,14)
(6,12,14)
(9,12,14)

(3,7,10) (1,9,11)
(1,10,12)

(4,7,9)
(4,7,13)

(4,5,8)
(10,11,15) (2,9,10)

(2,4,7)
(5,7,9)

(5,7,13)

(2,5,12)
(8,11,15)
(14,14,15)

(2,5,10) (2,5,8)
(8,11,11)

3



(b) Counting. Given the transaction t = (t1, . . . , t5) = (1, 3, 7, 9, 12), find all candidates of length k = 3 in
the previously constructed tree from exercise (a). In absolute and relative numbers: How many candidates
need to be refined? How many nodes are visited?

Applying the hash function to the transaction gives (1, 0, 1, 0, 0). The following diagram shows the ac-
cessed nodes. A detailed explanation follows below.

0 1 2

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2

(12, 12, 15) (6, 12, 13)

(3, 3, 5)
(3,6,8)

(3,12,14)
(6,12,14)
(9,12,14)

(3,7,10) (1,9,11)
(1,10,12)

(4,7,9)
(4,7,13)

(4,5,8)
(10,11,15) (2,9,10)

(2,4,7)
(5,7,9)

(5,7,13)

(2,5,12)
(8,11,15)
(14,14,15)

(2,5,10) (2,5,8)
(8,11,11)

3

9

7
12

1,7

3,9 7

(i) Depth d = 1. Compute hash values for t1, . . . , tn−k+d = t3:

h(1) = 1 h(3) = 0 h(7) = 1 (2)

. Continue search in N0, N1 (i.e. exclude N2).

(ii) Depth d = 2. Additionally compute h(t4) = h(9) = 0.

• In N0 reached by item t2, the nodes for hash values 0 (N00 reached by t4) and 1 (N∗
01 reached

by t3) are of interest.
• In N1 reached by item t1 and t3, the nodes for hash values 0 (N∗

10 reached by t2 and t4) and 1
(N∗

11 reached by t3) are of interest.

(iii) Depth d = 3. Additionally compute h(t5) = h(12) = 0.

• In N00 reached by t2, t4 = 3, 9 continue with N∗
000.

• In N∗
01 reached by t2, t3 = 3, 7 search for t2, t3, t4 = 3, 7, 9 and t2, t3, t5 = 3, 7, 12. Both are

not found.
• In N∗

10 reached by
– t1t2 = 1, 3,
– t1t4 = 1, 9, or
– t3t4 = 7, 9

search for
– t1t2t3 = 1, 3, 7

– t1t2t4 = 1, 3, 9

– t1t2t5 = 1, 3, 12

– t1t4t5 = 1, 9, 12

– t3t4t5 = 7, 9, 12

None of them is found.
• In N∗

11 reached by t1, t3 = 1, 9 search for t1, t3, t4 = 1, 7, 9 and t1, t3, t5 = 1, 7, 12. Both are
not found.

(iv) Depth d = 4.

• In N∗
000 reached by t2, t4, t5 = 3, 9, 12 search for this transaction. It is not found.

4



In total, 4/12 ≈ 33% of the leaf nodes are visited, 8/18 ≈ 44% of the nodes are visited and 6/24 = 25%
of the candidates are compared. As result, none of the candidates is supported by the transaction.

Exercise 10-3 FP-Tree and FP-Growth Algorithm

Given a set of items {a, b, c, d, e, f, g, h} and a set of transactions T according to the following table, construct
the FP-tree and use the FP-Growth algorithm to compute all frequent itemsets for minSup = 0.1 (i.e. 2
transactions are needed for an itemset to be frequent).

TID Items
1 ag
2 cg
3 eg
4 dg
5 bdfg
6 dg
7 ag
8 ag
9 ae
10 ag
11 afh
12 af
13 ade
14 bdfg

1. Scan database, count frequency of single items, remove infrequent, and sort the items by decreasing
frequency.

Item Frequency

g 10

frequent
a 8
d 5
f 4
e 3
b 2

c 1
infrequent

h 1

2. Scan database again: Remove infrequent items from itemsets, and sort them descending by frequency
(although the algorithm constructs the FP-Tree on-the-fly, this is done in the next step for more clarity).

5



TID Items
1 ga
2 g
3 ge
4 gd
5 gdfb
6 gd
7 ga
8 ga
9 ae
10 ga
11 af
12 af
13 ade
14 gdfb

3. Construct FP-Tree:

∅

a:4

e:1 f:2 d:1

e:1

g:10

a:4 e:1 d:4

f:2

b:2

Hint: In order to check the correctness of the FP-tree construction you can verify:

• The most frequent item has only a single node directly under the root.

• The sum of counts for each item equals the total count calculated in the step before.

• The sum of counts of the children of a node is less than or equal to the count of the node itself.

• There are x itemsets having prefix p before y, where y is the label of a node in the tree, p is the
prefix on the path from the root, and x the count of the node.

4. In order to extract the frequent patterns from the FP-tree, the FP-Growth algorithm is used. We start by
constructing the conditional pattern base:

Item Conditional Pattern Base

g ∅
a g:4, ∅
d a:1, g:4
f a:2, gd:2
e a:1, g:1, ad:1
b gdf:2

5. Here, all conditional patterns with too small support are pruned:

6



Item Conditional Pattern Base

g ∅
a g:4, ∅
d g:4
f a:2, gd:2
e a:2
b gdf:2

6. For each item we build a conditional FP-tree.

(I)

∅ | g

(II)

∅ | a

g:4

(III)

∅ | d

g:4

(IV)

∅ | f

a:2 g:2

d:2

(V)

∅ | e

a:2

(VI)

∅ | b

g:2

d:2

f:2

7. If the FP-tree is a single path, we can enumerate all frequent patterns:

(II) ag
(III) dg
(V) ae

(VI) bd, bf, bg, bdf, bdg, bfg, bdfg

8. For conditional FP-Tree (IV) we have to recurse. We first count f as frequent pattern, and then build the
conditional pattern base for f:

Item Conditional Pattern Base

a ∅
g ∅
d g:2

(VI.I)

∅ | fa

(VI.II)

∅ | fg

(VI.III)

∅ | fd

g:2

All resulting FT-trees are linear, yielding patterns: fa, fg, fd, fdg

In total the frequent patterns are (in shortlex ordering1):

• a, b, d, e, f, g

• ae, af, ag, bd, bf, bg, dg, df, fg

• bdf, bdg, bfg, dfg

• bdfg

1The shortlex ordering first orders words by length, and within the same length lexicographic.

7


