Ludwig-Maximilians-Universität München Institut für Informatik

Prof. Dr. Thomas Seidl Janina Sontheim, Maximilian Hünemörder

Knowledge Discovery and Data Mining IWS 2019/20

Exercise 9: Outlier Scores

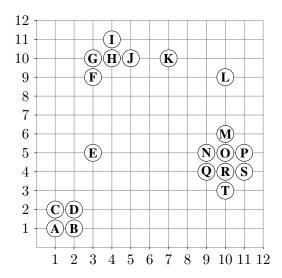
Exercise 9-1 Monotonicity of Simple Outlier Scores

Proof or give an counterexample for the following claims:

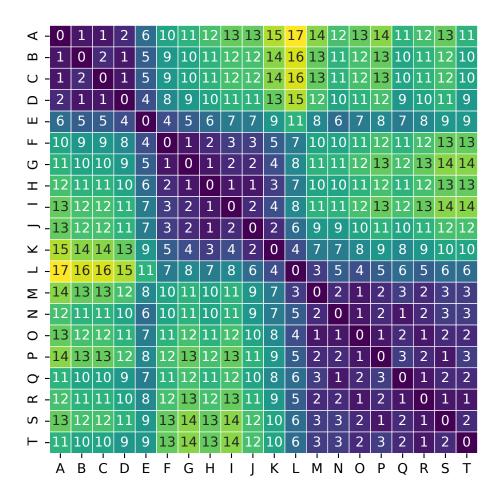
- (a) If o is an $D(\epsilon, \pi)$ -outlier, it is also an $D(\epsilon', \pi)$ -outlier for $\epsilon' \leq \epsilon$.
- (b) If o is an $D(\epsilon, \pi)$ -outlier, it is also an $D(\epsilon, \pi')$ -outlier for $\pi' \geq \pi$.
- (c) If o is an kNN-outlier for threshold τ , it is also an k'NN-outlier for the same threshold with k' > k.
- (d) If o is an kNN-outlier for threshold τ , it is also an kNN-outlier for threshold $\tau' < \tau$.
- (e) The local density is monotonously decreasing in k, i.e. $ld_k(o) \ge ld_{k'}(o)$ for k' > k.

Exercise 9-2 Outlier Scores

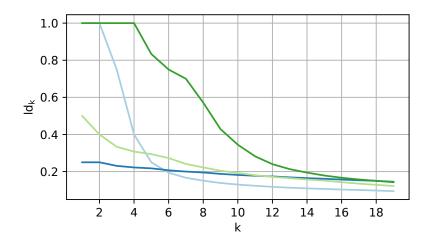
Given the following 2 dimensional data set:



As distance function, use Manhattan distance $L_1(a,b) := |a_1 - b_1| + |a_2 - b_2|$. The following table summarises the pairwise distances.



- (a) Calculate the $D(\epsilon, \pi)$ -outliers using
 - (i) $\epsilon = 2$ with $n\pi = 1$ and $n\pi = 2$.
 - (ii) $\epsilon = 4$ with $n\pi = 1$, $n\pi = 3$ and $n\pi = 4$.
 - (iii) $\epsilon = 6$ with $n\pi = 4$, $n\pi = 5$ and $n\pi = 6$.
- (b) Calculate the kNN based outliers for $(k, \tau) = (3, 3)$ and $(k, \tau) = (5, 8)$. The point itself is counted as the 0-nearest neighbour.
- (c) Given the following curves of the local density ld_k for different values of k.



Can you identify which curve belongs to which point? Explain your mapping.