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Exercise 7: DBSCAN, Spectral Clustering

Exercise 7-1 DBSCAN

Given the following data set:
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As distance function, use Manhattan Distance:

L1(x, y) = |x1 − y1|+ |x2 − y2|

Compute DBSCAN and indicate which points are core points, border points and noise points.

Use the following parameter settings:

• Radius ε = 1.1 and minPts = 2

• Radius ε = 1.1 and minPts = 3

• Radius ε = 1.1 and minPts = 4

• Radius ε = 2.1 and minPts = 4

• Radius ε = 4.1 and minPts = 5

• Radius ε = 4.1 and minPts = 4

See tutorial slides.
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Exercise 7-2 Properties of DBSCAN

Discuss the following questions/propositions about DBSCAN:

• Using minPts = 2, what happens to the border points?

There are no border points: A border point must be a core points itself, since there must be at least one
further object in its ε-neighborhood from which it is directly density reachable (otherwise it would not
be connected to a cluster).

• The result of DBSCAN is deterministic w.r.t. the core and noise points but not w.r.t. the border points.

If a border point is density-reachable from two clusters, it depends on the processing order and imple-
mentation, to which cluster it will be assigned.

• A cluster found by DBSCAN cannot consist of less than minPts points.

Depends on the above case. It can happen that a border point will be assigned to another cluster, resulting
in a cluster with less than minPts points.

• If the dataset consists of n objects, DBSCAN will evaluate exactly n ε-range queries.

Correct. This is not completely obvious from the pseudo-code presented in the lecture, but from each
object, a single range query is executed to determine whether the object is a core object or not. If it is
not a core object, it is a border object if it was discovered in a recursive call from another core object.
Else, it is classified as a noise object until it is discovered from another core point, in which case it will
be classified as a border object. In total, a chain of exactly one range query per object is performed.

Therefore, a naive implementation will require O(n2) time, since evaluating a range query with a se-
quential scan takes time O(n). Index-accelerated implementations typically runs in O(n log n), since
appropriate index structures are able to answer a range query in time O(log n).

• On uniformly distributed data, DBSCAN will usually either assign all points to a single cluster or classify
every point as noise. k-means on the other hand will partition the data into approximately equally sized
partitions.

Correct. Depending on the density threshold, DBSCAN will classify either all objects or no object as
core objects. (By choosing e.g. ε = mino∈D 10-dist(o) and minPts = 10, it can be provoked that a few
single core points will be detected. However, finding such unfavorable parametrizations becomes more
difficult with increasing dataset size.)
For k-means on the other hand, solutions are (locally) optimal if all clusters are almost equally sized (at
least if k · d� n).
However, solutions found in multiple k-means runs can be quite different.
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Exercise 7-3 Spectral Clustering

(a) Given the dataset from Exercise 7-1, apply spectral clustering to the first ten points (i.e. A - J). When con-
structing the graph, make sure that each point is connected to its neighbours in an eps = 2 neighbourhood
while still having at least two outgoing edges.

See tutorial slides.

(b) As shown in the lecture, spectral clustering uses the Laplacian matrix to determine its clusters. Given an
arbitrary graph G and the Laplacian L for G, show that finding an indicator vector fC that minimizes
fLfT leads to an optimal cluster C in G, where

fC (i) =

{
1 if vi ∈ C
0 else
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