Ludwig-Maximilians-Universität München Institut für Informatik

Prof. Dr. Thomas Seidl Janina Sontheim, Maximilian Hünemörder

Knowledge Discovery and Data Mining IWS 2019/20

Exercise 10: Apriori, FP-Growth, Hash-Tree

Exercise 10-1 Apriori Algorithm

Given a set of items $\{a, b, c, d, e, f, g, h\}$ and a set of transactions T according to the following table

TID	Items
1	ag
2	bcg
3	eg
4	dg
5	dfg
6	dg
7	ag
8	ag
9	ae
10	ag
11	afh
12	af
13	ade
14	dfg

- (a) Using the Apriori algorithm, compute all frequent itemsets for minSup=0.1 (i.e. 2 transactions are needed for an itemset to be frequent).
- (b) Which of the found frequent itemsets are closed/maximal? Is there a dependency between those two concepts?

Exercise 10-2 Hash-Tree

(a) Construction. Using the hash function

$$h(x) = x \mod 3 \tag{1}$$

construct a hash tree with maximum number of itemsets in inner nodes equal to 4 given the following set of candidates:

_						
	(1, 9, 11)	(2, 5, 10)	(3, 6, 8)	(4, 7, 9)	(6, 12, 13)	(9, 12, 14)
	(1, 10, 12)	(2, 5, 12)	(3, 7, 10)	(4, 7, 13)	(6, 12, 14)	(10, 11, 15)
	(2, 4, 7)	(2, 9, 10)	(3, 12, 14)	(5, 7, 9)	(8, 11, 11)	(12, 12, 15)
	(2, 5, 8)	(3, 3, 5)	(4, 5, 8)	(5, 7, 13)	(8, 11, 15)	(14, 14, 15)

(b) Counting. Given the transaction $t=(t_1,\ldots,t_5)=(1,3,7,9,12)$, find all candidates of length k=3 in the previously constructed tree from exercise (a). In absolute and relative numbers: How many candidates need to be refined? How many nodes are visited?

Exercise 10-3 FP-Tree and FP-Growth Algorithm

Given a set of items $\{a,b,c,d,e,f,g,h\}$ and a set of transactions T according to the following table, construct the FP-tree and use the FP-Growth algorithm to compute all frequent itemsets for minSup=0.1 (i.e. 2 transactions are needed for an itemset to be frequent).

TID	Items			
1	ag			
2	cg			
3	eg			
4	dg			
5	bdfg			
6	dg			
7	ag			
8	ag			
9	ae			
10	ag			
11	afh			
12	af			
13	ade			
14	bdfg			