Ludwig-Maximilians-Universität München Institut für Informatik

Prof. Dr. Thomas Seidl Janina Sontheim, Maximilian Hünemörder

Knowledge Discovery in Databases WS 2019/20

Exercise 9: Outlier Scores

Exercise 9-1 Monotonicity of Simple Outlier Scores

Proof or give an counterexample for the following claims:

(a) If o is an $D(\epsilon, \pi)$ -outlier, it is also an $D(\epsilon', \pi)$ -outlier for $\epsilon' \le \epsilon$. The statement is true. Let o be an $D(\epsilon, \pi)$ -outlier. Then,

$$\pi \left| D \right| \overset{\clubsuit}{\geq} \left| \left\{ q \in D \mid dist(o,q) < \epsilon \right\} \right| \overset{\heartsuit}{\geq} \left| \left\{ q \in D \mid dist(o,q) < \epsilon' \right\} \right|$$

where \clubsuit is the definition of $D(\epsilon, \pi)$ -outlier, and \heartsuit holds due to the transitivity of < and \le :

$$dist(o,q) < \epsilon' \wedge \epsilon' \le \epsilon \implies dist(o,q) < \epsilon$$

(b) If o is an $D(\epsilon, \pi)$ -outlier, it is also an $D(\epsilon, \pi')$ -outlier for $\pi' \ge \pi$. This statement is also true.

$$\pi'|D| \geq \pi|D| \geq |\{q \in D \mid dist(o,q) < \epsilon\}|$$

(c) If o is an kNN-outlier for threshold τ , it is also an k'NN-outlier for the same threshold with k' > k. Let nndist(o, k) denote the k-distance of o. As the k-distance is the kth smallest distance to an object in the database, we clearly have $nndist(o, k) \leq nndist(o, k+1)$ (the (k+1)-smallest distance cannot be larger than the k-smallest). Hence,

$$nndist(o, k') \ge nndist(o, k) > \tau,$$

i.e. o is also a k'NN outlier for threshold τ .

(d) If o is an kNN-outlier for threshold τ , it is also an kNN-outlier for threshold $\tau' < \tau$. Let nndist(o,k) denote the k-distance of o. Then,

$$nndist(o,k) > \tau > \tau'$$

i.e. o is also a kNN outlier for threshold τ' .

(e) The local density is monotonously decreasing in k, i.e. $ld_k(o) \ge ld_{k'}(o)$ for k' > k.

This statement is true. Let nndist(o, k) denote the k-distance of o, i.e. the distance between o and its kth nearest neighbor. Then, we have

$$k' \ge k \implies nndist(o, k') \ge nndist(o, k)$$

i.e. the k-distance is monotonously increasing in k. With this notation, we can note the (reciprocal) local density $ld_k(o)$ by

$$(ld_k(o))^{-1} = \frac{1}{k} \sum_{i=1}^k nndist(o, i)$$

Moreover, we can apply the following sequence of equivalence transformations of the inequality of interest

$$\begin{aligned} ld_k(o) & \geq & ld_{k+1}(o) \\ \iff & (ld_k(o))^{-1} & \leq & (ld_{k+1}(o))^{-1} \\ \iff & \frac{1}{k} \sum_{i=1}^k nndist(o,i) & \leq & \frac{1}{k+1} \sum_{i=1}^{k+1} nndist(o,i) \\ \iff & (k+1) \sum_{i=1}^k nndist(o,i) & \leq & k \sum_{i=1}^{k+1} nndist(o,i) \\ \iff & k \sum_{i=1}^k nndist(o,i) + \sum_{i=1}^k nndist(o,i) & \leq & k \sum_{i=1}^{k+1} nndist(o,i) \\ \iff & \sum_{i=1}^k nndist(o,i) & \leq & k \cdot nndist(o,k+1) \end{aligned}$$

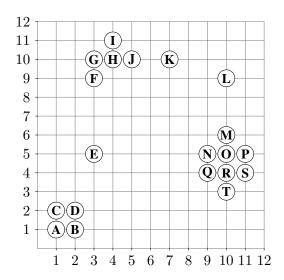
The last inequality holds due to

$$\sum_{i=1}^{k} nndist(o, i) \stackrel{\spadesuit}{\leq} \sum_{i=1}^{k} nndist(o, k+1) = k \cdot nndist(o, k+1)$$

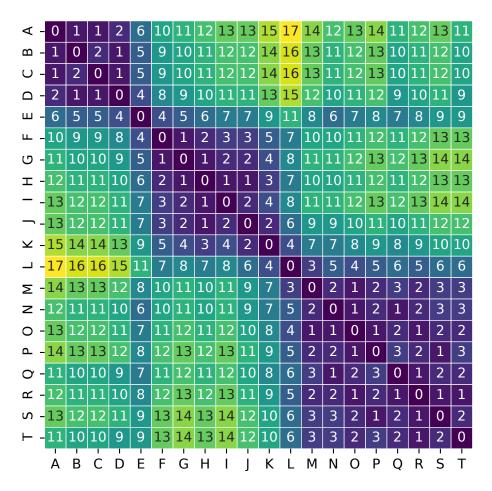
where \spadesuit uses the monotonicity of the k-distance.

Exercise 9-2 Outlier Scores

Given the following 2 dimensional data set:



As distance function, use Manhattan distance $L_1(a,b) := |a_1 - b_1| + |a_2 - b_2|$. The following table summarises the pairwise distances.



- (a) Calculate the $D(\epsilon, \pi)$ -outliers using
 - (i) $\epsilon = 2$ with $n\pi = 1$ and $n\pi = 2$.
 - (ii) $\epsilon = 4$ with $n\pi = 1$, $n\pi = 3$ and $n\pi = 4$.
 - (iii) $\epsilon = 6$ with $n\pi = 4$, $n\pi = 5$ and $n\pi = 6$.

For the $D(\epsilon, \pi)$ outliers we have to check whether at most π percent of all points have a distance less than ϵ . Hence, we count per column how many times the distance is less than ϵ yielding

ϵ	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T
2	3	3	3	3	1	2	3	4	2	2	1	1	2	3	5	3	3	5	3	2
4	4	4	4	4	1	5	5	6	5	6	3	2	9	8	8	8	8	8	8	8
6	4	5	5	5	6	7	7	6	6	6	7	7	9	9	9	9	8	9	8	8

Finally, we check if the number divided by the number of objects n=20 is at most the threshold π . We obtain the following outliers:

- (i) For $(\epsilon, n\pi) = (2, 1)$: EKL. For $(\epsilon, n\pi) = (2, 2)$: EFIJKLMT.
- (ii) For $(\epsilon, n\pi) = (4, 1)$: E. For $(\epsilon, n\pi) = (4, 3)$: EKL. For $(\epsilon, n\pi) = (4, 4)$: ABCDEKL.
- (iii) For $(\epsilon, n\pi) = (6, 4)$: A. For $(\epsilon, n\pi) = (6, 5)$: ABCD. For $(\epsilon, n\pi) = (6, 6)$: ABCDEHIJ.

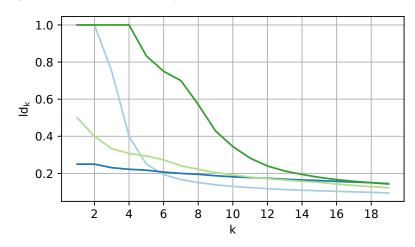
(b) Calculate the kNN based outliers for $(k, \tau) = (3, 3)$ and $(k, \tau) = (5, 8)$. The point itself is counted as the 0-nearest neighbour.

First, we compute the k-distances for each point.

\overline{k}	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	O	P	Q	R	S	T
3	2	2	2	2	5	3	2	1	2	2	4	4	2	2	1	2	2	1	2	2
5	10	9	9	8	5	4	4	3	4	3	4	5	3	2	2	2	2	2	2	3

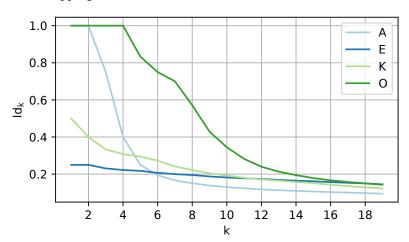
Finally, we obtain the outliers as those points whose k-distance exceeds the threshold τ , i.e. for $(k, \tau) = (3, 3)$ we have E, K, L, and for $(k, \tau) = (5, 8)$ we have A, B, C.

(c) Given the following curves of the local density ld_k for different values of k.



Can you identify which curve belongs to which point? Explain your mapping.

This is the ground truth mapping.



We can observe:

- The dark green line has a ld_k of one up to k=4. Hence, the inverse average distance to the 4-nearest neighbours is 1, and equivalently, the average of distances of the 4-nearest neighbours is one. We can only find two points in the dataset fulfilling this requirement: O and R.
- The dark blue line has a ld_1 of 0.25, i.e. the 1-nearest neighbour has distance 4. This requirement is only fulfilled by E.
- For the light blue line we can observe that ld_k stays one until k=2, i.e. there are two points with distance 1. This reduces the candidate set to ABCDG. As we observe a sharp drop afterwards, the point is likely to reside in ABCD. All of these points have a quite similar ld_k -line.

