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Processes in Applications
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Example: The Sushi Process

season
rice

get peel slice spread on
ingredients avocado avocado nori sheet

slice

salmon
A process transforms rolliand

. . ) slice
an initial state into a

final state via
multiple actions

add
SOy sauce
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Process Properties: Sequence

5. Process Mining

season
rice

get peel slice

Many actions are
performed in
consecutive order

ingredients avocado avocado

slice
salmon

add
SOy sauce
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spread on
nori sheet

roll and
slice




Process Properties: Concurrency

season
rice

get peel slice spread on
ingredients avocado avocado nori sheet

slice

salmon
roll and

slice

* Some actions are
performed in parallel.

* All branches have to be
performed.

* The exact temporal order
between branches is not
strict.

add
SOy sauce
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Process Properties: Choice

season
rice

get peel slice spread on
ingredients avocado avocado nori sheet

slice

. salmon
e One branch is selected. roll and

* Either by active decision (manager) slice
or passive selection (environment).

add
SOy sauce
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Process Properties: Loop

season
rice

get peel slice spread on
ingredients avocado avocado nori sheet

slice

) ) salmon
* Repeated execution of actions. roll and

e Oftenusedasa slice
"continuous improvement cycle".

add
SOy sauce
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Benefits of Process Models

* Insights by changing perspectives and highlights.

* Specification / Documentation for certifications or legal contract
purposes.

* Verification of executions to reveal problems.
* Performance analysis to identify issues like bottlenecks.

* Simulation (digital twin) to experiment virtually with changed settings.
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Information Flow of Event Data

Software
Systems

specifies
configures

implements
analyzes

records events
e.g., messages, transactions, etc.

models Event

I —

a n a yze S Mo Logs Location Time Piece
14 MUMICH 10:32 1 Piace
13 With delivery courier MUNICH - GERMAMNY 06:51 1 Piece

12 Arrived at Delivery Facility in MUNICH - MUNICH - GERMANY 03:53
GERMANY

Sunday, January 14, 2018 Location Time Piece
D M 1 Departed Facility in MUNICH - GERMANY MUMICH - GERMANY 2310 1 Piece
I S Cove ry 10 Processed at MUNICH - GERMANY MUMICH - GERMANY 2223 1 Piece
9 Arrived at Sort Facility MUNIGH - GERMANY  MUNICH - GERMANY 2148 1 Piece
8 Departed Facility in LEIPZIG - GERMANY LEIPZIG - GERMANY 06:27 1 Piece

Saturday, January 13, 2018 Location Time Piece
CO n fo r' m a n C e 7 Processed at LEIPZIG - GERMANY LEIPZIG - GERMANY 00:43 1 Piece
6 Arrived at Sort Facility LEIPZIG - GERMANY  LEIPZIG - GERMANY 00:10 1 Piece

Friday, January 12, 2018 Location Time Piece
5 Departed Facility in EAST MIDLANDS - UK EAST MIDLANDS - UK 2123 1 Piece
P ro C e s S 4 Transferred through EAST MIDLANDS - UK EAST MIDLANDS - UK 21:22 1 Piece
E n h a n Ce m e nt 3 Departed Facility in MANCHESTER - UK MANCHESTER - UK 17:36 1 Piece
d I /‘ 2 Processed at MANCHESTER - UK MANCHESTER - UK 14:34 1 Piece
IVI O e 1 Shipment picked up MAMCHESTER - UK 11:53 1 Piece
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Event Logs as Starting Point

activity execution
quality

Sushi 113 get ingredients 09:31 Andreas bag good
Sushi 239 slice salmon 09:35 Bianca knife 1 medium
Sushi 239 spread on nori sheet 09:42 Bianca very good
Sushi 248 eat 09:43 Charlie -

Sushi 249 get ingredients 09:47 Andreas bag good
Sushi 113 cook rice 09:51 Bianca rice cooker 3 poor
Sushi 239 roll and slice 09:51 Charlie knife 1 good
Sushi 113 peel avocado 09:53 Andreas knife 2 poor
Sushi 239 add soy sauce 09:54 Bianca good
Sushi 239 add soy sauce 09:55 Bianca poor
Sushi 239 eat 09:57 Andreas -
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Event Logs Technically

» Data collection mostly fully automated.

* Process-Aware Information Systems
(PAIS)

 ERP (Enterprise-Resource Planning)
[SAP, Oraclel

* BPM (Business Process Management)
[IBM BPM]

 CRM (Customer Relationship
Management)

* Popular data format: XES
« XML-based
* easy to understand

<?xml version="1.0" encoding="UTF-8" 7>
<log xes.version="2.0" xes.features="arbitrary-depth" xmilns="http://www.xes-standard.org
S

<extension name="Concept" prefix="concept" uri="http://www.xes-standard.org/concept .
xesext" />
<extension name="Time" prefix="time" uri="http://www.xes-standard.org/time.xesext"/>
<global scope="trace">
<string key="concept:name" value=""/>
</global>
<global scope="event">
<string key="concept:name" value=""/>
<date key="time:timestamp" value="1970-01-01T00:00:00.000+00:00"/>
<string key="system" value=""/>
</global>
<classifier name="Activity" keys="concept:name"/>
<classifier name="Another" keys="concept:name system"/>
<float key="log attribute" value="2335.23"/>
<trace>
<string key="concept:name" value="Trace number one"/>
<event>
<string key="concept:name" value="Register client"/>
<string key="system" value="alpha"/>
<date key="time:timestamp" value="2009-11-25T14:12:45:000+02:00"/>
<int key="attempt" value="23">
<boolean key="tried hard" value="false"/>
</int>
</event>
<event>
<string key="concept:name" value="Mail rejection"/=>
<string key="system" value="beta"/>
<date key="time:timestamp" value="2009-11-28T11:18:45:000+02:00"/>

</event>
</trace>
</log>
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Event Logs Formally

An event e is a tuple e = (¢, a, t, ...) containing o .. N 7 = RN [

M °rC* Sushi 239 spread on nori sheet 09:42 Bianca ry good

a case identifier c,
. . Sushi 249 get ingredient 09:47 Andreas bag good
a n a Ct I V I ty | a b e | a a n d Sushi 113 cook rice 09:51 Bianca rice coo ker 3 poor
. Sushi 239 roll and slice 09:51 Charlie knife 1 good
t t t Sushi 113 peel avocado 09:53 Andreas knife 2 poor
a I m e S a m p ¢ Sushi 239 add soy sauce 09:54 Bianca good
Sushi 239 add soy 09:55 Bia poor

An event can contain additional attributes.

For an event e = (¢, a,t), we define the projections
#ease(€) = ¢, #activity(e) =a, and  #ype(e) =t.

An event log L is a multiset of events.
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Event Logs Formally

Sushi 113 get ingredient 09:31 And b good
Sushi 239 | Im 09:35 Bianca fe 1 medium
. . o . Sushi 239 spread on nori sheet 09:42 Bianca ry good
A C d t f d b th I Sushi 248 eat 09:43 Charlie
Ca Se ! I e n I I e y C I n e O g ! Sushi 249 get ingredients 09:47 Andreas bag good
i S th e S et Of eve n tS Sushi 113 cook rice 09:51 Bianca rice coo ker3  poor
Sushi 239 roll and slice 09:51 Charlie knife 1 good
C — L # — Sushi 113 peel avocado 09:53 Andreas knife 2 poor
- {e E | case (e ) - C} Sushi 239 add soy sauce 09:54 Bianca good
Sushi 239 dd soy sauce 09:55 Bianca poor
Sushi 239 at 09:57 And

A trace o, Is the sequence of activities for a case C = {ey, ..., e,} with
— #actlmty (en(l)) acthty(en(n))
such that #¢imestamp (en(i)) < #timestamp (en(j)) for m(i) < m(j).
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Integration into the Data Mining World

Processes

season
rice

peel slice spread on
avocado avocado nori sheet

roll and
slice

ltemsets
(e.g. frequent itemset mining)

get
ingredients

{rice, avocado, salmon}

add
WELE L]

eat

add
S0y sauce

Sequences
(e.g. sequential pattern mining)

get ingredients

— prepare ingredients
— spread on nori sheet
— roll and slice

— season with wasabi

— season with soy sauce
— eat

no order total order
e unordered e partially ordered e strictly totally ordered
e set-based * sequences can occur, * sequence-based

models are directed graphs
* branches break order
(concurrency)

5. Process Mining 5.1 Introduction
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Process Mining Task: Discovery

* Given an event log, find a process model which mm

 must be able to replay the log = Fitness

« simplifies as far as possible = Simplicity Sushi 113  get ingredients 09:31
» does not overfit the log = Generalization Sushi 239  slice salmon 09:35
» does not underfit the log = Precision Sushi 239  spread on nori sheet 09:42
Sushi 248 eat 09:43

sssn Sushi 249 get ingredients 09:47

Sushi 113  cook rice 09:51

Sushi 239  roll and slice 09:51

s _ Sushi 113  peel avocado 09:53

Sushi 239 add soy sauce 09:54

Sushi 239 add soy sauce 09:55

o e Sushi 239 eat 09:57
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Process Mining Task: Conformance Checking

* Given an event log and a process model, decide for each case whether it conforms
to the model or not. If not, give the issues.

conform

cook rice, add wasabi,
roll and slice, eat

non-conform

* A case instance can perform better than others. Then reveal the beneficial
deviations to improve the general workflow.

* If the case performs worse, identify the root cause to avoid misbehavior.
1_‘{0 7. 2 P =’A ,,. 4 _‘ i .A ";,':. ' ' [\ —

Y
|
|

{11 oL A I B ’ - g —— -
Housebreaking Trails Tool choice
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Process Mining Task: Enhancement

* Given a process model, 10 min
augment with additional information.
* Temporal information
* Social networks
* Organisational roles -

spread oi
 Decision rules ingredients nori sheet

20 min

roll and
' slice

add

wasabi 259,
X X
add
SOy sauce

Andreas Bianca Charlie
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Process Mining Risks and Green Data Science

626 o IS
100 ..f._... . A 1 3 get mw X 263 526 26 inv“e addilional re
-

- 626

b

P, 100

. : arXiv:1912.04958

* Mostly: Cases related to people. But what is in the data?

e Students

* Employees
 Tenants

e Clients

5. Process Mining

Who asks the most questions?
Who is associated with long execution terms? neutral,
. bjective
? © '
Who needs maintenance often: data-oriented
Who calls most for service?

5.1 Introduction 20



Process Mining Risks and Green Data Science
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« Same results, but with intentional mindset:

e Students

* Employees
 Tenants

e Clients

5. Process Mining

Who is the least intelligent student?
Who is the slowest worker?

Who caused the most repairs?

Who complains the most?

5.1 Introduction

bad intention,
negative-
subjective,
pessimistic
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Process Mining Risks and Green Data Science

. 626

b
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82

|
* And the other extreme, changed mindset:

2

-l’
-

Made with StyleGAN
arXiv:1912.04958

e Students Who is the most interested student? | |

» Employees  Who handles the most difficult tasks? f)‘;‘;‘:i\'/”et_e”t'on'
* Tenants Who takes care of the rental property? subjective,

» Clients Who gives a lot of constructive feedback? optimistic
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Process Mining Risks and Green Data Science

dercide Y
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* Be careful with interpretations.
* Even if you are objective, can your results be interpreted otherwise?

* Can you obscure the results so they stay meaningful, but protect individuals?
€.g. Cluster individuals, top-k-rankings, k-anonymity, hashing, noise addition,...
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Scientific Process Mining Tools
* PROM:

e First version in 2010.
e Java-based.
* Provides many algorithms in a GUI.

* pm4py:
* First version in 2019
* Python-based
* Documentation: https://pm4py.fit.fraunhofer.de/

* Several algorithms available

5. Process Mining 5.1 Introduction

-
process mining workbench

rM4rP(
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Motivation

Why do we need Process Models?
* Predetermine operational processes in the form of guidelines
* Descriptive vs. Normative model

* Visualization of processes
* Process reasoning

* Analysis of given processes

Starting point for initial implementation and re-design
Distribution of responsibilities

Planning and controlling

Compliance checking

Performance prediction via simulation

5. Process Mining 5.2 Process Models — An Overview
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Process Model — BPMN (Business Process Modeling Notation)

Remember?

5. Process Mining

get
ingredients

season

peel

rice

slice

avocado avocado

5.2 Process Models — An Overview

add
soy sauce

spread on
nori sheet

roll and
slice
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Process Model — BPMN (Business Process Modeling Notation)

Exemplary subset of elements contained in BPMN

—»C]—» task/activity
Process Model - BPMN (Business Process Modeling Notation)
Remember?
AND-split AND-join
ingredients am:ad nori sheet

gateway gateway
rall and

slice

XOR-split XOR-join
gateway gateway

add
wasabi

OR-split OR-join
gateway gateway

eat X

add

S0 SALCE

start end

5. Process Mining

T
0¥ & ¢

event event

5. Process Mining 5.2 Process Models — An Overview
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Process Model — Transition System

peel avocado

slice salmon -1

==SEASON I E=p

cook rice
peel avocado

—sice salmon—%
cook rice=—>
peel avocado slice avocado=—>
slice salmon=—
cook rice=—>
slice salmon{
peel avocado=

5. Process Mining

slice avocado :e
"(
slice salmon=—»| \
|

slice salmon

v

@—spread on nori sheet
| l

roll and slice

1—add wasabi

Q‘_eat_L
add soy sauce

5.2 Process Models — An Overview
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Process Model — Petri Nets

()

P1

peel '
avocado

P2

- Pe
4 season
cook rice: 4 )
~__ . rice | %

Pa

Ps

|

: P7
slice ( \
avocado /

\\v// N

spread on
nori sheet

P3
cook rice | transition
Q place
. token

5. Process Mining

end
[— 01
&

slice \
salmon /,/
XOR-join add

7 wasabi

sauce

P9

/
7

.

roll and

slice

/" Pao

add soy P
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Process Model — Petri Nets

As already seen the Petri net is a bipartite graph.

Exemplary formalization of given Petri Net:

P ={py, Py P3, Pss Ps, Pss P7» Pgs Pos P1os P11, €NA}

T = {cook rice, season rice, peel avocado, slice avocado, slice salmon,
spread on nori sheet, roll and slice, add wasabi, add soy sauce, eat}

m‘ﬁ

./

o Pa —
SSSSSS

P1

-

Pz

cook ric

..‘ peel L Ps
| / slice
4 J avocado ! et

o S avoca

oo

spread on

nori sheet

P

F ={(p,, cook rice), (p,, peel avocado), (p3, slice salmon), (cook rice, p4), (peel avocado, p5), ...}

5. Process Mining

5.2

Process Models — An Overview

roll and
slice
oven | -
1 wasabi
~—.end - Pph.d
[ 1—’?4—6 ) I
L - Pio
1 | add soy 1
| sauce
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Process Models — Workflow-Nets (WF-Nets)

Subclass of Petri Nets

—.Fs p
cook ric |  season
| | rice m
peel ,_Pa P
aaaaa do 1 Y | slice spread on
cado nori sheet
P 1
|l £ P
salmon \l
(roll and
slic
wasabi |
.end . v
j— -— ) ( )
g R — ~Pu o
dd soy |
sssss

Can the Petri Net shown
be considered a
Workflow Net?
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Process Models — Workflow-Nets (WF-Nets)

=0

start

susthg'

©_..

start

5. Process Mining

._,©p6

P1 P4
g season
cook rices .
rice
peel Ds
avocado slice
P2 avocado

&

end :::

5.2

slice
salmon

A 4

AND-join

/

Q

XOR-join

N

eat

v

spread on
nori sheet

a

O

add

a

wasabi

P11

add soy

Po

roll and
slice

S

Sauce

Process Models — An Overview

s

P1o
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Process Models — Additional Criterion (Soundness)

A WF-net does not necessarily represent a correct process
- Deadlocks, livelocks, not activatable activities etc. are possible

5. Process Mining 5.2 Process Models — An Overview
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Process Models — Methods (Verification)

Verification is a method to analyze process models against specific properties (Model checking).

* Those properties can be expressed in temporal logic.

» Specifically in LTL (Linear Temporal Logic) which is an significant example in relation to

process models.

Two further exemplary verification tasks in the following:

1. Two process models can be checked against each other using Verification.

E.g. Trying to match a descriptive and a normative model to see where reality differs from
guidelines

5. Process Mining 5.2 Process Models — An Overview
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Process Models — Methods (Verification)

P1
o P4 — Ps
™ s N e N
—’(/ \y—bcook rice \ >—> - sl ol )
"/ \_ rice | N
1 N start / N peel -
{ — . —Ps o 4
\g sushiing \\/// avocado _|_>(/ \7.' slice L/ \\.p7 spread on
start 0, N avocado '\\J J nori iheet
R | v
¥ . | slice N s J/’/ \\5)9
N ~| salmon AP \_/
Ps3
roll and
- slice
add
wasabi
2. Soundness as a correctness . . o
FINSE : end — - S P
criterion can be checked using . "4 (e
Verification. N A N i)
sauce
T Deadlo
. . — ‘/// TN
<..., roll and slice, add wasabi> &Y L ]O
i N T
leads to a dead marking [pq4, P14l o |
(Deadlock) prepare ~ Pu
stir-fried )
rice R
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Process Models — Roundup

5. Process Mining

Known process model types so far: Benefit:

* Transitions systems * Process analysis gets simplified

* BPMN * Predict performance via simulation
* Petri Nets * Predetermine guidelines
 Workflow Nets * Purpose determines outcome
There are still others like .

Reachability graphs
Causal nets

5.2 Process Models — An Overview
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Process Models — Discussion

Creating a model is not an easy task

« Capturing human behavior

 Human covers multiple processes with different priorities = dependencies evolve
—> Difficult to model one process in isolation

* Productivity of a human is varying over time.
It also depends on other factors e.qg. Yerkes-Dodson law

Efficiency/
Productivity

A I I

Yerkes-Dodson law

high

low Excitement /

Activation

low medium high

5. Process Mining 5.2 Process Models — An Overview
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Process Models — Discussion (cont.)

 ldealization of reality
 Hand-made models tend to be
* subjective
» oversimplified

* The choice of a representative sample of cases is crucial
—> Biased focus on normal / desirable behavior

Actually it only covers Remaining 20% could
80% of cases but is seen possibly cover high
as a representative amount of problems

5. Process Mining 5.2 Process Models — An Overview
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Process Models — Discussion (cont.)

* Granularity
E.g. there are many types of sushi: Nigiri, Sashimi, Maki, Uramakai...

| just want to

eat sushi...
:
)
E.g. discrete vs. continuous

cook rice

VS et pot =—p getrice jpirice — et :
) .g P | & into pot | .~ water

—> A suitable granularity for the process model depends on
e theinputdata
* the model’s purpose

5. Process Mining 5.2 Process Models — An Overview
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