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Exercise 6: k-Means, k-Modes, k-Medoids (PAM), EM

Exercise 6-1 k-Means

Given the following data set with 14 objects in R2 (the black dots):
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Compute a partitioning into k = 2 clusters using the k-means algorithm. As initial representatives use the red
and violet square. Start with computing the initial assignment. Explain and draw the assignments as well as the
updated centroids after each step.

The initial assignment and the updated means are given by
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Updating the assignments and subsequently the means yields:
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In the next iteration, the assignment does not change anymore. Hence, the means also stay the same and the
final result is given by:
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Exercise 6-2 k-Means

Given the following data set with 7 objects in R2 represented by the black and red dots:
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In the following, we would like to compute complete partitionings of the dataset into k = 3 clusters using the
k-means algorithm.

Let the initial cluster centers be given by the points marked in red. Carry out the k-Means algorithm as presented
in the lecture. Which problem arises?

One of the clusters becomes empty!

First round of assignments, new centers:

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

Second round of assignments:
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Cluster “triangle” is empty – what should be the new cluster center??

Possible workarounds for such a degenerate case would be to simply restart the algorithm with a different
initialization, to remove the empty cluster from consideration and continue with k−1 clusters, or to introduce a
new cluster center somewhere far away from the existing ones. Empty clusters usually occur as a consequence
of bad initialization. Sensible initialization and running the algorithm for multiple iterations are in general
important for the success of k-means, not only to prevent empty clusters.
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Exercise 6-3 k-Mode

Given the following Dataset of 15 Persons with their Jobs and Pets:

Name Job Pet

James Programmer Cat
Hans Manager None

Marcel Programmer Snake
Sebastian Cook None

Max Technician Cat
Michael Cook Cat

Anna Manager Dog
Friederike Manager None

Sarah Programmer Snake
Florian Advisor None
Theresa Programmer Cat
Jonas Manager None
Julian Programmer Cat
Nadine Programmer Dog
Thomas Manager None

Compute a partitioning using the k-Modes algorithm by Huang, Z. (Link). For initial modes choose a technician,
who owns a snake and an advisor, who owns a dog.

From the paper we can find out that the k-mode algorithm is very similiar to the k-means algorithm, but using
a trivial distance measure and a multivariate mode. Formally, given two objects X and Y described by m
categorical features, the distance between them is calculated by:

d(X,Y ) =
m∑
i=1

δ(xi, yi)

where δ(a, b) is:

δ(a, b) =

{
0 if a = b

1 if a 6= b

Looking at this equation, we can ignore the NameFeature from now on, since it only leads to the distance of
each person being incremented by one and thereby does not impact the clustering in any way.

The mode of a set X is defined as the vector Q that minimizes the sum of distances from itself to each point in X.

At the beginning the dataset and the two modes look like this:
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Now we have to calculate the distance of each object to the two modes and assign them to the mode with the
smaller distance. In our case our two modes are A: [Advisor, Dog] and B: [Technician, Snake]. If both distances
are the same we will assign the object to A.

Name Job Pet d(X, A) d(X, B) Assignment

James Programmer Cat 2 2 A
Hans Manager None 2 2 A

Marcel Programmer Snake 2 1 B
Sebastian Cook None 2 2 A

Max Technician Cat 2 1 B
Michael Cook Cat 2 2 A

Anna Manager Dog 1 2 A
Friederike Manager None 2 2 A

Sarah Programmer Snake 2 1 B
Florian Advisor None 1 2 A
Theresa Programmer Cat 2 2 A
Jonas Manager None 2 2 A
Julian Programmer Cat 2 2 A
Nadine Programmer Dog 2 2 A
Thomas Manager None 2 2 A
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Now we recalculate the new modes for each cluster.
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Now we have to calculate the distance of each object to the two modes and reassign them if the distance is
smaller
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And we continue until nothing can change anymore.
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Exercise 6-4 K-Medoid (PAM)

Consider the following 2-dimensional data set:

A B C D E F

x1 2 7 1 8 3 9
x2 3 2 1 5 6 7
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(a) Perform the first loop of the PAM algorithm (k = 2) using the Manhattan distance. Select D and E
(highlighted in the plot) as initial medoids and compute the resulting medoids and clusters.
Hint: When C(m) denotes the cluster of medoid m, and M denotes the set of medoids, then the total
distance TD may be computed as

TD =
∑
m∈M

∑
o∈C(m)

d(m, o)

We have the following distance values (values which are clear by symmetry and reflexivity are left out):
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B C D E F
A 6 3 8 4 11
B 7 4 8 7
C 11 7 14
D 6 3
E 7

The following table shows assignments and TDm↔n value for each pair (m,n) ∈ M × N with M =
{D,E} and N = {A,B,C, F}.

Medoids Assignment TD
m1 m2 A B C D E F

D E 1 0 1 0 1 0 18

D A 1 0 1 0 1 0 14
D B 1 1 1 0 0 0 22
D C 1 0 1 0 0 0 16
D F 0 0 0 0 0 1 29
E A 1 1 1 0 0 0 22
E B 0 1 0 1 0 0 22
E C 1 1 1 0 0 0 23
E F 0 1 0 1 0 1 21

The table shows that swapping E and A yields the largest improvement in terms of TD. The updated
clustering after the first iteration is shown in the following figure.
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(b) How can the clustering result C1 = {A,B,C}, C2 = {D,E, F} be obtained with the PAM algorithm
(k = 2) using the weighted Manhattan distance

d(x, y) = w1 · |x1 − y1|+ w2 · |x2 − y2|?

Assume that B and E are the initial medoids and give values for the weights w1 and w2 for the first and
second dimension respectively.

Consider (w1, w2) = (0, 1), i.e. the distance is computed solely based on the second dimension. Then,
we can use the reduced data set:
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A B C D E F

x2 3 2 1 5 6 7

Hence, we have the following distance values (values which are clear by symmetry and reflexivity are
left out):

B C D E F
A 1 2 2 3 4
B 1 3 4 5
C 4 5 6
D 1 2
E 1

The following tables shows assignments and TD values for the initial setting as well as for all m ↔ n
for (m,n) ∈M ×N with M = {B,E}, and N = {A,C,D, F}:

Medoids Assignment TD
m1 m2 A B C D E F

B E 0 0 0 1 1 1 4

B A 1 0 0 1 1 1 10
B C 0 0 1 0 0 0 13
B D 0 0 0 1 1 1 5
B F 0 0 0 1 1 1 5
A E 1 1 1 0 0 0 5
C E 1 1 1 0 0 0 5
D E 1 1 1 1 0 0 10
F E 0 0 0 0 0 1 13

Hence, these medoids are the final ones and the partitioning stays stable.

Exercise 6-5 Assignments in EM-Algorithm

Given a data set with 100 points consisting of three Gaussian clusters A, B and C and the point p.

The cluster A contains 30% of all objects and is represented using the mean of all his points µA = (2, 2) and

the covariance matrix ΣA =

(
3 0
0 3

)
.

The cluster B contains 20% of all objects and is represented using the mean of all his points µB = (5, 3) and

the covariance matrix ΣB =

(
2 1
1 4

)
.

The cluster C contains 50% of all objects and is represented using the mean of all his points µC = (1, 4) and

the covariance matrix ΣC =

(
16 0
0 4

)
.

The point p is given by the coordinates (2.5, 3.0).
Compute the three probabilities of p belonging to the clusters A, B and C.

The following sketch is not exact, and only gives a rough idea of the cluster locations:
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We have

γi(p) := πi · N (p | µi,Σi) = πi ·
1√

(2π)2 det (Σi)
exp

(
−1

2
(p− µi)T Σ−1i (p− µi)

)
(1)

Substituting πi, µi,Σi by the given parameters for each cluster yields:

Cluster A For A we have πA = 3
10 , ΣA =

(
3 0
0 3

)
, and µA =

(
2
2

)
. First, we compute

det (ΣA) = det

(
3 0
0 3

)
= 32 = 9.

Hence, we have

Σ−1A =

(
3 0
0 3

)−1
=

1

9

(
3 0
0 3

)
=

1

3

(
1 0
0 1

)
.

Furthermore,

p− µA =

(
2.5
3

)
−
(

2
2

)
=

1

2

(
1
2

)
,

and moreover

(p− µA)T Σ−1A (p− µA) =
1

2 · 3 · 2

(
1
2

)T (
1 0
0 1

)(
1
2

)
=

12 + 22

12
=

5

12
.

Finally, we can use these values together with (1) to obtain

γA(p) = πA ·
1√

(2π)2 det (ΣA)
exp

(
−1

2
(p− µA)T Σ−1A (p− µA)

)
=

1

20π
exp

(
− 5

24

)
≈ 0.0129223682965846

Cluster B For B we have πB = 1
5 , ΣB =

(
2 1
1 4

)
, and µB =

(
5
3

)
. First, we compute

det (ΣB) = det

(
2 1
1 4

)
= 2 · 4− 1 · 1 = 7.

Hence, we have

Σ−1B =

(
2 1
1 4

)−1
=

1

7

(
4 −1
−1 2

)
.

Furthermore,

p− µB =

(
2.5
3

)
−
(

5
3

)
= −1

2

(
5
0

)
,
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and moreover,

(p− µB)T Σ−1B (p− µB) =
1

2 · 7 · 2

(
5
0

)T (
4 −1
−1 2

)(
5
0

)
=

1

28

(
5
0

)T (
20
−5

)
=

100

28
=

25

7
.

Finally, we can use these values together with (1) to obtain

γB(p) = πB ·
1√

(2π)2 det (ΣB)
exp

(
−1

2
(p− µB)T Σ−1B (p− µB)

)
=

1

10
√

7π
exp

(
−25

14

)
≈ 0.00201732210214117

Cluster C For C we have πC = 1
2 , ΣC =

(
16 0
0 4

)
, and µC =

(
1
4

)
. First, we compute

det (ΣC) = det

(
16 0
0 4

)
= 16 · 4 = 64.

Hence, we have

Σ−1C =

(
16 0
0 4

)−1
=

1

64

(
4 0
0 16

)
=

1

16

(
1 0
0 4

)
.

Furthermore,

p− µC =

(
2.5
3

)
−
(

1
4

)
=

1

2

(
3
−2

)
,

and moreover,

(p− µC)T Σ−1C (p− µC) =
1

2 · 16 · 2

(
3
−2

)T (
1 0
0 4

)(
3
−2

)
=

1

64

(
3
−2

)T (
3
−8

)
=

25

64
.

Finally, we can use these values together with (1) to obtain

γC(p) = πC ·
1√

(2π)2 det (ΣC)
exp

(
−1

2
(p− µC)T Σ−1C (p− µC)

)
=

1

32π
exp

(
− 25

128

)
≈ 0.00818233032076434

Given that the point was generated by the model, these probabilities are divided by

γ =
∑

c∈{A,B,C}

γc ≈ 0.0231220207194901,

yielding:

γ′A =
γA
γ
≈ 0.0129223682965846

0.0231220207194901
≈ 55.89%

γ′B =
γB
γ
≈ 0.00201732210214117

0.0231220207194901
≈ 8.72%

γ′C =
γC
γ
≈ 0.00818233032076434

0.0231220207194901
≈ 35.39%
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