Ludwig-Maximilians-Universität München Lehrstuhl für Datenbanksysteme und Data Mining Prof. Dr. Thomas Seidl

Knowledge Discovery and Data Mining 1

(Data Mining Algorithms 1)

Wintersemester 2019/20

Agenda

1. Introduction

- 2. Basics
- 3. Supervised Methods
- 4. Unsupervised Methods

- 5. Process Mining
- 5.1 Introduction
- 5.2 Process Models An Overview
- 5.3 Process Discovery
- 5.4 Conformance Checking
- 5.5 Additional Mining Tasks

Agenda

1. Introduction

2. Basics

- **3.** Supervised Methods
- 4. Unsupervised Methods

- 5. Process Mining
- 5.1 Introduction Motivation
 - Getting the Data
- 5.2 Process Models An Overview
- 5.3 Process Discovery
- 5.4 Conformance Checking
- 5.5 Additional Mining Tasks

Processes in Applications

Example: The Sushi Process

Process Properties: Sequence

Process Properties: Concurrency

strict.

•

•

•

Process Properties: Choice

Process Properties: Loop

۲

٠

Benefits of Process Models

- Insights by changing perspectives and highlights.
- Specification / Documentation for certifications or legal contract purposes.
- Verification of executions to reveal problems.
- Performance analysis to identify issues like bottlenecks.
- Simulation (digital twin) to experiment virtually with changed settings.

Information Flow of Event Data

Event Logs as Starting Point

case id	activity	timestamp	resource 1	resource 2	execution quality
Sushi 113	get ingredients	09:31	Andreas	bag	good
Sushi 239	slice salmon	09:35	Bianca	knife 1	medium
Sushi 239	spread on nori sheet	09:42	Bianca		very good
Sushi 248	eat	09:43	Charlie		-
Sushi 249	get ingredients	09:47	Andreas	bag	good
Sushi 113	cook rice	09:51	Bianca	rice cooker 3	poor
Sushi 239	roll and slice	09:51	Charlie	knife 1	good
Sushi 113	peel avocado	09:53	Andreas	knife 2	poor
Sushi 239	add soy sauce	09:54	Bianca		good
Sushi 239	add soy sauce	09:55	Bianca		poor
Sushi 239	eat	09:57	Andreas		-

Event Logs Technically

- Data collection mostly fully automated.
- Process-Aware Information Systems (PAIS)
 - ERP (Enterprise-Resource Planning) [SAP, Oracle]
 - BPM (Business Process Management) [IBM BPM]
 - CRM (Customer Relationship Management)
- Popular data format: XES
 - XML-based
 - easy to understand

```
<?xml version="1.0" encoding="UTF-8" ?>
log xes.version="2.0" xes.features="arbitrary-depth" xmlns="http://www.xes-standard.org
    /">
   <extension name="Concept" prefix="concept" uri="http://www.xes-standard.org/concept.</pre>
        xesext"/>
   <extension name="Time" prefix="time" uri="http://www.xes-standard.org/time.xesext"/>
    <global scope="trace">
        <string key="concept:name" value=""/>
   </global>
    <global scope="event">
        <string key="concept:name" value=""/>
        <date key="time:timestamp" value="1970-01-01T00:00:00.000+00:00"/>
        <string key="system" value=""/>
   </\alphalobal>
   <classifier name="Activity" keys="concept:name"/>
   <classifier name="Another" keys="concept:name system"/>
   <float key="log attribute" value="2335.23"/>
   <trace>
        <string key="concept:name" value="Trace number one"/>
        <event>
            <string key="concept:name" value="Register client"/>
            <string key="system" value="alpha"/>
            <date key="time:timestamp" value="2009-11-25T14:12:45:000+02:00"/>
            <int key="attempt" value="23">
                <boolean key="tried hard" value="false"/>
            </int>
       </event>
        <event>
            <string key="concept:name" value="Mail rejection"/>
            <string key="system" value="beta"/>
            <date key="time:timestamp" value="2009-11-28T11:18:45:000+02:00"/>
       </event>
   </trace>
</loa>
```

Event Logs Formally

An **event** e is a tuple e = (c, a, t, ...) containing a case identifier c, an activity label a and a timestamp t.

An event can contain additional attributes.

case id	activity	timestamp	resource 1	resource 2	execution quality
Sushi 113	get ingredients	09:31	Andreas	bag	good
Sushi 239	slice salmon	09:35	Bianca	knife 1	medium
Sushi 239	spread on nori sheet	09:42	Bianca		very good
Sushi 248	eat	09:43	Charlie		-
Sushi 249	get ingredients	09:47	Andreas	bag	good
Sushi 113	cook rice	09:51	Bianca	rice cooker 3	poor
Sushi 239	roll and slice	09:51	Charlie	knife 1	good
Sushi 113	peel avocado	09:53	Andreas	knife 2	poor
Sushi 239	add soy sauce	09:54	Bianca		good
Sushi 239	add soy sauce	09:55	Bianca		poor
Sushi 239	eat	09:57	Andreas		-

For an event e = (c, a, t), we define the projections $\#_{case}(e) = c$, $\#_{activity}(e) = a$, and $\#_{time}(e) = t$.

An event log *L* is a multiset of events.

Event Logs Formally

A case C, identified by c in the log, is the set of events $C = \{e \in L \mid \#_{case}(e) = c\}$

case id	activity	timestamp	resource 1	resource 2	execution quality
Sushi 113	get ingredients	09:31	Andreas	bag	good
Sushi 239	slice salmon	09:35	Bianca	knife 1	medium
Sushi 239	spread on nori sheet	09:42	Bianca		very good
Sushi 248	eat	09:43	Charlie		-
Sushi 249	get ingredients	09:47	Andreas	bag	good
Sushi 113	cook rice	09:51	Bianca	rice cooker 3	poor
Sushi 239	roll and slice	09:51	Charlie	knife 1	good
Sushi 113	peel avocado	09:53	Andreas	knife 2	poor
Sushi 239	add soy sauce	09:54	Bianca		good
Sushi 239	add soy sauce	09:55	Bianca		poor
Sushi 239	eat	09:57	Andreas		-

A **trace**
$$\sigma_c$$
 is the sequence of activities for a case $C = \{e_1, \dots, e_n\}$ with
 $\sigma_c = \#_{activity}(e_{\pi(1)}), \dots, \#_{activity}(e_{\pi(n)})$
such that $\#_{timestamp}(e_{\pi(i)}) < \#_{timestamp}(e_{\pi(j)})$ for $\pi(i) < \pi(j)$.

Integration into the Data Mining World

Sequences (e.g. sequential pattern mining)

get ingredients

- \rightarrow prepare ingredients
- \rightarrow spread on nori sheet
- \rightarrow roll and slice
- \rightarrow season with wasabi
- \rightarrow season with soy sauce

total order

 $\rightarrow eat$

- unordered •
- set-based ٠

- partially ordered ٠
- sequences can occur, models are directed graphs
- branches break order ٠ (concurrency)

- strictly totally ordered ٠
- sequence-based

Process Mining Task: Discovery

- Given an event log, find a process model which
 - must be able to replay the $\log \Rightarrow Fitness$
 - simplifies as far as possible \Rightarrow *Simplicity*
 - does not overfit the log \Rightarrow *Generalization*
 - does not underfit the $\log \Rightarrow Precision$

case id	activity	timestamp
Sushi 113	get ingredients	09:31
Sushi 239	slice salmon	09:35
Sushi 239	spread on nori sheet	09:42
Sushi 248	eat	09:43
Sushi 249	get ingredients	09:47
Sushi 113	cook rice	09:51
Sushi 239	roll and slice	09:51
Sushi 113	peel avocado	09:53
Sushi 239	add soy sauce	09:54
Sushi 239	add soy sauce	09:55
Sushi 239	eat	09:57

Process Mining Task: Conformance Checking

• Given an event log and a process model, decide for each case whether it conforms to the model or not. If not, give the issues.

cook rice, add wasabi, roll and slice, eat

- A case instance can perform better than others. Then reveal the beneficial deviations to improve the general workflow.
- If the case performs worse, identify the root cause to avoid misbehavior.

Housebreaking

Process Mining Task: Enhancement

- Given a process model, augment with additional information.
 - Temporal information
 - Social networks
 - Organisational roles
 - Decision rules

Made with StyleGAN arXiv:1912.04958

- Mostly: Cases related to people. But what is in the data?
 - Students Who asks the most questions?
 - Employees Who is associated with long execution terms?
 - Tenants Who needs maintenance often?
 - Clients Who calls most for service?

neutral, objective, data-oriented

• Same results, but with intentional mindset:

- Students
- Employees
- Tenants
- Clients

Who is the least intelligent student?

- Who is the slowest worker?
 - Who caused the most repairs?
- Who complains the most?

Made with StyleGAN arXiv:1912.04958

- And the other extreme, changed mindset:
 - Students
 - Employees
 - Tenants
 - Clients

- Who is the most interested student?
- Who handles the most difficult tasks?
 - Who takes care of the rental property?
 - Who gives a lot of constructive feedback?

good intention, positivesubjective, optimistic

Made with StyleGAN arXiv:1912.04958

- Be careful with interpretations.
- Even if you are objective, can your results be interpreted otherwise?
- Can you obscure the results so they stay meaningful, but protect individuals? e.g. Cluster individuals, top-k-rankings, k-anonymity, hashing, noise addition,...

Scientific Process Mining Tools

- PROM:
 - First version in 2010.
 - Java-based.
 - Provides many algorithms in a GUI.

- pm4py:
 - First version in 2019
 - Python-based
 - Documentation: <u>https://pm4py.fit.fraunhofer.de/</u>
 - Several algorithms available

Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods

5. Process Mining

5.1 Introduction

5.2 Process Models – An Overview

- 5.3 Process Discovery
- 5.4 Conformance Checking
- 5.5 Additional Mining Tasks

Motivation

Why do we need Process Models?

- Predetermine operational processes in the form of guidelines
 - Descriptive vs. Normative model
- Visualization of processes
- Process reasoning
- Analysis of given processes
 - Starting point for initial implementation and re-design
 - Distribution of responsibilities
 - Planning and controlling
 - Compliance checking
 - Performance prediction via simulation

• ...

Process Model – BPMN (Business Process Modeling Notation)

Remember?

Process Model – BPMN (Business Process Modeling Notation)

Exemplary subset of elements contained in BPMN

Process Model – Transition System

Definition (Transition system)

roll and slice

add soy sauce

Triplet T = (S, A, T), where S is the set of *states* $A \subseteq \mathcal{A}$ is the set of *activities* $T \subseteq S \times A \times S$ is the set of *transitions* $S^{start} \subseteq S$ is the set of *inital states* $S^{end} \subseteq S$ is the set of *final states*

Process Model – Petri Nets

Process Model – Petri Nets

As already seen the Petri net is a bipartite graph.

Definition (Petri Net)

Triplet N = (P, T, F), where *P* is a finite set of *places T* is a finite set of *transitions*, $P \cap T = \emptyset$ $F \subseteq (T \times P) \cup (P \times T)$ is a set of *directed arcs* (called *flow relation*)

Exemplary formalization of given Petri Net:

- $P = \{p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}, p_{11}, end\}$
- T = {cook rice, season rice, peel avocado, slice avocado, slice salmon, spread on nori sheet, roll and slice, add wasabi, add soy sauce, eat}

 $F = \{(p_1, cook rice), (p_2, peel avocado), (p3, slice salmon), (cook rice, p4), (peel avocado, p5), ...\}$

Process Models – Workflow-Nets (WF-Nets)

Subclass of Petri Nets

Definition (Workflow Net)

N = (P, T, F), where
(P, T, F) is a Petri net as already defined
N is a *workflow net* iff.
a) P contains a source place i s. t. • i = Ø
b) P contains a sink place o s. t. o •= Ø
c) If we add a transition t* to N which connects o with i
i. e. •t*= {o} and t*• = {i}, then
the resulting Petri net is strongly connected.

Definition (Strongly connected)

A Petri net is strongly connected iff for every pair of nodes (i.e. places and transitions) *x* and *y*, there is a path leading from *x* to *y*

Can the Petri Net shown be considered a Workflow Net?

Process Models – Workflow-Nets (WF-Nets)

Process Models – Additional Criterion (Soundness)

A WF-net does not necessarily represent a correct process

→ Deadlocks, livelocks, not activatable activities etc. are possible

Definition (Soundness)

Let N = (P, T, F) be a *workflow net* with *i* and *o* as input and output places.

N is *sound* iff.

- *(safeness)* Places do not hold multiple tokens at the same time
- *(proper completion)* The moment the procedure terminates there is a token in place *o* and all the other places are empty
- *(option to complete)* For any case the procedure will terminate eventually
- *(absence of dead parts)* For any *t* ∈ *T* there is a firing sequence enabling t

Process Models – Methods (Verification)

Verification is a method to analyze process models against specific properties (*Model checking*).

- Those properties can be expressed in temporal logic.
- Specifically in LTL (Linear Temporal Logic) which is an significant example in relation to process models.

Two further exemplary verification tasks in the following:

- 1. Two process models can be checked against each other using *Verification*.
- E.g. Trying to match a descriptive and a normative model to see where reality differs from guidelines

Process Models – Methods (Verification)

Process Models – Roundup

Known process model types so far:

• Transitions systems

- BPMN
- Petri Nets
- Workflow Nets

There are still others like

- Reachability graphs
- Causal nets
- •

...

Benefit:

- Process analysis gets simplified
- Predict performance via simulation
- Predetermine guidelines
- Purpose determines outcome
- ...

Process Models – Discussion

Creating a model is not an easy task

- Capturing human behavior
 - Human covers multiple processes with different priorities → dependencies evolve
 → Difficult to model one process in isolation
 - Productivity of a human is varying over time. It also depends on other factors e.g. Yerkes-Dodson law

Process Models – Discussion (cont.)

- Idealization of reality
 - Hand-made models tend to be
 - subjective
 - oversimplified

The choice of a representative sample of cases is crucial
 → Biased focus on *normal / desirable* behavior

Actually it only covers 80% of cases but is seen as a representative Remaining 20% could possibly cover high amount of problems

Process Models – Discussion (cont.)

• Granularity

E.g. there are many types of sushi: Nigiri, Sashimi, Maki, Uramaki...

E.g. discrete vs. continuous

- \Rightarrow A suitable granularity for the process model depends on
 - the input data
 - the model's purpose

References

Yerkes, R.M., & Dodson, J.D. (1908). The Relation of Strength of Stimulus to Rapidity of Habit Formation. *Journal of Comparative Neurology & Psychology, 18,* 459–482. <u>https://doi.org/10.1002/cne.920180503</u>

Wil van der Aalst. 2016. *Process Mining: Data Science in Action* (2nd. ed.). Springer Publishing Company, Incorporated

Wil van der Aalst. (1998). <u>"The application of Petri nets to workflow management"</u> (PDF). Journal of Circuits, Systems and Computers. **8** (1): 21–66.

Agenda

1. Introduction

- 2. Basics
- 3. Supervised Methods
- 4. Unsupervised Methods

5. Process Mining

- 5.1 Introduction
- 5.2 Process Model/Transition Systems
- 5.3 Process Discovery
- 5.4 Conformance Checking
- 5.5 Additional Mining Tasks

Motivation

- Process models are generated eigther normative or descriptive
 - Normative: invented by human
 - represent how a certain process is supposed to work
 - **Descriptive**: created by process discovery algorithms based on log files

- represent how a certain process is actually running

Process Discovery Algorithm "α-Miner"^[1]

Idea: A simple algorithm to visualize processes

Input: Event log *L* over activities *A*

Output: marked petri net / Workflow net

- 1. Detect log-based ordering relations from event Log L
- 2. Create Footprint Table
- 3. Execute the algorithm of the α -Miner
- 4. Derive the WF-net

^[1] van der Aalst, W M P and Weijters, A J M M and Maruster, L (2004). "Workflow Mining: Discovering process models from event logs", *IEEE Transactions on Knowledge and Data Engineering*, vol 16

Let *L* be an event log over activities *A*, and let $a, b \in A$.

- 1. Detect log-based ordering relations from event Log L
 - i. "(direct) following"-relation $a >_L b$ $\Leftrightarrow \exists trace \ \sigma = \langle t_1, t_2, t_3, ..., t_{n-1} \rangle and \ i \in \{1, 2, ..., n-2\}$ s. t. $\sigma \in L$ and $t_i = a$ and $t_{i+1} = b$ and $t_{i+1} = b$.
 - ii. "potential parallelism" $a \parallel_L b$ $\Leftrightarrow a >_L b and b >_L a$
 - iii. "sequential task"-relation $a \rightarrow_L b$ $\Leftrightarrow a >_L b and b \gg_L a$

iv. "not followed"-relation $a \#_L b$ $\Leftrightarrow a \gg_L b and b \gg_L a$ $L = [\langle a, c, d \rangle^3, \langle a, d, c \rangle^2, \langle b, c, d \rangle^2, \langle b, d, c \rangle^4]$

2. Create Footprint Table:i) Find the directly followed tupels

 $>_L: \{(a,c), (a,d), (b,c), (b,d), (c,d), (d,c)\}$

Let L be an event log over activities A, and let $a, b \in A$.

- 1. Detect log-based ordering relations from event Log L
 - i. ,(direct) following"-relation $a >_L b$ $\Leftrightarrow \exists trace \ \sigma = \langle t_1, t_2, t_3, ..., t_{n-1} \rangle and \ i \in \{1, 2, ..., n-2\}$ s. t. $\sigma \in L$ and $t_i = a$ and $t_{i+1} = b$ and $t_{i+1} = b$.
 - ii. "potential parallelism" $a \parallel_L b$ $\Leftrightarrow a >_L b and b >_L a$
 - iii. ,, sequential task"-relation $a \rightarrow_L b$ $\Leftrightarrow a >_L b and b \gg_L a$

```
iv. "not followed"-relation a \#_L b

\Leftrightarrow a \ge_L b \text{ and } b \ge_L a
```

 $L = [\langle a, c, d \rangle^3, \langle a, d, c \rangle^2, \langle b, c, d \rangle^2, \langle b, d, c \rangle^4]$

2. Create Footprint Table:ii) Find the potential parallel tupels and mark them in the table

	а	b	С	d
а				
b				
С				$\ _L$
d			$\ _{L}$	

 $>_{L}: \{(a, c), (a, d), (b, c), (b, d), (c, d), (d, c)\}$ $\|_{L}: \{(c, d), (d, c)\}$

Let *L* be an event log over activities *A*, and let $a, b \in A$.

- 1. Detect log-based ordering relations from event Log L
 - i. "(direct) following"-relation $a >_L b$ $\Leftrightarrow \exists trace \ \sigma = \langle t_1, t_2, t_3, ..., t_{n-1} \rangle and \ i \in \{1, 2, ..., n-2\}$ s. t. $\sigma \in L$ and $t_i = a$ and $t_{i+1} = b$ and $t_{i+1} = b$.
 - ii. "potential parallelism" $a \parallel_L b$ $\Leftrightarrow a >_L b and b >_L a$
 - iii. "sequential task"-relation $a \rightarrow_L b$ $\Leftrightarrow a >_L b \text{ and } b \neq_L a$

iv. "not followed"-relation
$$a \#_L b$$

 $\Leftrightarrow a \gg_L b and b \gg_L a$

 $L = [\langle a, c, d \rangle^3, \langle a, d, c \rangle^2, \langle b, c, d \rangle^2, \langle b, d, c \rangle^4]$

2. Create Footprint Table:iii) Find the sequential task tupels and mark them in the table

	а	b	С	d
а			\rightarrow_L	\rightarrow_L
b			\rightarrow_L	\rightarrow_L
С				$\ _L$
d			$\ _L$	

 $>_{L}: \{(a, c), (a, d), (b, c), (b, d), (c, d), (d, c)\}$ $\parallel_{L}: \{(c, d), (d, c)\}$ $\rightarrow_{L}: \{(a, c), (a, d), (b, c), (b, d)\}$

Let *L* be an event log over activities *A*, and let $a, b \in A$.

- 1. Detect log-based ordering relations from event Log L
 - i. "(direct) following"-relation $a >_L b$ $\Leftrightarrow \exists trace \ \sigma = \langle t_1, t_2, t_3, ..., t_{n-1} \rangle and \ i \in \{1, 2, ..., n-2\}$ s. t. $\sigma \in L$ and $t_i = a$ and $t_{i+1} = b$ and $t_{i+1} = b$.
 - ii. "potential parallelism" $a \parallel_L b$ $\Leftrightarrow a >_L b and b >_L a$
 - iii. , sequential task"-relation $a \rightarrow_L b$ $\Leftrightarrow a >_L b and b \gg_L a$
 - iv. "not followed"-relation $a \#_L b$ $\Leftrightarrow a \gg_L b \text{ and } b \gg_L a$

 $L = [\langle a, c, d \rangle^3, \langle a, d, c \rangle^2, \langle b, c, d \rangle^2, \langle b, d, c \rangle^4]$

2. Create Footprint Table:iv) Find the not followed tupels and mark them in the table

	а	b	С	d
а	$\#_L$	# _L	\rightarrow_L	\rightarrow_L
b	$\#_L$	$\#_L$	\rightarrow_L	\rightarrow_L
С			$\#_L$	$\ _L$
d			$\ _L$	# _L

 $>_{L}: \{(a, c), (a, d), (b, c), (b, d), (c, d), (d, c)\}$ $\parallel_{L}: \{(c, d), (d, c)\}$ $\rightarrow_{L}: \{(a, c), (a, d), (b, c), (b, d)\}$ $\#_{L}: \{(a, a), (a, b), (b, a), (b, b), (c, c), (d, d)\}$

Let *L* be an event log over activities *A*, and let $a, b \in A$.

- 1. Detect log-based ordering relations from event Log L
 - i. "(direct) following"-relation $a >_L b$ $\Leftrightarrow \exists trace \ \sigma = \langle t_1, t_2, t_3, ..., t_{n-1} \rangle and \ i \in \{1, 2, ..., n-2\}$ s. t. $\sigma \in L$ and $t_i = a$ and $t_{i+1} = b$ and $t_{i+1} = b$.
 - ii. "potential parallelism" $a \parallel_L b$ $\Leftrightarrow a >_L b and b >_L a$
 - iii. ,, sequential task"-relation $a \rightarrow_L b$ $\Leftrightarrow a >_L b and b \gg_L a$
 - iv. "not followed"-relation $a #_L b$ $\Leftrightarrow a \ge_L b \text{ and } b \ge_L a$

 $L = [\langle a, c, d \rangle^3, \langle a, d, c \rangle^2, \langle b, c, d \rangle^2, \langle b, d, c \rangle^4]$

2. Create Footprint Table: (v) The remaining tupels represent a "directly before" relation, marked as \leftarrow_L and mark them in the table

	а	b	С	d
а	$\#_L$	$\#_L$	\rightarrow_L	\rightarrow_L
b	$\#_L$	$\#_L$	\rightarrow_L	\rightarrow_L
С	\leftarrow_L	\leftarrow_L	$\#_L$	$\ _L$
d	\leftarrow_L	\leftarrow_L	$\ _L$	$\#_L$

 $>_{L}: \{(a, c), (a, d), (b, c), (b, d), (c, d), (d, c)\}$ $\parallel_{L}: \{(c, d), (d, c)\}$ $\rightarrow_{L}: \{(a, c), (a, d), (b, c), (b, d)\}$ $\#_{L}: \{(a, a), (a, b), (b, a), (b, b), (c, c), (d, d)\}$

3. Execute the algorithm of the α -Miner

i) All activities that start any trace yield the set of starting activities, collected in T_{in}.

ii) All activities that end any trace yield the set of output activities, T_{out}.

•••

- 4. Derive the WF-net:
- The set of **transitions** is equal to *A*, so each activity represents a transition
- A starting place is created and connected to each node in T_{in} .
- Also, a final place is created and each node in T_{out} is connected to

 $L = [\langle a, c, d \rangle^3, \langle a, d, c \rangle^2, \langle b, c, d \rangle^2, \langle b, d, c \rangle^4]$

$$T_{in}=\{a,b\}$$

 $T_{out} = \{c, d\}$

it.

3. Execute the algorithm of the α -Miner ...

iii) Determine all pairs of sets A and B, such that

- $\forall a_1, a_2 \in A: a_1 # a_2$
- $\forall b_1, b_2 \in B: b_1 \# b_2$
- $\forall a_1 \in A, \forall b_1 \in B: a_1 \rightarrow b_1$
- Select only the "maximal pairs":
 e.g. ({a}, {c}), ({a}, {d}), ({a}, {c, d}) ⇒ ({a}, {c, d})
- 4. A place is added in between A and B and connected accordingly $\begin{bmatrix} A \\ B \end{bmatrix}$

 $e.gA = \{a\}, B = \{b, e\}$

a e

Heuristics-Miner is our first algorithm to capture concurrent process behavior.

valid set of "maximal pairs":

 $(\{a\},\{c,d\}),(\{b\},\{c,d\})$

Process Discovery Algorithm "Heuristics-Miner"^[2]

Idea: α -Miner has several flaws (1-loops, 2-loops, no weighting).

Heuristics-Miner uses dependency as the condition to connect activities.

Input: Event log *L*

Output: Causal net, here we stop at the dependency graph

^[2] Weijters, A. J. M. M., Wil MP van Der Aalst, and AK Alves De Medeiros. "Process mining with the heuristics miner-algorithm." *Technische Universiteit Eindhoven, Tech. Rep. WP* 166 (2006): 1-34.

Let *L* be an event log over activities *A*, and let $a, b \in A$.

- 1. Create table displaying frequency of "directly follows" relation $>_L$
- $$\begin{split} L &= [\langle a, e \rangle^5, \langle a, b, c, e \rangle^{10}, \langle a, c, b, e \rangle^{10}, \\ \langle a, b, e \rangle^{10}, \langle a, d, d, e \rangle^2, \langle a, d, d, d, e \rangle^1] \end{split}$$

$>_L$	а	b	С	d	е
а	0	11	11	13	5
b	0	0	10	0	11
С	0	10	0	0	11
d	0	0	0	4	13
е	0	0	0	0	0

2. Create a table showing the value of "dependency measures" of all pairs of activities over *L*

$$|a \Rightarrow_L b| = \begin{cases} \frac{|a >_L b| - |b >_L a|}{|a >_L b| + |b >_L a| + 1} & \text{, if } a \neq b \\ \frac{|a > a|}{|a > a| + 1} & \text{, if } a = b \end{cases}$$

$$\begin{aligned} |a \Rightarrow_L b| \in] - 1,1[\\ |a \Rightarrow_L b| = 0 \quad , \text{ if } |a >_L b| = |b >_L a| \\ |a \Rightarrow_L b| \to 1 \quad , \text{ if a follows almost always after b} \end{aligned}$$

$ \Rightarrow_L $	а	b	С	d	е
а					
b					
С					
d					
е					

2. Create a table showing the value of "dependency measures" of all pairs of activities over *L*

$$|a \Rightarrow_L b| = \begin{cases} \frac{|a >_L b| - |b >_L a|}{|a >_L b| + |b >_L a| + 1} & \text{, if } a \neq b \\ \frac{|a > a|}{|a > a| + 1} & \text{, if } a = b \end{cases}$$

$$\begin{aligned} |a \Rightarrow_L b| \in] - 1,1[\\ |a \Rightarrow_L b| = 0 \quad \text{, if } |a >_L b| = |b >_L a| \\ |a \Rightarrow_L b| \to 1 \quad \text{, if a follows almost always after b} \end{aligned}$$

Lower triangular matrix is the negative and transposed of the upper triangular matrix.

$ \Rightarrow_L $	а	b	С	d	е
а	0	0.92	0.92	0.93	0.83
b	-0.92	0	0	0	0.92
С	-0.92	0	0	0	0.92
d	-0.93	0	0	0.80	0.93
е	-0.83	-0.92	-0.92	-0.93	0

$$|a \Rightarrow_L b| = \frac{11 - 0}{11 + 0 + 1} = 0.92$$
$$|b \Rightarrow_L c| = \frac{10 - 10}{10 + 10 + 1} = 0$$

3. i) Select **two thresholds** to reduce noise $(\tau_{>_L})$ and infrequent traces (τ_{\Rightarrow_L}) ii) Create the dependency graph DG: an arc between x and y is only included if $|x <_L y| \ge \tau_{>_L} \land |x \Rightarrow_L y| \ge \tau_{\Rightarrow_L}$

Ex. 1:

Setting $\tau_{>_L} = 2$ and $\tau_{\Rightarrow_L} = 0.7$ yields to the following dependency graph:

$ \Rightarrow_L $	а	b	С	d	е
а	0	0.92	0.92	0.93	0.83
b	- 0.92 0	0	0	0	0.92
С	-0.92 0	0	0	0	0.92
d	-0.93 0	0	0	0.80	0.93
е	-0.83 0	-0.92 0	-0.92 0	-0.93 0	0

3. i) Select **two thresholds** to reduce noise $(\tau_{>_L})$ and infrequent traces (τ_{\Rightarrow_L}) ii) Create the dependency graph DG: an arc between x and y is only included if $|x <_L y| \ge \tau_{>_L} \land |x \Rightarrow_L y| \ge \tau_{\Rightarrow_L}$

Ex. 2:

Setting $\tau_{>_L} = 5$ and $\tau_{\Rightarrow_L} = 0.9$ yields to the following dependency graph:

$ \Rightarrow_L $	а	b	С	d	е
а	0	0.92	0.92	0.93	0.83 0
b	-0.92 0	0	0	0	0.92
С	-0.92 0	0	0	0	0.92
d	-0.93 0	0	0	0.80 0	0.93
е	-0.83 0	-0.92 0	-0.92 0	-0.93 0	0

4. Last step – not in this lecture:
 dependency graph → causal net

Process Discovery Algorithm – Some Others

• "Inductive-Miner (IM)" ^[3]:

It uses the directly-follows graph that corresponds to the "direct follows" relation ($>_L$) used by the α -Miner and creates a Process Tree Q.

• "Declare" ^[4]:

It is a constrained based declarative approach.

Imperative vs. Declarative approaches

[3] S.J.J. Leemans, D. Fahland, andW.M.P. van der Aalst. Discovering Block-structured Process Models from Event Logs: A Constructive Approach. In J.M. Colom and J. Desel, editors, *Applications and Theory of Petri Nets 2013*, volume 7927 of *Lecture Notes in Computer Science*, pages 311–329. Springer, Berlin, 2013.
 [4] Pesic, Maja, Helen Schonenberg, and Wil MP Van der Aalst. "Declare: Full support for loosely-structured processes." *11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007)*. IEEE, 2007.

Agenda

1. Introduction

- 2. Basics
- 3. Supervised Methods
- 4. Unsupervised Methods

5. Process Mining

- 5.1 Introduction
- 5.2 Process Model/Transition Systems
- 5.3 Process Discovery
- 5.4 Conformance Checking
- 5.5 Additional Mining Tasks

Motivation

• Given an event log and a process model, decide for each case wether it conforms to the model or not. If not, give the issues.

Goal: Fraud detection

• Alteration of medical treatment, usually for higher compensations ("upcoding"). Cheap medication billed as costly medication. Medication is non-conform to the treatment plan, e.g. flu vaccination after broken leg.

 Duplicate execution of actions. Billing twice for same service or good

		Key Figures	⇒ SalesOdrAmt_D
Sales Organization	Sales Order	Billing Document	\$
Dom. Sales Org US	388	90000324	78 EUR
		90000339	78 EUR
	389	#	19 EUR
	390	90000336	233 EUR

 Embezzlement, theft or misuse of company assets. Usage of company truck at suspicious times for private actions (evenings, vacation,...), or faked payments using complex and unusual cashflows.

Goal: Workflow improvements

• Root-cause detection

Quality check failed for some products. Search for shared historic activities (e.g. same supplier, preprocessed by same employee or machine, similar environmental conditions).

- Standardization of deviations Customers are processed faster at a certain counter. How has the employee deviated the process? E.g. Families with children board first at the airport.
- Customer aggregation Some customers look for furniture in a popular shop. The order of furniture presentation influences their habbits. Where to offer the small items like tealights? Which customer types map to which market traversal paths?

Automata Theory: Decide Language Membership

- Idea:
 - Put a token into the start position.
 - For each event, fire the transition with the same label in the Petri net.
 - If the Petri net accepts the sequence, the trace passed the conformance checking.
 - Otherwise, a rejected trace has zero fitness.

[1] A.K. Alves de Medeiros, W.M.P. van der Aalst, and A.J.M.M.Weijters. Quantifying Process Equivalence Based on Observed Behavior. Data and Knowledge Engineering, 64(1):55–74, 2008.

Checking:<Avocado, Rice, Salmon, Nori, Eat>(p)roduced :0(c)onsumed :0

Checking:<Avocado, Rice, Salmon, Nori, Eat>(p)roduced :1(c)onsumed :0

Checking:<<u>Avocado</u>, Rice, Salmon, Nori, Eat>(p)roduced :4(c)onsumed :

Checking:<<u>Avocado</u>, <u>Rice</u>, Salmon, Nori, Eat>(p)roduced :5(c)onsumed :2

Checking:<Avocado, Rice, Salmon, Nori, Eat>(p)roduced :6(c)onsumed :3

Checking:<Avocado, Rice, Salmon, Nori, Eat>(p)roduced :7(c)onsumed :4

Checking: <Avocado, Rice, Salmon, Nori, <u>Eat</u>>

(p)roduced : 8 (c)onsumed : 7

Checking:<Avocado, Rice, Salmon, Nori, Eat>(p)roduced :9(c)onsumed :8
Petri Net Membership Test

Checking:<Avocado, Rice, Salmon, Nori, Eat>(p)roduced :9(c)onsumed :9

Petri Net Membership Test

The fitness of a case with trace σ on WF-net *M* is defined as:

$$fitness(\sigma, M) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right)$$

Considering the example:

Checking: $\sigma = <$ Avocado, Rice, Salmon, Nori, Eat>

(p)roduced : 9 (c)onsumed : 9

$$fitness(\sigma, M) = \frac{1}{2} \left(1 - \frac{0}{9} \right) + \frac{1}{2} \left(1 - \frac{0}{9} \right) = 1$$

Token Replay¹

- Problem with pure Automata approach:
 - We cannot decide between almost fit and critically deviating traces (binary classifier).
 - In practical applications we often need some flexibility to execute the processes.
- Modified Idea:
 - Put a token into the start position.
 - For each event, try to fire the corresponding transition in the net.
 - If not possible, create a virtual new token after the transition.
 - In the end, determine the fitness based on the tokens left in the model and the virtually added ones.

[1] A.K. Alves de Medeiros, W.M.P. van der Aalst, and A.J.M.M.Weijters. Quantifying Process Equivalence Based on Observed Behavior. Data and Knowledge Engineering, 64(1):55–74, 2008.

- Checking: <Rice, Salmon, Wasabi>
- (p)roduced : 1 (c)onsumed : 0
- (m)issing: 0 (r)emaining: 0

- Checking: <Rice, Salmon, Wasabi>
- (p)roduced : 4 (c)onsumed : 1
- (m)issing: 0 (r)emaining: 0

- Checking: <Rice, Salmon, Wasabi>
- (p)roduced : 5 (c)onsumed : 2
- (m)issing: 0 (r)emaining: 0

- Checking: <Rice, Salmon, Wasabi>
- (p)roduced : 6 (c)onsumed : 3
- (m)issing: 0 (r)emaining: 0

- Checking: <Rice, Salmon, Wasabi>
- (p)roduced : 7 (c)onsumed : 4
- (m)issing: 1 (r)emaining: 0

- Checking: <Rice, Salmon, Wasabi>
- (p)roduced : 7 (c)onsumed : 4
- (m)issing: 1 (r)emaining: 4

The fitness of a case with trace σ on WF-net *M* is defined as:

$$fitness(\sigma, M) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right)$$

Considering the example:

- Checking: $\sigma = \langle \text{Rice}, \text{Salmon}, \text{Wasabi} \rangle$
- (p)roduced : 7 (c)onsumed : 4

(m)issing: 1 (r)emaining: 4

$$fitness(\sigma, M) = \frac{1}{2} \left(1 - \frac{1}{4} \right) + \frac{1}{2} \left(1 - \frac{4}{7} \right) = 0,375$$

Token Replay: Discussion

- Allows a continuous fitness score in the interval [0,1].
- Intuitive and easy to implement.
- For critical deviating behavior, model gets flooded with tokens. Earlier deviations mask later deviations.
 - \rightarrow all behavior afterwards gets accepted, fitness values too low
- Depending on a Petri net representation of the process.

Alignments²

- To overcome drawbacks of Token Replay, it might be better to map observed behavior on modelled behavior.
- Idea:
 - Consider all mappings between a model and a trace.
 - Simulate moves in the model and in the trace.
 - Optimize for most synchronuous moves (fire transition *a* and read *a* in the trace in parallel).
 - Finally, compare the optimal alignment with the worst alignment possible to determine the fitness.

moves	in	the	log

moves in the model

а	b	С	d	>>	g	h
а	b	С	d	f	>>	h

>> is an asynchronous move

[2] W.M.P. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying History on Process Models for Conformance Checking and Performance Analysis. WIREs Data Mining and Knowledge Discovery, 2(2):182–192, 2012.

5. Process Mining

• Worst possible alignment for <Rice, Salmon, Wasabi>:

Rice	Salmon	Eat	>>	>>	>>	>>	>>
>>	>>	>>	Rice	Avocado	Salmon	Nori sheet	Eat

• Optimal alignment for <Rice, Salmon, Salmon, Wasabi>:

Rice	>>	Salmon	Salmon	Wasabi	>>
Rice	Avocado	Salmon	>>	Wasabi	Eat

• Optimal alignment for <Rice, Salmon, Salmon, Wasabi>:

Rice	>>	Salmon	Salmon	Wasabi	>>
Rice	Avocado	Salmon	>>	Wasabi	Eat

• Optimal alignments do not require to be unique:

Rice	>>	Salmon	Salmon	Wasabi	>>
Rice	Avocado	>>	Salmon	Wasabi	Eat

>>	Rice	Salmon	Salmon	Wasabi	>>
Avocado	Rice	>>	Salmon	Wasabi	Eat

Rice	Salmon	>>	Salmon	Wasabi	>>
Rice	Salmon	Avocado	>>	Wasabi	Eat

>>	Rice	Salmon	Salmon	Wasabi	>>
Avocado	Rice	Salmon	>>	Wasabi	Eat

• However, the distance between log and model equal for all optimal alignments.

• Optimal alignment for <Rice, Salmon, Salmon, Wasabi>:

$$\lambda_{opt}^{M}(\sigma) = \begin{array}{|c|c|c|} \hline \text{Rice} & >> & \text{Salmon} & \text{Salmon} & \text{Wasabi} & >> \\ \hline \text{Rice} & \text{Avocado} & \text{Salmon} & >> & \text{Wasabi} & \text{Eat} \end{array}$$

$$\delta\left(\lambda_{opt}^{M}(\sigma)\right) = 3$$

• Worst alignment:

λ^{M}_{m}	Rice	Salmon	Eat	>>	>>	>>	>>	>>
$\Lambda_{worst}(0) =$	>>	>>	>>	Rice	Avocado	Salmon	Nori sheet	Eat

 $\delta\left(\lambda_{worst}^{M}(\sigma)\right) = 8$

• The fitness is defined as

$$fitness(\sigma, M) = 1 - \frac{\delta\left(\lambda_{opt}^{M}(\sigma)\right)}{\delta\left(\lambda_{worst}^{M}(\sigma)\right)} = 0.625$$

Alignments Discussion

- Alignments easier to understand: Instead of tokens in Petri-nets, we talk about skipped and inserted events.
- Higher accuracy, since Token Replay suffers from token flooding.
- Fitness values for Alignments tends to be to low, while Token Replay often yields higher values.
- More flexibility due to modifications of the costs δ . E.g. activity "avocado" might be cheaper to drop than dropping the activity "rice".
- Not depending on Petri-nets only.
- However, very computational expensive.

Applications for Conformance Scores

- We only talked about conformance checking for fraud detection and workflow diagnostics.
- Fitness values determined by conformance checking provide us with a definition of distance between model and trace.
- The unstructured trace space, which is not a native vector space, becomes semi-metric.
 - The distance is not defined between traces, but uses models as reference points.
 - As the distance is not computed directly, but depends on a secondary structure, it is called geodetic.

- Using this distance, clustering and outlier detection become possible:
 - Richter, F., Wahl, F., Sydorova, A., & Seidl, T. LWDA (2019). k-process: Model-Conformance-based Clustering of Process Instances.
 - Richter, F., Zellner, L., Sontheim, J., & Seidl, T. (2019, October). Model-Aware Clustering of Non-conforming Traces. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 193-200). Springer, Cham.
- We can also lift this approach to a log-to-log level, defining distances between two process logs for clustering and outlier detection (k-means, DBSCAN,...):
 - Richter, F., Zellner, L., Azaiz, I., Winkel, D., & Seidl, T. (2019, September). LIProMa: Label-Independent Process Matching. In International Conference on Business Process Management (pp. 186-198). Springer, Cham.

Temporal Conformance Checking

- Until now: Does the order of events conform to a given model? Often it is interesting if events are also executed at the "right" time.
- Even for conform traces, an activity can be executed too early or too late.
- In the following, the execution order was correct and according to model, there is no problem:

 $cook rice \xrightarrow{6h13m12s} prepare avocado \xrightarrow{0h2m43s} salmon \xrightarrow{0h4m7s} Combine and roll Nori sheet$ The last event failed due to dry and hard rice.

- Recent research on this at DBS:
 - Richter, Florian, and Thomas Seidl. "TESSERACT: time-drifts in event streams using series of evolving rolling averages of completion times." International Conference on Business Process Management. Springer, Cham, 2017.
 - Richter, Florian, and Thomas Seidl. "Looking into the TESSERACT: Time-drifts in event streams using series of evolving rolling averages of completion times." *Information Systems* 84 (2019): 265-282.
 - Sontheim, J., Richter, F., & Seidl, T. LWDA (2019). Temporal Deviations on Event Sequences.

Agenda

1. Introduction

- 2. Basics
- 3. Supervised Methods
- 4. Unsupervised Methods

5. Process Mining

- 5.1 Introduction
- 5.2 Process Model/Transition Systems
- 5.3 Process Discovery
- 5.4 Conformance Checking
- 5.5 Additional Mining Tasks

Perspectives - Motivational Example

Average daily outside temperature in °C

	Log 1	Log 2	RLE-based (Log 1)
Day 1	14.2	14.2	1*14.2
Day 2	14.4	14.4	4*14.4
Day 3	14.4	14.4	1*14.3
Day 4	14.4	-21.3	1*14.2
Day 5	14.4	14.4	0 20
Day 6	14.3	14.3	-10
Day 7	14.2	14.2	-20 -30 -20
		A. 7. 8. 7 (2 1 1)	

Detecting anomalous behavior in temperature data by changing perspectives

Log 1:

E.g. Mean and standard deviation can be computed \Rightarrow still *seems* normal

Log 2: Point anomaly is obvious

Log 3 (Saves entries of Log 1 in a Run-Length Encoding manner): Exposes entries of Log 1 as a possible collective anomaly

Motivation - Perspectives

- Analysis can be done by using different perspectives
- => Event logs provide much more information E.g.: Timestamps, resources, transactions, costs etc.
- Thus far: Control-flow perspective
- Moreover:
 - Time perspective
 - Case perspective
 - Organizational perspective

Motivation - Perspectives

Time perspective

- Focus on timing and frequency of events
- Goals: Discover bottlenecks, monitor utilization of resources, remaining time prediction

Case perspective

- Focus on case properties
- Properties can be case attributes, event attributes, a path taken, performance information
- Goals: Mining decisions (e.g. a specific path) based on the characteristics of the case shows which data is relevant and should be included in the model

Organizational perspective

- Focus on information about resources
- Resources can be people, systems, roles, departments
- Goals: Classify actors in terms of roles, show social network

Exemplarily introducing temporal mining now

Temporal Visualization – Dotted Chart Analysis

How to get a general overview: Dotted Chart Analysis

Legend mapping event colors to event descriptors

Time (absolute, relative or logical)

event

Additional Mining Tasks 5.5

Temporal Visualization – Dotted Chart Analysis

Time since case started sorted by duration of a case

Temporal Visualization – Dotted Chart Analysis

-4101		•	10. 100.	· · · · · · · · · · · · · · · · · · ·			····· 🐕	· •••••	
-4513		🕺		<u> </u>				è ≩å .	
4559		e e e e	· · · · · · · · · · · · · · · · · · ·		•				
-4834								•	
-5186				*442 *** co			- 👬	•	
-5002	•					alling a state	4	•••	•
5550								* * *	
-0008	4	P •				· · · · · ·	÷.•		
-5547	•						• •		
-5355							•==	• • • • •	
-6385		••••	•		•				
e-6379			** ** (Caste c) {					•	
e-6848		v 🔤 🦲	·····				••••		
2-7134	•••••	-	••••	••••				•	
-7175	•			********					
-7556 -						••••			
-7986 -			S 9		•	• • • • • • •	•	•	
-8012						• 🖦 🦓			
0260	•			•		1 - Carlos			
		··· ·	* ** **					• • •	
-8728				•• ••		College and a state	• ••	•	
-8851	•		• • •					i	
-9143						· · · · ·			
-9176					•	• • •	• •		
-9749		ate to kate			•			• • •	
-9947		•	••••		•	·····			
10354		••••				• •		• •	
10492								• •	
10571					•		**		
11059		•		1 · · · · · ·	•	e •e 🚺	•		-
		~ •••	•••••	• • •				•• ••	
11b0m0.000c	23b0m0.000s 1.44	1b0m0.000s	1d23h0m0.000s 2d11h0m0.000s	242350m0 000s 341150m0 000s	3d23b0m0.000c	4d11b0m0.000s	4d23b0m0.000s 5d11b0m0) 000s 5d22b0mf	0.000s 6d11b0m0.000s

Time since week started. Indicates that only few events were executed by night and at weekends.

\rightarrow Most events on weekdays between 9am and 4pm

Temporal Mining

Presence of timestamps enables

- discovery of bottlenecks
 - Limitation of capacity of a specific resource
- monitoring of resource utilization
 - Which resources are occupied by which activity the most?
- prediction of remaining processing times of running cases
 - Based on computations made on discovered cases so far
- etc.

Token replay can be extended to replay event logs with timestamps included (*time-based replay*).

This can help to extract aforementioned information.

Temporal Mining – Time-based replay

Replay of first part of our sushi process for two cases starting at 3pm i.e. 5pm Timed replay for 2 cases showing durations at transitions and waiting times at places

Temporal Mining – Time-based replay

Replay of first part of our sushi process for two cases starting at 3pm i.e. 5pm Record collection of token visits → derive multi set of durations for each place

> Partial sushiing process seems to have a bottleneck at (cook rice, season rice)

Temporal Mining – Time-based replay

Possibility to

- Fit distribution ٠
- Compute statistics such as ۲

Timeline resembling a Gantt-Chart (excerpt of time-based replay)

slice salmon

15:00

Trace Clustering - Motivation

Our sushiing process already can be very complex depending on the granularity of visualization

Trace Clustering - Motivation

Assumption:

Process variants hidden within the event log

 \Rightarrow Cluster traces before discovering a model

 \Rightarrow Clustering approach also based on different perspectives

. . .

p₉

Example: Second part of our sushiing process

Trace Clustering - Example

- How to determine a similarity value between our data points (here: *cases*)?
- Clustering on points in vector space is well-known
- => Embedding of *cases* into vector space necessary → **Profiles**

Case ID	Roll and slice	Add wasabi	Add soy sauce	Prepare stir- fried rice	Eat
1	1	1	0	0	1
2	1	0	1	0	1
3	1	1	0	0	1
4	1	0	1	0	1
5	1	1	0	1	1

Add up the number of activity execution for each case

Trace Clustering - Example

 \Rightarrow E.g. cluster with agglomerative approach

Trace Clustering – Methods

Aforementioned profile is called Activity Profile (Activity Histogram)

- Defines one item (feature) per type of activity
- An activity item is measured by counting all events of a trace which have that activities name
- Of course, various other profiles possible as well

In General:

Profile: Set of items with measurements *Item*: Assigns numeric value to each trace

 \Rightarrow A Profile can be considered a function f which maps a trace t to a vector $(i_1, i_2, ..., i_n)$ with n items:

 $f(t) \to (i_1, i_2, \dots, i_n),$

✓ Embedding into vector space

⇒ Various clustering methods can be applied now

Trace Clustering – Methods

More examples:

Transition profile:

Items: Direct following relations in a trace

Measure: How often an event A has been followed by an event B

Goal: Measure behavior of traces (capturing the context) cf. **n-grams**

Performance profile:

Items: Size of a trace regarding timestamps: case duration, (min, max, mean) time difference between events etc.
Measure: Depends on predefined items e.g. size is measured by number of events
Goal: Measure performance of a trace (→ also part of Temporal Mining)
Additional Mining Tasks - Roundup

- Processes can be analyzed by using different perspectives
 - time
 - case perspective
 - organizational
- Get an overview by applying Dotted Chart Analysis

- Temporal Mining useful to
 - detect bottlenecks
 - monitor resource utilization
 - predict remaining processing time
- **Trace Clustering** helps to distinguish between process variants dependent on different perspectives (*profiles*)

Resources

- ProM Framework
- Wil van der Aalst. 2016. *Process Mining: Data Science in Action* (2nd. ed.). Springer Publishing Company, Incorporated
- Song, Minseok & Günther, Christian & Aalst, Wil. (2008). Trace Clustering in Process Mining. Lecture Notes in Business Information Processing. 17. 109-120. 10.1007/978-3-642-00328-8_11.
- R.P., Jagadeesh Chandra Bose & Aalst, Wil. (2009). Context Aware Trace Clustering: Towards Improving Process Mining Results. SDM. 10.1137/1.9781611972795.35.