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Processes in Applications
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Example: The Sushi Process
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A process transforms
an initial state into a 
final state via 
multiple actions



Process Properties: Sequence
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• Many actions are
performed in 
consecutive order



Process Properties: Concurrency
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• Some actions are
performed in parallel.

• All branches have to be
performed.

• The exact temporal order
between branches is not 
strict.



Process Properties: Choice
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• One branch is selected.
• Either by active decision (manager) 

or passive selection (environment).



Process Properties: Loop
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• Repeated execution of actions.
• Often used as a 

"continuous improvement cycle".



Benefits of Process Models

• Insights by changing perspectives and highlights.

• Specification / Documentation for certifications or legal contract
purposes.

• Verification of executions to reveal problems.

• Performance analysis to identify issues like bottlenecks.

• Simulation (digital twin) to experiment virtually with changed settings.
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Information Flow of Event Data
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Event Logs as Starting Point
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case id activity timestamp resource 1 resource 2 execution
quality

…

Sushi 113 get ingredients 09:31 Andreas bag good

Sushi 239 slice salmon 09:35 Bianca knife 1 medium

Sushi 239 spread on nori sheet 09:42 Bianca very good

Sushi 248 eat 09:43 Charlie -

Sushi 249 get ingredients 09:47 Andreas bag good

Sushi 113 cook rice 09:51 Bianca rice cooker 3 poor

Sushi 239 roll and slice 09:51 Charlie knife 1 good

Sushi 113 peel avocado 09:53 Andreas knife 2 poor

Sushi 239 add soy sauce 09:54 Bianca good

Sushi 239 add soy sauce 09:55 Bianca poor

Sushi 239 eat 09:57 Andreas -

…



Event Logs Technically
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• Data collection mostly fully automated.

• Process-Aware Information Systems 
(PAIS)

• ERP (Enterprise-Resource Planning)
[SAP, Oracle]

• BPM (Business Process Management) 
[IBM BPM]

• CRM (Customer Relationship
Management)

• Popular data format: XES

• XML-based

• easy to understand



Event Logs Formally
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An event 𝒆 is a tuple 𝑒 = 𝑐, 𝑎, 𝑡, … containing
a case identifier 𝑐, 
an activity label 𝑎 and 
a timestamp 𝑡.

An event can contain additional attributes.

An event log 𝑳 is a multiset of events. 

For an event 𝑒 = (𝑐, 𝑎, 𝑡), we define the projections
#𝑐𝑎𝑠𝑒 𝑒 = 𝑐,   #𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑒 = 𝑎, and   #𝑡𝑖𝑚𝑒 𝑒 = 𝑡.



Event Logs Formally
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A case 𝑪, identified by 𝑐 in the log, 
is the set of events

𝐶 = 𝑒 ∈ 𝐿 ∣ #𝑐𝑎𝑠𝑒 𝑒 = 𝑐

A trace 𝝈𝒄 is the sequence of activities for a case 𝐶 = {𝑒1, … , 𝑒𝑛} with

𝜎𝑐 = #𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑒𝜋 1 , … , #𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑒𝜋 𝑛

such that #𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑒𝜋 𝑖 < #𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑒𝜋 𝑗 for 𝜋 𝑖 < 𝜋 𝑗 .



Integration into the Data Mining World
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Itemsets
(e.g. frequent itemset mining)

Processes Sequences
(e.g. sequential pattern mining)

{𝑟𝑖𝑐𝑒, 𝑎𝑣𝑜𝑐𝑎𝑑𝑜, 𝑠𝑎𝑙𝑚𝑜𝑛}

𝑔𝑒𝑡 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡𝑠
→ 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡𝑠
→ 𝑠𝑝𝑟𝑒𝑎𝑑 𝑜𝑛 𝑛𝑜𝑟𝑖 𝑠ℎ𝑒𝑒𝑡
→ 𝑟𝑜𝑙𝑙 𝑎𝑛𝑑 𝑠𝑙𝑖𝑐𝑒
→ 𝑠𝑒𝑎𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑤𝑎𝑠𝑎𝑏𝑖
→ 𝑠𝑒𝑎𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑠𝑜𝑦 𝑠𝑎𝑢𝑐𝑒
→ 𝑒𝑎𝑡

• unordered
• set-based

• strictly totally ordered
• sequence-based

• partially ordered
• sequences can occur, 

models are directed graphs
• branches break order

(concurrency)

total orderno order



Process Mining Task: Discovery

• Given an event log, find a process model which
• must be able to replay the log ⇒ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠

• simplifies as far as possible ⇒ 𝑆𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦

• does not overfit the log ⇒ 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

• does not underfit the log ⇒ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

5. Process Mining 5.1 Introduction 17

case id activity timestamp

…

Sushi 113 get ingredients 09:31

Sushi 239 slice salmon 09:35

Sushi 239 spread on nori sheet 09:42

Sushi 248 eat 09:43

Sushi 249 get ingredients 09:47

Sushi 113 cook rice 09:51

Sushi 239 roll and slice 09:51

Sushi 113 peel avocado 09:53

Sushi 239 add soy sauce 09:54

Sushi 239 add soy sauce 09:55

Sushi 239 eat 09:57

…



Process Mining Task: Conformance Checking

• Given an event log and a process model, decide for each case whether it conforms
to the model or not. If not, give the issues. 

• A case instance can perform better than others. Then reveal the beneficial
deviations to improve the general workflow.

• If the case performs worse, identify the root cause to avoid misbehavior.
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Housebreaking Trails                                             Tool choice



Process Mining Task: Enhancement

• Given a process model, 
augment with additional information.
• Temporal information

• Social networks

• Organisational roles

• Decision rules
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Process Mining Risks and Green Data Science

• Mostly: Cases related to people. But what is in the data?
• Students Who asks the most questions?

• Employees Who is associated with long execution terms?

• Tenants Who needs maintenance often?

• Clients Who calls most for service?
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Made with StyleGAN
arXiv:1912.04958

neutral, 
objective, 
data-oriented



Process Mining Risks and Green Data Science

• Same results, but with intentional mindset:
• Students Who is the least intelligent student?

• Employees Who is the slowest worker?

• Tenants Who caused the most repairs?

• Clients Who complains the most?
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Made with StyleGAN
arXiv:1912.04958

bad intention, 
negative-
subjective, 
pessimistic



Process Mining Risks and Green Data Science

• And the other extreme, changed mindset:
• Students Who is the most interested student?

• Employees Who handles the most difficult tasks?

• Tenants Who takes care of the rental property?

• Clients Who gives a lot of constructive feedback?
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Made with StyleGAN
arXiv:1912.04958

good intention, 
positive-
subjective, 
optimistic



Process Mining Risks and Green Data Science

• Be careful with interpretations.

• Even if you are objective, can your results be interpreted otherwise?

• Can you obscure the results so they stay meaningful, but protect individuals?
e.g. cluster individuals, top-k-rankings, k-anonymity, hashing, noise addition,…

5. Process Mining 5.1 Introduction 23

Made with StyleGAN
arXiv:1912.04958



Scientific Process Mining Tools

• PROM:
• First version in 2010. 

• Java-based.

• Provides many algorithms in a GUI.

• pm4py:
• First version in 2019

• Python-based

• Documentation: https://pm4py.fit.fraunhofer.de/

• Several algorithms available
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Motivation

Why do we need Process Models?

• Predetermine operational processes in the form of guidelines

• Descriptive vs. Normative model

• Visualization of processes

• Process reasoning

• Analysis of given processes

• Starting point for initial implementation and re-design

• Distribution of responsibilities

• Planning and controlling

• Compliance checking

• Performance prediction via simulation

• …
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Process Model – BPMN (Business Process Modeling Notation)

Remember?
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Process Model – BPMN (Business Process Modeling Notation)

Exemplary subset of elements contained in BPMN
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Process Model – Transition System
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Definition (Transition system)

Triplet 𝑇 = (𝑆, 𝐴, 𝑇), where
𝑆 is the set of 𝑠𝑡𝑎𝑡𝑒𝑠
𝐴 ⊆ 𝒜 is the set of 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠
𝑇 ⊆ 𝑆× A × S is the set of transitions
𝑆𝑠𝑡𝑎𝑟𝑡 ⊆ 𝑆 is the set of 𝑖𝑛𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠
𝑆𝑒𝑛𝑑 ⊆ 𝑆 is the set of 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠



Process Model – Petri Nets
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cook rice transition

place

token



Process Model – Petri Nets
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Definition (Petri Net)

Triplet N = (𝑃, 𝑇, 𝐹), where
P is a finite set of 𝑝𝑙𝑎𝑐𝑒𝑠
𝑇 is a finite set of 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑃 ∩ 𝑇 = ∅
F ⊆ (T ×P ) ∪ (P ×T ) is a set of directed arcs (called flow relation)

Exemplary formalization of given Petri Net:

P = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, end}

T = {cook rice, season rice, peel avocado, slice avocado, slice salmon, 
spread on nori sheet, roll and slice, add wasabi, add soy sauce, eat}

F = {(p1, cook rice), (p2, peel avocado), (p3, slice salmon), (cook rice, p4), (peel avocado, p5), …}

As already seen the Petri net is a bipartite graph.



Process Models – Workflow-Nets (WF-Nets)

Subclass of Petri Nets
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Definition (Workflow Net)

𝑁 = (𝑃, 𝑇, 𝐹), where
𝑃, 𝑇, 𝐹 is a Petri net as already defined

N is a workflow net iff.
a) P contains a source place 𝑖 s. t. • 𝑖 = ∅
b) P contains a sink place 𝑜 s. t. o •= ∅
c) If we add a transition 𝑡* to 𝑁 which connects o with 𝑖

i. e. •𝑡*= 𝑜 and 𝑡∗• = 𝑖 , then
the resulting Petri net is strongly connected.

Definition (Strongly connected)

A Petri net is strongly connected iff for every pair of nodes 
(i.e. places and transitions) x and y, there is a path leading 
from x to y

Can the Petri Net shown
be considered a 
Workflow Net?



Process Models – Workflow-Nets (WF-Nets)
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Process Models – Additional Criterion (Soundness)

A WF-net does not necessarily represent a correct process

 Deadlocks, livelocks, not activatable activities etc. are possible
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Definition (Soundness)

Let 𝑁 = 𝑃, 𝑇, 𝐹 be a 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑛𝑒𝑡 with 𝑖 and 𝑜 as input and
output places.
N is sound iff.
• (safeness) Places do not hold multiple tokens at the same time
• (proper completion) The moment the procedure terminates there 

is a token in place o and all the other places are empty
• (option to complete) For any case the procedure will terminate

eventually
• (absence of dead parts) For any 𝑡 ∈ 𝑇 there is a firing sequence

enabling t



Process Models – Methods (Verification)

Verification is a method to analyze process models against specific properties (Model checking).

• Those properties can be expressed in temporal logic.

• Specifically in LTL (Linear Temporal Logic) which is an significant example in relation to

process models.

Two further exemplary verification tasks in the following:

1. Two process models can be checked against each other using Verification.

E.g. Trying to match a descriptive and a normative model to see where reality differs from
guidelines
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Process Models – Methods (Verification)
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2. Soundness as a correctness
criterion can be checked using
Verification.

<…, roll and slice, add wasabi> 
leads to a dead marking [p11, p14] 
(Deadlock)



Process Models – Roundup
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Known process model types so far:

• Transitions systems
• BPMN
• Petri Nets
• Workflow Nets
There are still others like
• Reachability graphs
• Causal nets
• …

Benefit:

• Process analysis gets simplified
• Predict performance via simulation
• Predetermine guidelines
• Purpose determines outcome
• …



Process Models – Discussion

Creating a model is not an easy task

• Capturing human behavior

• Human covers multiple processes with different priorities  dependencies evolve
 Difficult to model one process in isolation

• Productivity of a human is varying over time.
It also depends on other factors e.g. Yerkes-Dodson law
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Efficiency/
Productivity
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low

highlow medium

Excitement / 
Activation

Yerkes-Dodson law



Process Models – Discussion (cont.)

• Idealization of reality

• Hand-made models tend to be

• subjective

• oversimplified

• The choice of a representative sample of cases is crucial
 Biased focus on normal / desirable behavior
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Actually it only covers
80% of cases but is seen
as a representative

Remaining 20% could
possibly cover high 
amount of problems



Process Models – Discussion (cont.)

• Granularity
E.g. there are many types of sushi: Nigiri, Sashimi, Maki, Uramaki…

E.g. discrete vs. continuous
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I just want to
eat sushi…

 A suitable granularity for the process model depends on
• the input data
• the model‘s purpose
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