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Exercise 2: Central Tendencies, Aggregation, Histograms

Exercise 2-1 Central Tendencies

You wake up one morning suddenly struck by an idea. A new and exciting purpose for your life! Triggered
by a thought ascending from the deep dark parts of your dreams, you wonder how many ChocolateBuddiesTM

are in a bag of ChocolateBuddiesTM. The solution is easy, you rip open one of the hundreds of bags - you
have somehow lying around in your bedroom - and start counting. After you determine that this bag contains
an arbitrary amount n1 of CBsTM, you are not satisfied. You open up another m bags and realise that they
all contain differing amounts of chocolately goodness. You are devastated! When somebody asks you about
the amount of ChoclateBuddiesTM in a bag, you want to give them a satisfying answer. You therefore want an
estimated amount nopt that is always the optimal answer to your problem.

(a) Show how to find the central tendency nopt that minimizes the sum of squared distances of the samples
to your estimate nest.

L(nest) = d1
2 + d2

2 + d3
2 + ...+ dm

2

nopt = argmin
nest

L(nest)

First let us start with a few small transformations:

L(nest) = d1
2 + d2

2 + d3
2 + ...+ dm

2

= (n1 − nest)
2 + (n2 − nest)

2 + (n3 − nest)
2 + ...+ (nm − nest)

2

=
∑
i

(ni − nest)
2
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Now in order to find the nopt we need to find argminnest
L(nest), i.e. the value for which the Loss

Function is minimal. Instead of using a time consuming optimization algorithm, we can instead
zeroise the deriviation of the Loss Function:

∂

∂nest
L(nest) = 0

=
∂

∂nest

∑
i

(ni − nest)
2

=
∑
i

∂

∂nest
(ni − nest)

2

=
∑
i

−2 · (ni − nest)∑
i

(ni − nest) = 0∑
i

ni −
∑
i

nest = 0∑
i

ni −m · nest = 0

m · nest =
∑
i

ni

nest =
1

m

∑
i

ni

The results is an old familiar friend. It is of course the mean!

(b) Show how to find the central tendency nopt that minimizes the sum of absolute distances of the samples
to your estimate nest.

L(nest) = |d1|+ |d2|+ |d3|+ ...+ |dm|
nopt = argmin

nest

L(nest)

Granted that nest is an instance of the dataset and the distance to itself is not included in the Loss
Function we can derive and zeroise L(nest) and find the optimal estimate.

∂

∂nest
L(nest) = 0

=
∂

∂nest

∑
i

|di|

=
∑
i

∂

∂nest
|di|

= −
∑
i

sign(di)

Now if the amount of samples is odd, we pick the middle sample. If we now sort the summands and
split the sum of distances into two parts, one containing all values lower than nest and one with
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all the values higher than nest the sign function for the first sum will result in −1 and in 1 for the
second sum. Each of these sums will have n

2 summands.

n
2∑
i

sign(di) +
n∑

j=n
2
+1

sign(dj) = 0

n

2
· −1 + n

2
· 1 = 0

n

2
− n

2
= 0

Therefore in this case the middle object is the central tendency. If there is an even number of
samples we can choose one of the two middle objects, because while both of them do not lead to
the derivation being zero, both objects are the closest we can get to minimal given that we have to
pick an existing sample. If we do not have to pick an object from the dataset, we can take the mean
of the middle objects and the deriviation will again be zero. This is of course the concept of the
median.

(c) Suddenly you have a moment of pure clarity and you begin to notice that ChocolateBuddiesTM actually
come in several different colors. Try finding the color that minimizes the sum of distances to the color of
each single CBTM using the trivial metric.

d(o, p) =
∑n

i=1

{
1 iff oi = pi
0 iff oi 6= pi

In this case each object either has a distance of one or zero from our estimate. If we now pick
the most frequent color the least amount of distances will be one compared to the other colors.
Therefore the sum will be minimal. This is of course the concept of the mode.

Exercise 2-2 Incremental Aggregation

Given a Data Warehouse with e.g. 10 million entries, additional 1000 entries arrive each day. Rather than
recomputing the desired aggregates, an incremental adaptation to the new data should be supported. In order
to accelerate the (re-)computation, precomputed intermediate results shall be stored and intermediate results
for the new entries shall be computed. What (and how many) values suffice when considering the following
aggregates? For each measure note whether it is an algebraic, holistic or distributive measure.

(a) Product.

The product is a distributive aggregation measure since it is an associative pairwise operation:

prod(D) =
∏
x∈D

x

=

 ∏
x∈D1

x

 ·
 ∏

x∈D2

x


= prod(prod(D1), prod(D2))

(b) Mean.
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Let D = D1 ∪D2 with |D1| = n1 and |D2| = n2 where D1 is the data currently in the data warehouse
and D2 is the increment. It suffices to store two values for D1 and D2, the sum and count, since

mean(D) =
1

n1 + n2

∑
x∈D

x =

∑
x∈D1

x+
∑

x∈D2
x

n1 + n2

=
sum(D1) + sum(D2)

count(D1) + count(D2)
.

Thus, the mean is an algebraic measure. It is not a distributive measure. Towards contradiction assume it
would, i.e. for all databases D and partitions D1]D2 it holds mean(D) = mean(mean(D1),mean(D2)),
i.e. in particular for D = {0, 2, 4, 6}, and the partition D = D1 ]D2 with D1 = {0}, D2 = {2, 4, 6}.
Then

mean(D) = mean(mean(D1),mean(D2))

0 + 2 + 4 + 6

4
=

1

2

(
0

1
+

2 + 4 + 6

3

)
12

4
=

1

2
· 12
3

3 = 2

which is a contradiction.

To further derive the conditions when the distribution works, consider

mean(D) = mean(mean(D1),mean(D2))

1

n1 + n2

∑
x∈D

x =
1

2

 1

n1

∑
x∈D1

x+
1

n2

∑
x∈D2

x


1

n1 + n2

∑
x∈D1

x+
1

n1 + n2

∑
x∈D2

x =
1

2n1

∑
x∈D1

x+
1

2n2

∑
x∈D2

x(
1

n1 + n2
− 1

2n1

) ∑
x∈D1

x =

(
1

2n2
− 1

n1 + n2

) ∑
x∈D2

x(
2n1 − (n1 + n2)

2n1(n1 + n2)

) ∑
x∈D1

x =

(
n1 + n2 − 2n2

2n2(n1 + n2)

) ∑
x∈D2

x(
n1 − n2

2n1(n1 + n2)

) ∑
x∈D1

x =

(
n1 − n2

2n2(n1 + n2)

) ∑
x∈D2

x(
n1 − n2

n1

) ∑
x∈D1

x =

(
n1 − n2

n2

) ∑
x∈D2

x

1

n1

∑
x∈D1

x =
1

n2

∑
x∈D2

x

The last operation is only an equivalence if n1 6= n2. If n1 = n2, the statement holds trivially. Conclu-
ding, the mean can be computed in distributive manner if and only if the partitions have same size, or the
same mean.

(c) Variance.

4



Similarly, the variance is also an algebraic measure:

var(D) =
1

n1 + n2 − 1

∑
x∈D

x2 − 1

n1 + n2

(∑
x∈D

x

)2


=
1

n1 + n2 − 1

∑
x∈D

x2 − 1

n1 + n2

∑
x∈D

x2 +
∑

x∈D1,y∈D2

xy +
∑

x∈D1,y∈D2

yx


=

1

n1 + n2 − 1

∑
x∈D

x2 − 1

n1 + n2

∑
x∈D1

x2 +
∑
x∈D2

x2 + 2

∑
x∈D1

x

∑
x∈D2

x


=

ss(D1) + ss(D2)− 1
count(D1)+count(D2)

(ss(D1) + ss(D2) + 2 · sum(D1) · sum(D2))

count(D1) + count(D2)− 1

We need to store three values, the sum, count and additionally the sum of squares (ss). Note that the
variance is not distributive, since the information about central tendency is lost (the variance is shift-
invariant). The variance var(D) depends on where D1 and D2 are located in the data space and in general
there is no way to infer that from var(D1) and var(D2) alone. However, if mean(D1) = mean(D2) =
0, one can show that

var(D) =
n1

n1 + n2
var(D1) +

n2

n1 + n2
var(D2).

(d) Median.

The median is a classical holistic measure which means intuitively that we need to look at the whole
data at once in order to compute it. For the median to be an algebraic measure, we would need to be
able to represent the median of D as an algebraic function of constant size aggregates of D1 and D2.
Assume that we have computed such aggregates. Now the idea is that for any two sets D1 and D2, we
can construct an example where the k-th element of D1 (or D2) is the median. That is, we potentially
need to access every single element in D1 (or D2) from a constant size aggregate. This is clearly not
possible. Thus, we need to look at the whole sets D1 and D2 together in order to find the median, i.e. the
median is a holistic measure.

Exercise 2-3 Privacy

Given the following table

Key Quasi-Identifier Sensitive
Name Sex Age Zip Disease
Alice F 24 10000 Heart Disease
Bob M 22 10000 Lung Cancer

Charlotte F 24 10000 Breast Cancer
Dave M 22 10000 Lung Cancer

Emma F 20 10000 Heart Disease
Francis M 20 10000 Heart Disease
Garry M 22 10000 Lung Cancer
Harry M 20 10000 Heart Disease
Iris F 21 10001 Flu

John F 21 10001 Flu
Kendra F 20 10000 Heart Disease

Lisa F 20 10000 Lung Cancer
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(a) k-Anonymity:

(i) Determine the largest k such that the table is k-anonym. Explain which rows contradict the (k+1)-
anonymity.
The dataset is 2-anonymous, as there is no Quasi-Identifier-tuple which occurs only once. It is not
3-anonymous, as e.g. (F, 24, 10000) occurs only twice.

(ii) You may now use suppression on the columns. Assume that by removing one digit from Age or Zip,
or suppressing the Sex attribute, you lose one ”value”. What is the minimal value loss required to
achieve 5-anonymity?
5-anonymity can be achieved by suppressing the last digit of Age and the last digit of Zip. Hence,
the minimal value is at most 2. It is not 1 as:

• Suppressing Sex leads to 2-anonymity, e.g. (∗, 24, 10000) occurs only twice.
• Suppressing the last digit of Age leads to 2-anonymity, e.g. (F, 2∗, 10001) occurs only twice.

Suppressing the first digit does not give any benefit, as all age numbers begin with ”2”.
• Suppressing the last digit of Zip leads to 2-anonymity, e.g. (F, 24, 1000∗) occurs only twice.

Suppressing any other digit does not give any benefit, as all zip codes begin with ”1000”.

(b) Distinct l-Diversity

(i) What is one shortcoming of k-anonymity compared to l-diversity? Which attack exploits this weak-
ness?
k-anonymity only regards the quasi-identifiers, but does not investigate the distribution of the sen-
sitive attribute within one equivalence-class w.r.t. the quasi-identifier. This can be exploited by the
Background-Knowledge Attack.

(ii) Given that a dataset is k-anonymous, but not (k+1)-anonymous. What implications does this have
on the distinct l-diversity of the dataset? Give a lower and upper bound for l.
The smallest equivalence-class w.r.t. to the Quasi-Identifier has size k. Hence, in this class there
can only be at most k different values for the sensitive attribute. Thus, l can be bounded from above
as l ≤ k. Trivially, 1 ≤ l holds as lower bound. As k-anonymity does not make any statement
about the distribution of the sensitive attribute, we cannot guarantee a larger lower bound, i.e. the
following bounds are tight: 1 ≤ l ≤ k.

(iii) Knowing only the distribution of the sensitive attribute values; What bounds can you derive for l in
distinct l-diversity?
Let L be the number of different sensitive attribute values. Then, there can also be at most L different
values within each equivalence class w.r.t. to an Quasi-Identifier. Thus, l ≤ L.
Additional information: This bound is independent of the bound from (ii), as the former one operates
only on the Quasi-Identifier columns and this one solely considers the sensitive attribute.

(iv) What is the largest l such that the above mentioned dataset is distinct l-diverse?
The dataset is distinct 1-diverse as QI = (F, 21, 10001) =⇒ Disease = Flu.

(v) Assume suppressing the last digit of the Zip column and generalising Age to {(−∞, 22], (22,+∞)}.
For what value of l can distinct l-diversity now be guaranteed.
There are the following equivalence classes

Sex Age Zip Diseases l

F (−∞, 22] 1000∗ {Flu, Heart Disease, Lung Cancer} 3
M (−∞, 22] 1000∗ {Heart Disease, Lung Cancer} 2
F (22,∞) 1000∗ {Breast Cancer, Heart Disease} 2

Hence, the table is now distinct 2-diverse.
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