
Ludwig-Maximilians-Universität München
Institut für Informatik
Prof. Dr. Thomas Seidl
Janina Sontheim, Maximilian Hünemörder

Knowledge Discovery in Databases
WS 2019/20

Exercise 3: Classification Evaluation, m-fold Cross Validation, Naı̈ve Bayes Classifier

Exercise 3-1 Evaluation of classifiers

Given a data set D = {o1, . . . , on} with known class labels C(oi) ∈ C = {A,B,C} of the objects. In order to
evaluate the quality of a classifier K, each object oi ∈ D is additionally classified using K, yielding class label
K(oi). The results are given in the table below.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C(oi) A B A C C B A A A B B C C C B
K(oi) A A C C B B A A A C A A C C B

(a) Setup the confusion matrix.

Although the confusion matrix is only the middle part of the below-standing table, towards the subsequent
exercises we already compute row and column sums, as well as the total sum.

A B C Ci

A 4 0 1 5
B 2 2 1 5
C 1 1 3 5
Ki 7 3 5 15

For brevity, we will denote with CMij the entry of the confusion matrix at position (i, j), where i ∈ C
corresponds to the true class, and j ∈ C corresponds to the predicted class.

(b) Compute the accuracy / classification error.

Accuracy Recall Precision
A B C Ci

A 4 0 1 5
B 2 2 1 5
C 1 1 3 5
Ki 7 3 5 15

A B C Ci

A 4 0 1 5
B 2 2 1 5
C 1 1 3 5
Ki 7 3 5 15

A B C Ci

A 4 0 1 5
B 2 2 1 5
C 1 1 3 5
Ki 7 3 5 15

Figure: Summary of evaluation measures directly obtainable from confusion matrix. Red entries go to
the nominator, blue ones to the denominator. If there are several red ones, their sum is taken.

The accuracy is given by

AccuracyD(K) =
|{o ∈ D | K(o) = C(o)}|

|D|

1

The nominator of the above mentioned fraction can be obtained as the sum of diagonal entries of the
confusion matrix, i.e.

|{o ∈ D | K(o) = C(o)}| =
∑
i∈C

CMii = 4 + 2 + 3 = 9

Hence, we obtain AccuracyD(K) = 9
15 = 3

5 = 60%. The classification error ErrorD(K) can be
obtained exploiting the relationship ErrorD(K) = 1−AccuracyD(K) = 40%.

(c) For each class i ∈ C compute precision and recall.

The recall is defined as

RecallD(K, i) =
|{o ∈ Ci | K(o) = C(o)}|

|Ci|
In the confusion matrix¸ this can be read off by dividing the diagonal entry by the row-sum:

RecallD(K, i) =
CMii

Ci

Similarly, the precision is defined as

PrecisionD(K, i) =
|{o ∈ Ci | K(o) = C(o)}|

|Ki|
In the confusion matrix¸ this can be read off by dividing the diagonal entry by the column-sum:

PrecisionD(K, i) =
CMii

Ki

Thus, we obtain

class recall precision
A 4/5 4/7
B 2/5 2/3
C 3/5 3/5

(d) To get a complete measure for the quality of the classification with respect to a single class, the F1-
measure (the harmonic mean of precision and recall) is commonly used. It is defined as follows:

F1(K, i) =
2 · Recall(K, i) · Precision(K, i)

Recall(K, i) + Precision(K, i)

Compute the F1-measure for all classes.

Note: “F1-measure” may refer to the same formula but computed using a different precision and diffe-
rent recall in other applications. It is a specialization of Fβ with equal weighting of precision and recall.

Using the computation from the confusion matrix of recall and precision, we obtain

F1(K, i) =
2 · Recall(K, i) · Precision(K, i)

Recall(K, i) + Precision(K, i)

=
2 · CMii

Ci
· CMii

Ki

CMii
Ci

+ CMii
Ki

=

2CM2
ii

CiKi

KiCMii+CiCMii
CiKi

=
2CM2

ii

KiCMii + CiCMii

=
2CM2

ii

(Ki + Ci)CMii

=
2CMii

Ki + Ci

2

and hence,

F1(K,A) =
2 · 4
5 + 7

=
8

12
=

2

3

F1(K,B) =
2 · 2
5 + 3

=
4

8
=

1

2

F1(K,C) =
2 · 3
5 + 5

=
6

10
=

3

5

(e) So far, the F1-measure is only defined for classes and not yet useful to get an overview of the overall
performance of the classifiers. For this, one commonly takes the average over all classes using one of the
following two approaches:

(i) Micro Average F1-Measure: The values of TP , FP and FN are added up over all classes. Then
precision, recall and F1-measure are computed using these sums.

(ii) Macro Average F1-Measure: Precision and recall are computed for each class individually, after-
wards the average precision and average recall are used to compute the F1-measure.

Compute the Micro- and Macro-Average F1-measures for the example above. What do you observe?

(i) Micro Average F1:
• |TP | = 4 + 2 + 3 = 9

• |FP | = 3 + 1 + 2 = 6

• |FN | = 1 + 3 + 2 = 6

Precision: 9/15, Recall: 9/15, Micro Average F1: 9/15 = 3/5 = 60% .̧

Observation: In this case the Micro Average of the Precision, Recall and therefore the F1-
Measure are equal to the Accuracy. This is true as long as we do not allow mutliple class labels
per sample. This means regarding n̈ormalc̈lassification tasks the Macro Average is the way to go.

(ii) Macro Average F1:
• average precision: 1/3(4/7 + 2/3 + 3/5) ≈ 0.613

• average recall: 1/3(4/5 + 2/5 + 3/5) = 0.6

Macro Average F1 ≈ 2·0.6·0.613
0.6+0.613 = 0.606.

The key difference between Micro- and Macro-Average is that in Macro Average all classes have
the same weight. In Micro-Average, the classes are weighted by their size, so classes with a small
size play a very small role. With Macro-Average, small classes are as important as large classes,
which is often a desired property.

Example: an illness affects only 1% of the population. Always predicting “healthy” is correct in
99% of the cases, but the remaining 1% of error is maybe worse than errors in the healthy 99%.

3

Exercise 3-2 m-fold Cross Validation

Suppose, you have a 2-dimensional dataset consisting of 5 classes with 90 objects each, arranged as follows

C(x)=0︷ ︸︸ ︷
x0, . . . , x89,

C(x)=1︷ ︸︸ ︷
x90, . . . , x179, . . . ,

C(x)=4︷ ︸︸ ︷
x360, . . . , x449,

and that the classes are linearly separable (i.e. can be separated using a hyperplane). Suppose further, that
someone has produced a poor implementation of the m-fold cross validation procedure and applied it in com-
bination with a multi-class linear classifier to obtain the following results:

m 2 3 5 6 10
accuracy 20% 40% 0% 100% 100%

What is the problem with the implementation of the m-fold cross validation? Describe and explain the result
for each value of m in short and precise sentences. How could the implementation be improved?

Observations The classes are linearly separable. If we have enough samples from every class in the training
set, we can, in principle, train a multi-class linear classifier with no error. Thus, we could expect (almost) perfect
accuracy. On the other hand, if for one class no samples are in the training set, we cannot classify any object of
that class correctly.

Problem with the Implementation The folds are constructed by simply cutting the data into consecutive
blocks. This is problematic, since the data is sorted, as we will see in the following. The following visualisation
shows the coverage of the classes by the m folds.

m = 2 C0 C1 C2 C3 C4

m = 3 C0 C1 C2 C3 C4

m = 5 C0 C1 C2 C3 C4

m = 6 C0 C1 C2 C3 C4

m = 10 C0 C1 C2 C3 C4

Case m = 2: Suppose, we use the first fold for training. Then, the last two classes are not represented in the
training data. Thus, at least 4/5 of the test samples are misclassified. On the other hand, half of the samples of
class C3 are in the training set If we assume, that all test samples of class C3 are classified correctly, we arrive
at the observed accuracy of 1/5 = 20%. By symmetry we obtain the same results, if we use the second fold for
training.

Case m = 3: Each fold consists of 5/3 blocks. Suppose, we use the first two folds for training By the same
reasoning as for m = 2: 3/5 of the test sample are misclassified; 2/5 = 40% of the test samples can be classified
correctly. Again by symmetry, we obtain the same results if we use any of the other folds for testing.

Case m = 5: Now each fold corresponds to exactly one class. The class that is used for testing is not
represented in the training data. Thus, all test samples are misclassified and we get an accuracy of 0%.

4

Case m = 6, 10: Now m is large enough, such that a fold can never contain all samples from a certain class.
Thus, all classes are represented in the training set and we can observe an accuracy of 100%.

Improved Implementation At least, all classes that appear in the dataset should always be represented in the
training data.

It is further reasonable, to construct training and test sets, such that the class distributions in both sets represent
the class distribution in the whole dataset. This can be achieved by performing stratified sampling:

(a) Divide each class (stratum) separately into m chunks, either deterministically or by random sampling.

(b) Construct a fold for the m-fold cross-validation by taking a chunk from each class and combining them.

Exercise 3-3 Naive Bayes

The skiing season is open. To reliably decide when to go skiing and when not, you could use a classifier such
as Naive Bayes. The classifier will be trained with your observations from the last year. Your notes include the
following attributes:

• The weather: The attribute weather can have the following three values: sunny, rainy and snow.

• The snow level: The attribute snow level can have the following two values: ≥50 (There are at least
50 cm of snow) and <50 (There are less than 50 cm of snow).

Assume you wanted to go skiing 8 times during the previous year. Here is the table with your decisions:

weather sunny rainy rainy snow snow sunny snow rainy
snow level <50 <50 ≥50 ≥50 <50 ≥50 ≥50 <50
ski? no no no yes no yes yes yes

(a) Compute the a priori probabilities for both classes ski = yes and ski = no (on the training set)!

P (ski) = 0.5

P (¬ski) = 0.5

(b) Compute the conditional distributions for the two classes for each attribute.

weather snow
sunny rainy snow < 50 ≥ 50

ski 1/4 1/4 2/4 1/4 3/4
¬ski 1/4 2/4 1/4 3/4 1/4

(c) Decide for the following weather and snow conditions, whether to go skiing or not! Use the Naive Bayes
classificator for finding the decision.

day weather snow level
A sunny ≥50
B rainy <50
C snow <50

5

Day A

P (ski|weather = sunny, snow ≥ 50)

=
P (weather = sunny|ski) · P (snow ≥ 50|ski) · P (ski)

P (weather = sunny, snow ≥ 50)

=
1
4 ·

3
4 ·

1
2

P (weather = sunny, snow ≥ 50)
=

3
32

P (weather = sunny, snow ≥ 50)

P (¬ski|weather = sunny, snow ≥ 50)

=
P (weather = sunny|¬ski) · P (snow ≥ 50|¬ski) · P (¬ski)

P (weather = sunny, snow ≥ 50)

=
1
4 ·

1
4 ·

1
2

P (weather = sunny, snow ≥ 50)
=

1
32

P (weather = sunny, snow ≥ 50)

⇒ Ski

Day B

P (ski|weather = rainy, snow < 50)

=
P (weather = rainy|ski) · P (snow < 50|ski) · P (ski)

P (weather = rainy, snow < 50)

=
1
4 ·

1
4 ·

1
2

P (weather = rainy, snow < 50)
=

1
32

P (weather = rainy, snow < 50)

P (¬ski|weather = rainy, snow < 50)

=
P (weather = rainy|¬ski) · P (snow < 50|¬ski) · P (¬ski)

P (weather = rainy, snow < 50)

=
2
4 ·

3
4 ·

1
2

P (weather = rainy, snow < 50)
=

6
32

P (weather = rainy, snow < 50)

⇒ do not ski

Day C

P (ski|weather = snow, snow < 50)

=
P (weather = snow|ski) · P (snow < 50|ski) · P (ski)

P (weather = snow, snow < 50)

=
2
4 ·

1
4 ·

1
2

P (weather = snow, snow < 50)
=

2
32

P (weather = snow, snow < 50)

P (¬ski|weather = snow, snow < 50)

=
P (weather = snow|¬ski) · P (snow < 50|¬ski) · P (¬ski)

P (weather = snow, snow < 50)

=
1
4 ·

3
4 ·

1
2

P (weather = snow, snow < 50)
=

3
32

P (weather = snow, snow < 50)

⇒ do not ski

6

