
Knowledge Discovery and Data Mining 1
(Data Mining Algorithms 1)

Ludwig-Maximilians-Universität München
Lehrstuhl für Datenbanksysteme und Data Mining

Prof. Dr. Thomas Seidl

Wintersemester 2019/20

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods

5. Process Mining

Agenda

5.1 Introduction
5.2 Process Model/Transition Systems
5.3 Process Discovery
5.4 Conformance Checking
5.5 Additional Mining Tasks

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods

5. Process Mining

Agenda

5.1 Introduction
5.2 Process Model/Transition Systems
5.3 Process Discovery
5.4 Conformance Checking
5.5 Additional Mining Tasks

Motivation

• Process models are generated eigther normative or descriptive

• Normative: - invented by human

- represent how a certain process is supposed to work

• Descriptive: - created by process discovery algorithms based on log files

- represent how a certain process is actually running

5. Process Mining 5.3 Process Discovery 4

Input: Event log 𝐿 over activities 𝐴

Output: marked petri net / Workflow net

Idea: A simple algorithm to visualize processes

Process Discovery Algorithm „α-Miner“[1]

5. Process Mining 5.3 Process Discovery 5

[1] van der Aalst, W M P and Weijters, A J M M and Maruster, L (2004). "Workflow Mining: Discovering process models from event logs", IEEE Transactions on
Knowledge and Data Engineering, vol 16

1. Detect log-based ordering relations from event Log 𝐿
2. Create Footprint Table
3. Execute the algorithm of the 𝛼-Miner
4. Derive the WF-net

a b c d

a

b

c

d

Process Discovery Algorithm „α-Miner“

Let 𝐿 be an event log over activities 𝐴, and let 𝑎, 𝑏 ∈ 𝐴.

1. Detect log-based ordering relations from event Log 𝐿

i. „(direct) following“-relation 𝒂 >𝑳 𝒃

⇔ ∃ 𝑡𝑟𝑎𝑐𝑒 𝜎 = 〈𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛−1〉 𝑎𝑛𝑑 𝑖 ∈ 1,2, … , 𝑛 − 2

s. t. 𝜎 ∈ 𝐿 and 𝑡𝑖 = 𝑎 and 𝑡𝑖+1 = 𝑏 and 𝑡𝑖+1 = 𝑏.

ii. „potential parallelism“ 𝒂 ∥𝑳 𝒃

⇔ 𝑎 >𝐿 𝑏 𝑎𝑛𝑑 𝑏 >𝐿 𝑎

iii. „sequential task“-relation 𝒂 →𝑳 𝒃

⇔ 𝑎 >𝐿 𝑏 𝑎𝑛𝑑 𝑏 ≯𝐿 𝑎

iv. „not followed“-relation 𝒂 #𝑳 𝒃

⇔ 𝑎 ≯𝐿 𝑏 𝑎𝑛𝑑 𝑏 ≯𝐿 𝑎

5. Process Mining 5.3 Process Discovery 6

>𝐿: 𝑎, 𝑐 , 𝑎, 𝑑 , 𝑏, 𝑐 , 𝑏, 𝑑 , 𝑐, 𝑑 , 𝑑, 𝑐

2. Create Footprint Table:
i) Find the directly followed tupels

𝐿 = [𝑎, 𝑐, 𝑑 3, 𝑎, 𝑑, 𝑐 2, 𝑏, 𝑐, 𝑑 2, 𝑏, 𝑑, 𝑐 4]

Process Discovery Algorithm „α-Miner“

Let 𝐿 be an event log over activities 𝐴, and let 𝑎, 𝑏 ∈ 𝐴.

1. Detect log-based ordering relations from event Log 𝐿

i. „(direct) following“-relation 𝒂 >𝑳 𝒃

⇔ ∃ 𝑡𝑟𝑎𝑐𝑒 𝜎 = 〈𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛−1〉 𝑎𝑛𝑑 𝑖 ∈ 1,2, … , 𝑛 − 2

s. t. 𝜎 ∈ 𝐿 and 𝑡𝑖 = 𝑎 and 𝑡𝑖+1 = 𝑏 and 𝑡𝑖+1 = 𝑏.

ii. „potential parallelism“ 𝒂 ∥𝑳 𝒃

⇔ 𝑎 >𝐿 𝑏 𝑎𝑛𝑑 𝑏 >𝐿 𝑎

iii. „ sequential task“-relation 𝒂 →𝑳 𝒃

⇔ 𝑎 >𝐿 𝑏 𝑎𝑛𝑑 𝑏 ≯𝐿 𝑎

iv. „not followed“-relation 𝒂 #𝑳 𝒃

⇔ 𝑎 ≯𝐿 𝑏 𝑎𝑛𝑑 𝑏 ≯𝐿 𝑎

5. Process Mining 5.3 Process Discovery 7

a b c d

a

b

c ∥𝑳

d ∥𝑳

>𝐿: 𝑎, 𝑐 , 𝑎, 𝑑 , 𝑏, 𝑐 , 𝑏, 𝑑 , 𝑐, 𝑑 , 𝑑, 𝑐
∥𝐿: {(c,d), (d,c)}

2. Create Footprint Table:
ii) Find the potential parallel tupels

and mark them in the table

𝐿 = [𝑎, 𝑐, 𝑑 3, 𝑎, 𝑑, 𝑐 2, 𝑏, 𝑐, 𝑑 2, 𝑏, 𝑑, 𝑐 4]

2. Create Footprint Table:
iii) Find the sequential task tupels

and mark them in the table

Process Discovery Algorithm „α-Miner“

Let 𝐿 be an event log over activities 𝐴, and let 𝑎, 𝑏 ∈ 𝐴.

1. Detect log-based ordering relations from event Log 𝐿

i. „(direct) following“-relation 𝒂 >𝑳 𝒃

⇔ ∃ 𝑡𝑟𝑎𝑐𝑒 𝜎 = 〈𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛−1〉 𝑎𝑛𝑑 𝑖 ∈ 1,2, … , 𝑛 − 2

s. t. 𝜎 ∈ 𝐿 and 𝑡𝑖 = 𝑎 and 𝑡𝑖+1 = 𝑏 and 𝑡𝑖+1 = 𝑏.

ii. „potential parallelism“ 𝒂 ∥𝑳 𝒃

⇔ 𝑎 >𝐿 𝑏 𝑎𝑛𝑑 𝑏 >𝐿 𝑎

iii. „sequential task“-relation 𝒂 →𝑳 𝒃

⇔ 𝑎 >𝐿 𝑏 𝑎𝑛𝑑 𝑏 ≯𝐿 𝑎

iv. „not followed“-relation 𝒂 #𝑳 𝒃

⇔ 𝑎 ≯𝐿 𝑏 𝑎𝑛𝑑 𝑏 ≯𝐿 𝑎

5. Process Mining 5.3 Process Discovery 8

a b c d

a →𝑳 →𝑳

b →𝑳 →𝑳

c ∥𝐿

d ∥𝐿

>𝐿: 𝑎, 𝑐 , 𝑎, 𝑑 , 𝑏, 𝑐 , 𝑏, 𝑑 , 𝑐, 𝑑 , 𝑑, 𝑐
∥𝐿: {(c,d), (d,c)}
→𝐿: { 𝑎, 𝑐 , 𝑎, 𝑑 , 𝑏, 𝑐 , 𝑏, 𝑑 }

𝐿 = [𝑎, 𝑐, 𝑑 3, 𝑎, 𝑑, 𝑐 2, 𝑏, 𝑐, 𝑑 2, 𝑏, 𝑑, 𝑐 4]

Process Discovery Algorithm „α-Miner“

Let 𝐿 be an event log over activities 𝐴, and let 𝑎, 𝑏 ∈ 𝐴.

1. Detect log-based ordering relations from event Log 𝐿

i. „(direct) following“-relation 𝒂 >𝑳 𝒃

⇔ ∃ 𝑡𝑟𝑎𝑐𝑒 𝜎 = 〈𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛−1〉 𝑎𝑛𝑑 𝑖 ∈ 1,2, … , 𝑛 − 2

s. t. 𝜎 ∈ 𝐿 and 𝑡𝑖 = 𝑎 and 𝑡𝑖+1 = 𝑏 and 𝑡𝑖+1 = 𝑏.

ii. „potential parallelism“ 𝒂 ∥𝑳 𝒃

⇔ 𝑎 >𝐿 𝑏 𝑎𝑛𝑑 𝑏 >𝐿 𝑎

iii. „ sequential task“-relation 𝒂 →𝑳 𝒃

⇔ 𝑎 >𝐿 𝑏 𝑎𝑛𝑑 𝑏 ≯𝐿 𝑎

iv. „not followed“-relation 𝒂 #𝑳 𝒃

⇔ 𝑎 ≯𝐿 𝑏 𝑎𝑛𝑑 𝑏 ≯𝐿 𝑎

5. Process Mining 5.3 Process Discovery 9

a b c d

a #𝑳 #𝑳 →𝐿 →𝐿

b #𝑳 #𝑳 →𝐿 →𝐿

c #𝑳 ∥𝐿

d ∥𝐿 #𝑳

>𝐿: 𝑎, 𝑐 , 𝑎, 𝑑 , 𝑏, 𝑐 , 𝑏, 𝑑 , 𝑐, 𝑑 , 𝑑, 𝑐
∥𝐿: {(c,d), (d,c)}
→𝐿: { 𝑎, 𝑐 , 𝑎, 𝑑 , 𝑏, 𝑐 , 𝑏, 𝑑 }
#𝐿: {(a,a),(a,b),(b,a),(b,b),(c,c),(d,d)}

2. Create Footprint Table:
iv) Find the not followed tupels

and mark them in the table

𝐿 = [𝑎, 𝑐, 𝑑 3, 𝑎, 𝑑, 𝑐 2, 𝑏, 𝑐, 𝑑 2, 𝑏, 𝑑, 𝑐 4]

Process Discovery Algorithm „α-Miner“

Let 𝐿 be an event log over activities 𝐴, and let 𝑎, 𝑏 ∈ 𝐴.

1. Detect log-based ordering relations from event Log 𝐿

i. „(direct) following“-relation 𝒂 >𝑳 𝒃

⇔ ∃ 𝑡𝑟𝑎𝑐𝑒 𝜎 = 〈𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛−1〉 𝑎𝑛𝑑 𝑖 ∈ 1,2, … , 𝑛 − 2

s. t. 𝜎 ∈ 𝐿 and 𝑡𝑖 = 𝑎 and 𝑡𝑖+1 = 𝑏 and 𝑡𝑖+1 = 𝑏.

ii. „potential parallelism“ 𝒂 ∥𝑳 𝒃

⇔ 𝑎 >𝐿 𝑏 𝑎𝑛𝑑 𝑏 >𝐿 𝑎

iii. „ sequential task“-relation 𝒂 →𝑳 𝒃

⇔ 𝑎 >𝐿 𝑏 𝑎𝑛𝑑 𝑏 ≯𝐿 𝑎

iv. „not followed“-relation 𝒂 #𝑳 𝒃

⇔ 𝑎 ≯𝐿 𝑏 𝑎𝑛𝑑 𝑏 ≯𝐿 𝑎

5. Process Mining 5.3 Process Discovery 10

a b c d

a #𝐿 #𝐿 →𝐿 →𝐿

b #𝐿 #𝐿 →𝐿 →𝐿

c ←𝑳 ←𝑳 #𝐿 ∥𝐿

d ←𝑳 ←𝑳 ∥𝐿 #𝐿

>𝐿: 𝑎, 𝑐 , 𝑎, 𝑑 , 𝑏, 𝑐 , 𝑏, 𝑑 , 𝑐, 𝑑 , 𝑑, 𝑐
∥𝐿: {(c,d), (d,c)}
→𝐿: { 𝑎, 𝑐 , 𝑎, 𝑑 , 𝑏, 𝑐 , 𝑏, 𝑑 }
#𝐿: {(a,a),(a,b),(b,a),(b,b),(c,c),(d,d)}

2.Create Footprint Table:
(v) The remaining tupels represent a
„directly before“ relation, marked as ←𝑳

and mark them in the table

𝐿 = [𝑎, 𝑐, 𝑑 3, 𝑎, 𝑑, 𝑐 2, 𝑏, 𝑐, 𝑑 2, 𝑏, 𝑑, 𝑐 4]

Process Discovery Algorithm „α-Miner“

3. Execute the algorithm of the 𝛼-Miner

i) All activities that start any trace yield the set of

starting activities, collected in 𝑻𝒊𝒏.

ii) All activities that end any trace yield the set of

output activities, 𝑻𝒐𝒖𝒕.

…

4. Derive the WF-net:

5. Process Mining 5.3 Process Discovery 11

𝑇𝑖𝑛 = 𝑎, 𝑏

𝑇𝑜𝑢𝑡 = {𝑐, 𝑑}

a

b
𝑝𝑠𝑡𝑎𝑟𝑡

𝐿 = [𝑎, 𝑐, 𝑑 3, 𝑎, 𝑑, 𝑐 2, 𝑏, 𝑐, 𝑑 2, 𝑏, 𝑑, 𝑐 4]

c

d

• The set of transitions is equal to 𝐴, so each activity

represents a transition

• A starting place is created and connected to each node in 𝑻𝒊𝒏.

• Also, a final place is created and each node in 𝑻𝒐𝒖𝒕 is

connected to it.

3. Execute the algorithm of the 𝛼-Miner …

iii) Determine all pairs of sets 𝐴 and 𝐵, such that

• ∀𝑎1, 𝑎2 ∈ 𝐴: 𝑎1#𝑎2
• ∀𝑏1, 𝑏2 ∈ 𝐵: 𝑏1#𝑏2
• ∀𝑎1 ∈ 𝐴, ∀𝑏1 ∈ 𝐵: 𝑎1 → 𝑏1

• Select only the “maximal pairs”:

e.g. 𝑎 , 𝑐 , 𝑎 , 𝑑 , 𝑎 , 𝑐, 𝑑 ⟹ 𝑎 , 𝑐, 𝑑

4. A place is added in between 𝐴 and 𝐵 and connected
accordingly

e.g.:

Heuristics-Miner is our first algorithm to capture
concurrent process behavior.

d

c

Process Discovery Algorithm „α-Miner“

5. Process Mining 5.3 Process Discovery 12

a b c d

a #𝐿 #𝐿 →𝐿 →𝐿

b #𝐿 #𝐿 →𝐿 →𝐿

c ←𝑳 ←𝑳 #𝐿 ∥𝐿

d ←𝑳 ←𝑳 ∥𝐿 #𝐿

valid set of „maximal pairs“:

𝑎 , 𝑐, 𝑑 , 𝑏 , 𝑐, 𝑑

𝐴 = 𝑎 , 𝐵 = {𝑏, 𝑒} a

b

e

a

b
𝑝𝑠𝑡𝑎𝑟𝑡

Input: Event log 𝐿

Output: Causal net, here we stop at the dependency graph

Process Discovery Algorithm „Heuristics-Miner“ [2]

5. Process Mining 5.3 Process Discovery 13

Idea: 𝛼-Miner has several flaws (1-loops, 2-loops, no weighting).

Heuristics-Miner uses dependency as the condition to connect activities.

[2] Weijters, A. J. M. M., Wil MP van Der Aalst, and AK Alves De Medeiros. "Process mining with the heuristics miner-algorithm." Technische Universiteit
Eindhoven, Tech. Rep. WP 166 (2006): 1-34.

Process Discovery Algorithm „Heuristics-Miner“

5. Process Mining 5.3 Process Discovery 14

Let 𝐿 be an event log over activities 𝐴, and let 𝑎, 𝑏 ∈ 𝐴.

1. Create table displaying frequency of „directly follows“
relation >𝑳

𝐿 = [𝑎, 𝑒 5, 𝑎, 𝑏, 𝑐, 𝑒 10, 𝑎, 𝑐, 𝑏, 𝑒 10,
𝑎, 𝑏, 𝑒 10, 𝑎, 𝑑, 𝑑, 𝑒 2, 𝑎, 𝑑, 𝑑, 𝑑, 𝑒 1]

>𝐿 a b c d e

a 0 11 11 13 5

b 0 0 10 0 11

c 0 10 0 0 11

d 0 0 0 4 13

e 0 0 0 0 0

Process Discovery Algorithm „Heuristics-Miner“

5. Process Mining 5.3 Process Discovery 15

2. Create a table showing the value of „dependency
measures“ of all pairs of activities over 𝐿

𝑎 ⇒𝐿 𝑏 =

𝑎 >𝐿 𝑏 − 𝑏 >𝐿 𝑎

𝑎 >𝐿 𝑏 + 𝑏 >𝐿 𝑎 + 1
, if a ≠ 𝑏

𝑎 > 𝑎

𝑎 > 𝑎 + 1
, 𝑖𝑓 𝑎 = 𝑏

𝑎 ⇒𝐿 𝑏 ∈] − 1,1[

𝑎 ⇒𝐿 𝑏 = 0 , if 𝑎 >𝐿 𝑏 = 𝑏 >𝐿 𝑎

𝑎 ⇒𝐿 𝑏 → 1 , if a follows almost always after b

⇒𝑳 a b c d e

a

b

c

d

e

>𝐿 a b c d e

a 0 11 11 13 5

b 0 0 10 0 11

c 0 10 0 0 11

d 0 0 0 4 13

e 0 0 0 0 0

Process Discovery Algorithm „Heuristics-Miner“

5. Process Mining 5.3 Process Discovery 16

2. Create a table showing the value of „dependency
measures“ of all pairs of activities over 𝐿

𝑎 ⇒𝐿 𝑏 =

𝑎 >𝐿 𝑏 − 𝑏 >𝐿 𝑎

𝑎 >𝐿 𝑏 + 𝑏 >𝐿 𝑎 + 1
, if a ≠ 𝑏

𝑎 > 𝑎

𝑎 > 𝑎 + 1
, 𝑖𝑓 𝑎 = 𝑏

𝑎 ⇒𝐿 𝑏 ∈] − 1,1[

𝑎 ⇒𝐿 𝑏 = 0 , if 𝑎 >𝐿 𝑏 = 𝑏 >𝐿 𝑎

𝑎 ⇒𝐿 𝑏 → 1 , if a follows almost always after b

Lower triangular matrix is the negative and transposed

of the upper triangular matrix.

⇒𝑳 a b c d e

a 0 0.92 0.92 0.93 0.83

b -0.92 0 0 0 0.92

c -0.92 0 0 0 0.92

d -0.93 0 0 0.80 0.93

e -0.83 -0.92 -0.92 -0.93 0

𝑎 ⇒𝐿 𝑏 =
11 − 0

11 + 0 + 1
= 0.92

𝑏 ⇒𝐿 𝑐 =
10−10

10+10+1
= 0

>𝐿 a b c d e

a 0 11 11 13 5

b 0 0 10 0 11

c 0 10 0 0 11

d 0 0 0 4 13

e 0 0 0 0 0

Process Discovery Algorithm „Heuristics-Miner“

5. Process Mining 5.3 Process Discovery 17

3. i) Select two thresholds to reduce
noise (𝜏>𝐿) and infrequent traces (𝜏⇒𝐿

)

ii) Create the dependency graph DG:
an arc between x and y is only included if
𝑥 <𝐿 𝑦 ≥ 𝜏>𝐿 ∧ 𝑥 ⇒𝐿 𝑦 ≥ 𝜏⇒𝐿

⇒𝑳 a b c d e

a 0 0.92 0.92 0.93 0.83

b -0.92 0 0 0 0 0.92

c -0.92 0 0 0 0 0.92

d -0.93 0 0 0 0.80 0.93

e -0.83 0 -0.92 0 -0.92 0 -0.93 0 0

>𝐿 a b c d e

a 0 11 11 13 5

b 0 0 10 0 11

c 0 10 0 0 11

d 0 0 0 4 13

e 0 0 0 0 0

Ex. 1:
Setting 𝜏>𝐿

= 2 and

𝜏⇒𝐿
= 0.7

yields to the following
dependency graph: ca

b

e

d

Process Discovery Algorithm „Heuristics-Miner“

5. Process Mining 5.3 Process Discovery 18

3. i) Select two thresholds to reduce
noise (𝜏>𝐿) and infrequent traces (𝜏⇒𝐿

)

ii) Create the dependency graph DG:
an arc between x and y is only included if
𝑥 <𝐿 𝑦 ≥ 𝜏>𝐿 ∧ 𝑥 ⇒𝐿 𝑦 ≥ 𝜏⇒𝐿

⇒𝑳 a b c d e

a 0 0.92 0.92 0.93 0.83 0

b -0.92 0 0 0 0 0.92

c -0.92 0 0 0 0 0.92

d -0.93 0 0 0 0.80 0 0.93

e -0.83 0 -0.92 0 -0.92 0 -0.93 0 0

>𝐿 a b c d e

a 0 11 11 13 5

b 0 0 10 0 11

c 0 10 0 0 11

d 0 0 0 40 13

e 0 0 0 0 0

Ex. 2:
Setting 𝜏>𝐿

= 5 and

𝜏⇒𝐿
= 0.9

yields to the following
dependency graph: ca

b

e

d

Process Discovery Algorithm „Heuristics-Miner“

5. Process Mining 5.3 Process Discovery 19

4. Last step – not in this lecture:

dependency graph → causal net

ca

b

e

d

→

Process Discovery Algorithm – Some Others

5. Process Mining 5.3 Process Discovery 20

[3] S.J.J. Leemans, D. Fahland, andW.M.P. van der Aalst. Discovering Block-structured Process Models from Event Logs: A Constructive Approach. In J.M. Colom and
J. Desel, editors, Applications and Theory of Petri Nets 2013, volume 7927 of Lecture Notes in Computer Science, pages 311–329. Springer, Berlin, 2013.
[4]Pesic, Maja, Helen Schonenberg, and Wil MP Van der Aalst. "Declare: Full support for loosely-structured processes." 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007). IEEE, 2007.

• „Inductive-Miner (IM)“ [𝟑]:

It uses the directly-follows graph that corresponds to the „direct follows“ relation (>𝐿) used by the 𝛼-

Miner and creates a Process Tree 𝑄.

Imperative vs. Declarative approaches

• „Declare“ [𝟒]:

It is a constrained based declarative approach.

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods

5. Process Mining

Agenda

5.1 Introduction
5.2 Process Model/Transition Systems
5.3 Process Discovery
5.4 Conformance Checking
5.5 Additional Mining Tasks

Motivation

• Given an event log and a process model, decide for each case wether it conforms to the model or
not. If not, give the issues.

5. Process Mining 5.4 Conformance Checking 22

<Salmon, Rice, Avocado, Nori, Eat>
<Rice, Salmon, Wasabi>
<Avocado, Rice, Soy sauce, Nori, Eat>

conform?

non-conform?

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Goal: Fraud detection

• Alteration of medical treatment, usually for higher compensations ("upcoding").
Cheap medication billed as costly medication. Medication is non-conform to the
treatment plan, e.g. flu vaccination after broken leg.

• Duplicate execution of actions.
Billing twice for same service or good

• Embezzlement, theft or misuse of company assets.
Usage of company truck at suspicious times for
private actions (evenings, vacation,…),
or faked payments using complex and unusual cashflows.

5. Process Mining 5.4 Conformance Checking 23

Goal: Workflow improvements

• Root-cause detection
Quality check failed for some products. Search for shared historic
activities (e.g. same supplier, preprocessed by same employee or
machine, similar environmental conditions).

• Standardization of deviations
Customers are processed faster at a certain counter. How has the
employee deviated the process? E.g. Families with children board first
at the airport.

• Customer aggregation
Some customers look for furniture in a popular shop. The order of
furniture presentation influences their habbits. Where to offer the small
items like tealights? Which customer types map to which market
traversal paths?

5. Process Mining 5.4 Conformance Checking 24

Image credit PSFK

http://www.psfk.com/2011/04/ikeas-maze-like-layout-results-in-huge-amount-of-impulse-buying.html

Automata Theory: Decide Language Membership

• Idea:

• Put a token into the start position.

• For each event, fire the transition with the same label in the Petri net.

• If the Petri net accepts the sequence, the trace passed the conformance checking.

• Otherwise, a rejected trace has zero fitness.

5. Process Mining 5.4 Conformance Checking 25

[1] A.K. Alves de Medeiros,W.M.P. van der Aalst, and A.J.M.M.Weijters. Quantifying Process Equivalence Based on Observed Behavior. Data and Knowledge Engineering, 64(1):55–74, 2008.

Petri Net Membership Test

Checking: <Avocado, Rice, Salmon, Nori, Eat>

(p)roduced : 0 (c)onsumed : 0

5. Process Mining 5.4 Conformance Checking 26

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Petri Net Membership Test

Checking: <Avocado, Rice, Salmon, Nori, Eat>

(p)roduced : 1 (c)onsumed : 0

5. Process Mining 5.4 Conformance Checking 27

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Petri Net Membership Test

Checking: <Avocado, Rice, Salmon, Nori, Eat>

(p)roduced : 4 (c)onsumed : 1

5. Process Mining 5.4 Conformance Checking 28

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Petri Net Membership Test

Checking: <Avocado, Rice, Salmon, Nori, Eat>

(p)roduced : 5 (c)onsumed : 2

5. Process Mining 5.4 Conformance Checking 29

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Petri Net Membership Test

Checking: <Avocado, Rice, Salmon, Nori, Eat>

(p)roduced : 6 (c)onsumed : 3

5. Process Mining 5.4 Conformance Checking 30

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Petri Net Membership Test

Checking: <Avocado, Rice, Salmon, Nori, Eat>

(p)roduced : 7 (c)onsumed : 4

5. Process Mining 5.4 Conformance Checking 31

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Petri Net Membership Test

Checking: <Avocado, Rice, Salmon, Nori, Eat>

(p)roduced : 8 (c)onsumed : 7

5. Process Mining 5.4 Conformance Checking 32

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Petri Net Membership Test

Checking: <Avocado, Rice, Salmon, Nori, Eat>

(p)roduced : 9 (c)onsumed : 8

5. Process Mining 5.4 Conformance Checking 33

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Petri Net Membership Test

Checking: <Avocado, Rice, Salmon, Nori, Eat>

(p)roduced : 9 (c)onsumed : 9

5. Process Mining 5.4 Conformance Checking 34

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Petri Net Membership Test

5. Process Mining 5.4 Conformance Checking 35

The fitness of a case with trace 𝜎 on WF-net 𝑀 is defined as:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝜎,𝑀 =
1

2
1 −

𝑚

𝑐
+
1

2
1 −

𝑟

𝑝

Considering the example:

Checking: 𝜎 = <Avocado, Rice, Salmon, Nori, Eat>

(p)roduced : 9 (c)onsumed : 9

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝜎,𝑀 =
1

2
1 −

0

9
+
1

2
1 −

0

9
= 1

Token Replay1

• Problem with pure Automata approach:
• We cannot decide between almost fit and critically deviating traces (binary classifier).

• In practical applications we often need some flexibility to execute the processes.

• Modified Idea:

• Put a token into the start position.

• For each event, try to fire the corresponding transition in the net.

• If not possible, create a virtual new token after the transition.

• In the end, determine the fitness based on the tokens left in the model and the virtually added ones.

5. Process Mining 5.4 Conformance Checking 36

[1] A.K. Alves de Medeiros,W.M.P. van der Aalst, and A.J.M.M.Weijters. Quantifying Process Equivalence Based on Observed Behavior. Data and Knowledge Engineering, 64(1):55–74, 2008.

Token Replay Example

Checking: <Rice, Salmon, Wasabi>

(p)roduced : 1 (c)onsumed : 0

(m)issing : 0 (r)emaining : 0

5. Process Mining 5.4 Conformance Checking 37

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Token Replay Example

Checking: <Rice, Salmon, Wasabi>

(p)roduced : 4 (c)onsumed : 1

(m)issing : 0 (r)emaining : 0

5. Process Mining 5.4 Conformance Checking 38

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Token Replay Example

Checking: <Rice, Salmon, Wasabi>

(p)roduced : 5 (c)onsumed : 2

(m)issing : 0 (r)emaining : 0

5. Process Mining 5.4 Conformance Checking 39

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Token Replay Example

Checking: <Rice, Salmon, Wasabi>

(p)roduced : 6 (c)onsumed : 3

(m)issing : 0 (r)emaining : 0

5. Process Mining 5.4 Conformance Checking 40

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Token Replay Example

Checking: <Rice, Salmon, Wasabi>

(p)roduced : 7 (c)onsumed : 4

(m)issing : 1 (r)emaining : 0

5. Process Mining 5.4 Conformance Checking 41

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

m

Token Replay Example

Checking: <Rice, Salmon, Wasabi>

(p)roduced : 7 (c)onsumed : 4

(m)issing : 1 (r)emaining : 4

5. Process Mining 5.4 Conformance Checking 42

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

m

r

r

r

r

Token Replay Example

5. Process Mining 5.4 Conformance Checking 43

The fitness of a case with trace 𝜎 on WF-net 𝑀 is defined as:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝜎,𝑀 =
1

2
1 −

𝑚

𝑐
+
1

2
1 −

𝑟

𝑝

Considering the example:

Checking: 𝜎 = <Rice, Salmon, Wasabi>

(p)roduced : 7 (c)onsumed : 4

(m)issing : 1 (r)emaining : 4

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝜎,𝑀 =
1

2
1 −

1

4
+
1

2
1 −

4

7
= 0,375

Token Replay: Discussion

• Allows a continuous fitness score in the interval [0,1].

• Intuitive and easy to implement.

• For critical deviating behavior, model gets flooded with tokens. Earlier deviations mask later
deviations.
→ all behavior afterwards gets accepted, fitness values too low

• Depending on a Petri net representation of the process.

5. Process Mining 5.4 Conformance Checking 44

Alignments2

• To overcome drawbacks of Token Replay, it might be better to map observed behavior on modelled
behavior.

• Idea:

• Consider all mappings between a model and a trace.

• Simulate moves in the model and in the trace.

• Optimize for most synchronuous moves
(fire transition 𝑎 and read 𝑎 in the trace in parallel).

• Finally, compare the optimal alignment with the worst alignment possible to determine the fitness.

5. Process Mining 5.4 Conformance Checking 45

a b c d >> g h

a b c d f >> h

moves in the log

moves in the model

>> is an asynchronous move
[2] W.M.P. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying History on Process Models for Conformance Checking and Performance Analysis. WIREs Data Mining and Knowledge
Discovery, 2(2):182–192, 2012.

Alignments

• Worst possible alignment for <Rice, Salmon, Wasabi>:

5. Process Mining 5.4 Conformance Checking 46

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Rice Salmon Eat >> >> >> >> >>

>> >> >> Rice Avocad
o

Salmon Nori
sheet

Eat

Alignments

• Optimal alignment for <Rice, Salmon, Salmon, Wasabi>:

5. Process Mining 5.4 Conformance Checking 47

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

Rice >> Salmon Salmon Wasabi >>

Rice Avocad
o

Salmon >> Wasabi Eat

Alignments

• Optimal alignment for <Rice, Salmon, Salmon, Wasabi>:

• Optimal alignments do not require to be unique:

• However, the distance between log and model equal for all optimal alignments.

5. Process Mining 5.4 Conformance Checking 48

Rice >> Salmon Salmon Wasabi >>

Rice Avocad
o

Salmon >> Wasabi Eat

Rice >> Salmon Salmon Wasabi >>

Rice Avocad
o

>> Salmon Wasabi Eat

>> Rice Salmon Salmon Wasabi >>

Avocad
o

Rice >> Salmon Wasabi Eat

Rice Salmon >> Salmon Wasabi >>

Rice Salmon Avocad
o

>> Wasabi Eat

>> Rice Salmon Salmon Wasabi >>

Avocad
o

Rice Salmon >> Wasabi Eat

Alignments

• Optimal alignment for <Rice, Salmon, Salmon, Wasabi>:

𝜆𝑜𝑝𝑡
𝑀 𝜎 =

• Worst alignment:

𝜆𝑤𝑜𝑟𝑠𝑡
𝑀 𝜎 =

• The fitness is defined as

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝜎,𝑀 = 1 −
𝛿 𝜆𝑜𝑝𝑡

𝑀 𝜎

𝛿 𝜆𝑤𝑜𝑟𝑠𝑡
𝑀 𝜎

= 0.625

5. Process Mining 5.4 Conformance Checking 49

Rice >> Salmon Salmon Wasabi >>

Rice Avocad
o

Salmon >> Wasabi Eat

Rice Salmon Eat >> >> >> >> >>

>> >> >> Rice Avocad
o

Salmon Nori
sheet

Eat

𝛿 𝜆𝑜𝑝𝑡
𝑀 𝜎 = 3

𝛿 𝜆𝑤𝑜𝑟𝑠𝑡
𝑀 𝜎 = 8

Alignments Discussion

• Alignments easier to understand: Instead of tokens in Petri-nets, we talk about skipped and
inserted events.

• Higher accuracy, since Token Replay suffers from token flooding.

• Fitness values for Alignments tends to be to low, while Token Replay often yields higher values.

• More flexibility due to modifications of the costs 𝛿. E.g. activity "avocado" might be cheaper to
drop than dropping the activity "rice".

• Not depending on Petri-nets only.

• However, very computational expensive.

5. Process Mining 5.4 Conformance Checking 50

Applications for Conformance Scores

• We only talked about conformance checking for fraud detection and workflow diagnostics.

• Fitness values determined by conformance checking provide us with a definition of distance
between model and trace.

• The unstructured trace space, which is not a native vector space, becomes semi-metric.
• The distance is not defined between traces, but uses models as reference points.

• As the distance is not computed directly, but depends on a secondary structure, it is called geodetic.

• Using this distance, clustering and outlier detection become possible:
• Richter, F., Wahl, F., Sydorova, A., & Seidl, T. LWDA (2019). k-process: Model-Conformance-based Clustering of Process Instances.

• Richter, F., Zellner, L., Sontheim, J., & Seidl, T. (2019, October). Model-Aware Clustering of Non-conforming Traces. In OTM Confederated International
Conferences" On the Move to Meaningful Internet Systems" (pp. 193-200). Springer, Cham.

• We can also lift this approach to a log-to-log level, defining distances between two process logs for clustering and
outlier detection (k-means, DBSCAN,…):

• Richter, F., Zellner, L., Azaiz, I., Winkel, D., & Seidl, T. (2019, September). LIProMa: Label-Independent Process Matching. In International Conference on Business
Process Management (pp. 186-198). Springer, Cham.

5. Process Mining 5.4 Conformance Checking 51

Rice

Avocado

Salmon

Nori
sheet

Wasabi

Soy
sauce

Eat

<Rice, Salmon, Salmon, Wasabi>
<Avocado, Rice, Salmon, Nori, Eat>

Temporal Conformance Checking

• Until now: Does the order of events conform to a given model? Often it is interesting if events are
also executed at the "right" time.

• Even for conform traces, an activity can be executed too early or too late.

• In the following, the execution order was correct and according to model, there is no problem:

𝑐𝑜𝑜𝑘 𝑟𝑖𝑐𝑒 → 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑎𝑣𝑜𝑐𝑎𝑑𝑜 → 𝑠𝑎𝑙𝑚𝑜𝑛 → 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 𝑎𝑛𝑑 𝑟𝑜𝑙𝑙 𝑁𝑜𝑟𝑖 𝑠ℎ𝑒𝑒𝑡

The last event failed due to dry and hard rice.

• Recent research on this at DBS:
• Richter, Florian, and Thomas Seidl. "TESSERACT: time-drifts in event streams using series of evolving rolling averages of completion times." International Conference on

Business Process Management. Springer, Cham, 2017.

• Richter, Florian, and Thomas Seidl. "Looking into the TESSERACT: Time-drifts in event streams using series of evolving rolling averages of completion times." Information
Systems 84 (2019): 265-282.

• Sontheim, J., Richter, F., & Seidl, T. LWDA (2019). Temporal Deviations on Event Sequences.

5. Process Mining 5.4 Conformance Checking 52

6h13m12s 0h2m43s 0h4m7s

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods

5. Process Mining

Agenda

5.1 Introduction
5.2 Process Model/Transition Systems
5.3 Process Discovery
5.4 Conformance Checking
5.5 Additional Mining Tasks

Perspectives - Motivational Example

5. Process Mining 5.5 Additional Mining Tasks 54

Log 1 Log 2 RLE-based
(Log 1)

Day 1 14.2 14.2 1*14.2

Day 2 14.4 14.4 4*14.4

Day 3 14.4 14.4 1*14.3

Day 4 14.4 -21.3 1*14.2

Day 5 14.4 14.4

Day 6 14.3 14.3

Day 7 14.2 14.2

Average daily outside temperature in °C
Detecting
anomalous behavior in
temperature data
by changing perspectives

Log 1:
E.g. Mean and standard deviation
can be computed
 still seems normal

Log 2:
Point anomaly is obvious

Log 3 (Saves entries of Log 1 in a
Run-Length Encoding manner):
Exposes entries of Log 1 as a
possible collective anomaly

Motivation - Perspectives

• Analysis can be done by using different
perspectives

=> Event logs provide much more information
E.g.: Timestamps, resources,
transactions, costs etc.

• Thus far: Control-flow perspective

• Moreover:

• Time perspective

• Case perspective

• Organizational perspective

5. Process Mining 5.5 Additional Mining Tasks 55

Events have attributes
concerning various

perspectives

Model can show
multiple perspectives

Extension and
conformance checks
in every perspective

possible

Motivation - Perspectives

Time perspective

• Focus on timing and frequency of events

• Goals: Discover bottlenecks, monitor utilization of resources, remaining time prediction

Case perspective

• Focus on case properties

• Properties can be case attributes, event attributes, a path taken, performance information

• Goals: Mining decisions (e.g. a specific path) based on the characteristics of the case
shows which data is relevant and should be included in the model

Organizational perspective

• Focus on information about resources

• Resources can be people, systems, roles, departments

• Goals: Classify actors in terms of roles, show social network

5. Process Mining 5.5 Additional Mining Tasks 56

Exemplarily introducing
temporal mining now

Temporal Visualization – Dotted Chart Analysis

• How to get a general overview: Dotted Chart Analysis

5. Process Mining 5.5 Additional Mining Tasks 57

Time (absolute, relative or
logical)

Classifier
(here:
Case ID)
sorted by
timestamp
of first
event

Dots correspond
to events

belonging to a
specific class

Legend mapping event
colors to event descriptors

Dotted chart for
some receipt process

Temporal Visualization – Dotted Chart Analysis

5. Process Mining 5.5 Additional Mining Tasks 58

Time since case started
sorted by duration of a case

Shorted cases
at the top

Longer ones
at the bottom

Created with ProM
(Process Mining
framework) with

Dotted Chart Plugin

Temporal Visualization – Dotted Chart Analysis

5. Process Mining 5.5 Additional Mining Tasks 59

Time since week started.
Indicates that only few events were
executed by night and at weekends.

 Most events on weekdays between 9am and 4pm

Temporal Mining

5. Process Mining 5.5 Additional Mining Tasks 60

Presence of timestamps enables

• discovery of bottlenecks
• Limitation of capacity of a specific resource

• monitoring of resource utilization
• Which resources are occupied by which activity the most?

• prediction of remaining processing times of running cases
• Based on computations made on discovered cases so far

• etc.

Token replay can be extended to replay event logs
with timestamps included (time-based replay).

This can help to extract aforementioned information.

Temporal Mining – Time-based replay

5. Process Mining 5.5 Additional Mining Tasks 61

Replay of first part of our sushi process
for two cases starting at 3pm i.e. 5pm

Timed replay for
2 cases showing
durations at transitions and
waiting times at places

Temporal Mining – Time-based replay

5. Process Mining 5.5 Additional Mining Tasks 62

Replay of first part of our sushi process
for two cases starting at 3pm i.e. 5pm

Partial sushiing process
seems to have a bottleneck at
〈𝑐𝑜𝑜𝑘 𝑟𝑖𝑐𝑒, 𝑠𝑒𝑎𝑠𝑜𝑛 𝑟𝑖𝑐𝑒〉

Record collection of token visits
 derive multi set of durations for each place

Temporal Mining – Time-based replay

5. Process Mining 5.5 Additional Mining Tasks 63

Possibility to
• Fit distribution
• Compute statistics such as

• mean,
• standard deviation,
• minimum,
• maximum
• etc.

 Visualization of waiting times
 Visualization of service times
 Bottleneck detection and analysis

Timeline resembling a Gantt-Chart (excerpt of time-based replay)

Trace Clustering - Motivation

High diversity:

Single cases differ
significantly from one
another

 possibly very
complex models

5. Process Mining 5.5 Additional Mining Tasks 64

Complete Event
Log as a Process
„Spaghetti“
Model

Our sushiing process
already can be very
complex depending on
the granularity of
visualization

Example: Second part of our sushiing process

Trace Clustering - Motivation

5. Process Mining 5.5 Additional Mining Tasks 65

Assumption:

Process variants hidden within the event log

 Cluster traces before discovering a model

 Clustering approach
also based on different perspectives

Trace Clustering - Example

• How to determine a similarity value between our data points (here: cases)?

• Clustering on points in vector space is well-known

=> Embedding of cases into vector space necessary  Profiles

5. Process Mining 5.5 Additional Mining Tasks 66

Case ID Roll and
slice

Add
wasabi

Add soy
sauce

Prepare stir-
fried rice

Eat

1 1 1 0 0 1

2 1 0 1 0 1

3 1 1 0 0 1

4 1 0 1 0 1

5 1 1 0 1 1

Add up the number of
activity execution for

each case

Trace Clustering - Example

5. Process Mining 5.5 Additional Mining Tasks 67

Case ID Vector Manhattan distance to other vectors

1 (1, 1, 0, 0, 1) 2, 0, 2, 1

2 (1, 0, 1, 0, 1) 2, 2, 0, 3

3 (1, 1, 0, 0, 1) 0, 2, 2, 1

4 (1, 0, 1, 0, 1) 2, 0, 2, 3

5 (1, 1, 0, 1, 1) 1, 3, 2, 3 .

 E.g. cluster with agglomerative approach

Aforementioned profile is called Activity Profile (Activity Histogram)

• Defines one item (feature) per type of activity

• An activity item is measured by counting all events of a trace
which have that activities name

• Of course, various other profiles possible as well

Trace Clustering – Methods

5. Process Mining 5.5 Additional Mining Tasks 68

In General:

Profile: Set of items with measurements
Item: Assigns numeric value to each trace

 A Profile can be considered a function f which maps a
trace t to a vector 𝑖1, 𝑖2, … , 𝑖𝑛 with n items:

𝑓 𝑡 → 𝑖1, 𝑖2, … , 𝑖𝑛 ,

✔ Embedding into vector space

 Various clustering methods
can be applied now

Trace Clustering – Methods

More examples:

Transition profile:

Items: Direct following relations in a trace

Measure: How often an event A has been followed by an event B

Goal: Measure behavior of traces (capturing the context) cf. n-grams

Performance profile:

Items: Size of a trace
regarding timestamps: case duration, (min, max, mean) time difference between events etc.

Measure: Depends on predefined items e.g. size is measured by number of events

Goal: Measure performance of a trace ( also part of Temporal Mining)

5. Process Mining 5.5 Additional Mining Tasks 69

Additional Mining Tasks - Roundup

• Processes can be analyzed by using
different perspectives

• time

• case

• organizational

• Get an overview by applying
Dotted Chart Analysis

5. Process Mining 5.5 Additional Mining Tasks 70

perspective

• Temporal Mining useful to

• detect bottlenecks

• monitor resource utilization

• predict remaining processing time

• Trace Clustering helps to
distinguish between process variants
dependent on different perspectives (profiles)

Resources

• ProM Framework

• Wil van der Aalst. 2016. Process Mining: Data Science in Action (2nd. ed.). Springer Publishing
Company, Incorporated

• Song, Minseok & Günther, Christian & Aalst, Wil. (2008). Trace Clustering in Process Mining.
Lecture Notes in Business Information Processing. 17. 109-120. 10.1007/978-3-642-00328-8_11.

• R.P., Jagadeesh Chandra Bose & Aalst, Wil. (2009). Context Aware Trace Clustering: Towards
Improving Process Mining Results. SDM. 10.1137/1.9781611972795.35.

5. Process Mining 5.5 Additional Mining Tasks 71

