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Simple Association Rules: Introduction

Example

Transaction database:

D = {{butter , bread ,milk, sugar},
{butter , flour ,milk, sugar},
{butter , eggs,milk, salt},
{eggs},
{butter , flour ,milk, salt, sugar}}

Frequent itemsets:
items support
{butter} 4
{milk} 4
{butter, milk} 4
{sugar} 3
{butter, sugar} 3
{milk, sugar} 3
{butter, milk, sugar} 3

Question of interest

I If milk and sugar are bought, will the customer always buy butter as well?
milk, sugar ⇒ butter?

I In this case, what would be the probability of buying butter?

4. Unsupervised Methods 4.3 Frequent Pattern Mining 163



Simple Association Rules: Basic Notions

Let Items, Itemset, Database, Transaction, Transaction Length, k-itemset, (relative)
Support, Frequent Itemset be defined as before. Additionally:

I The items in transactions and itemsets are sorted lexicographically: itemset
X = (x1, . . . , xk ), where x1 ≤, . . . ,≤ xk

I Association rule: An association rule is an implication of the form X ⇒ Y where
X ,Y ⊆ I are two itemsets with X ∩ Y = ∅

I Note: simply enumerating all possible association rules is not reasonable!

What are the interesting association rules w.r.t. D?
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Interestingness of Association Rules

Goal

Quantify the interestingness of an association rule with respect to a transaction
database D.

Support

I Frequency (probability) of the entire rule with respect to D:

supp(X ⇒ Y ) = P(X ∪ Y ) =
|{T ∈ D | X ∪ Y ⊆ T}|

|D|
= supp(X ∪ Y )

I ”Probability that a transaction in D contains the itemset.”
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Interestingness of Association Rules

Confidence

I Indicates the strength of implication in the rule:

conf (X ⇒ Y ) =
supp(X ∪ Y )

supp(X )

(∗)
=

P(X ∩ Y )

P(X )
= P(Y | X )

(*) Note that the support of the union of the items in X and Y , i.e. supp(X ∪Y )
can be interpreted by the joint probability P(X ∩ Y )

I P(Y | X ) = conditional probability that a transaction in D containing the itemset
X also contains itemset Y
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Interestingness of Association Rules

Rule form

”Body ⇒ Head [support, confidence]”

Association rule examples

I buys diapers ⇒ buys beer [0.5 %, 60%]

I major in CS ∧ takes DB ⇒ avg. grade A [1%, 75%]
buys
diapers

buys
beer

buys
both
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Mining of Association Rules

Task of mining association rules

Given a database D, determine all association rules having a supp ≥ minSup and a
conf ≥ minConf (so-called strong association rules).

Key steps of mining association rules

1. Find frequent itemsets, i.e., itemsets that have supp ≥ minSup (e.g. Apriori,
FP-growth)

2. Use the frequent itemsets to generate association rules
I For each itemset X and every nonempty subset Y ⊂ X generate rule Y ⇒ (X \ Y )

if minSup and minConf are fulfilled
I We have 2|X | − 2 many association rule candidates for each itemset X

4. Unsupervised Methods 4.3 Frequent Pattern Mining 168



Mining of Association Rules

Example

I Frequent itemsets:

1-itemset count 2-itemset count 3-itemset count
{ a } 3 { a,b } 3 { a,b,c } 2
{ b } 4 { a,c } 2
{ c } 5 { b,c } 4

I Rule candidates
I From 1-itemsets: None
I From 2-itemsets: a⇒ b; b ⇒ a; a⇒ c ; c ⇒ a; b ⇒ c ; c ⇒ b
I From 3-itemsets: a, b ⇒ c ; a, c ⇒ b; c , b ⇒ a; a⇒ b, c ; b ⇒ a, c ; c ⇒ a, b
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Generating Rules from Frequent Itemsets

Rule generation

I For each frequent itemset X :
I For each nonempty subset Y of X , form a rule Y ⇒ (X \ Y )
I Delete those rules that do not have minimum confidence

I Note:
I Support always exceeds minSup
I The support values of the frequent itemsets suffice to calculate the confidence

I Exploit anti-monotonicity for generating candidates for strong association rules!
I Y ⇒ Z not strong =⇒ for all A ⊆ D : Y ⇒ Z ∪ A not strong
I Y ⇒ Z not strong =⇒ for all Y ′ ⊆ Y : (Y \ Y ′)⇒ (Z ∪ Y ′) not strong
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Generating Rules from Frequent Itemsets

Example: minConf = 60%

conf (a⇒ b) = 3/3 = 1 3

conf (b ⇒ a) = 3/4 3

conf (a⇒ c) = 2/3 3

conf (c ⇒ a) = 2/5 7

conf (b ⇒ c) = 4/4 = 1 3

conf (c ⇒ b) = 4/5 3

conf (a, b ⇒ c) = 2/3 3

conf (a, c ⇒ b) = 2/2 = 1 3

conf (b, c ⇒ a) = 2/4 = .5 7

conf (a⇒ b, c) = 2/3 3

conf (b ⇒ a, c) = 2/4 7 (pruned wrt. b, c ⇒ a)
conf (c ⇒ a, b) = 2/5 7 (pruned wrt. b, c ⇒ a)

itemset count
{ a } 3
{ b } 4
{ c } 5

{ a,b } 3
{ a,c } 2
{ b,c } 4

{ a,b,c } 2
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Interestingness Measurements

Objective measures

Two popular measures:

I Support

I Confidence

Subjective measures [Silberschatz & Tuzhilin, KDD95]

A rule (pattern) is interesting if it is

I unexpected (surprising to the user) and/or

I actionable (the user can do something with it)
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Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

I Among 5000 students
I 3000 play basketball (=60%)
I 3750 eat cereal (=75%)
I 2000 both play basket ball and eat cereal (=40%)

I Rule ”play basketball ⇒ eat cereal [40%, 66.7%]” is misleading because the
overall percentage of students eating cereal is 75% which is higher than 66.7%

I Rule ”play basketball ⇒ not eat cereal [20%, 33.3%]” is far more accurate,
although with lower support and confidence

I Observation: ”play basketball” and ”eat cereal” are negatively correlated

Not all strong association rules are interesting and some can be misleading.

I Augment the support and confidence values with interestingness measures such as
the correlation: ”A ⇒ B [supp, conf , corr ]”
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Other Interestingness Measures: Correlation

Correlation

Correlation (sometimes called Lift) is a simple measure between two items A and B:

corrA,B =
P(A ∩ B)

P(A)P(B)
=

P(B | A)

P(B)
=

conf (A⇒ B)

supp(B)

I The two rules A⇒ B and B ⇒ A have the same correlation coefficient

I Takes both P(A) and P(B) in consideration

I corrA,B > 1: The two items A and B are positively correlated

I corrA,B = 1: There is no correlation between the two items A and B

I corrA,B < 1: The two items A and B are negatively correlated
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Other Interestingness Measures: Correlation

Example 2

T item
X Y Z

1 1 0
1 1 1
1 0 1
1 0 1
0 0 1
0 0 1
0 0 1
0 0 1

rule support confidence correlation
X ⇒ Y 25% 50% 2
X ⇒ Z 37.5% 75% 0.89
Y ⇒ Z 12.5% 50% 0.57

I X and Y : positively correlated

I X and Z : negatively related

I Support and confidence of X ⇒ Z dominates

I But: items X and Z are negatively correlated

I Items X and Y are positively correlated
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Hierarchical Association Rules: Motivation

Problem

I High minSup: apriori finds only few rules

I Low minSup: apriori finds unmanagably many rules

Solution

Exploit item taxonomies (generalizations, is-a hierarchies) which exist in many
applications

Example

clothes

outerwear

jackets jeans

shirts
shoes

sport shoes boots
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Hierarchical Association Rules

New Task

Find all generalized association rules between generalized items, i.e. Body and Head of
a rule may have items of any level of the hierarchy

Generalized Association Rule

X ⇒ Y with X ,Y ⊂ I ,X ∩ Y = ∅ and no item in Y is an ancestor of any item in X

Example

I Jeans ⇒ Boots; supp < minSup

I Jackets ⇒ Boots; supp < minSup

I Outerwear ⇒ Boots; supp > minSup

4. Unsupervised Methods 4.3 Frequent Pattern Mining 177



Hierarchical Association Rules: Characteristics

Y

Xi
. . .X1

. . . Xk

Characteristics

Let Y =
k⊎

i=1
Xi be a generalisation.

I For all 1 ≤ i ≤ k it holds supp(Y ⇒ Z ) ≥ supp(Xi ⇒ Z )

I In general, supp(Y ⇒ Z ) =
k∑

i=1
supp(Xi ⇒ Z ) does not hold (a transaction might

contain elements from multiple low-level concepts, e.g. boots and sport shoes).
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Mining Multi-Level Associations

Top-Down, Progressive-Deepening Approach

1. First find high-level strong rules, e.g. milk ⇒
bread [20%, 60%]

2. Then find their lower-level ”weaker” rules, e.g.
low-fat milk ⇒ wheat bread [6%, 50%].

Support Threshold Variants

Different minSup threshold across multi-levels lead
to different algorithms:

I adopting the same minSup across multi-levels

I adopting reduced minSup at lower levels

food

milk bread

. . .1.5% 3.5%

. . . . . .
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Minimum Support for Multiple Levels

Uniform Support

I Search procedure is simplified
(monotonicity)

I User only specifies one
threshold

milk
supp=10%

1.5%
supp=6%

3.5%
supp=4%

minSup=5%

minSup=5%

Reduced Support (Variable Support)

I Takes into account lower
frequency of items in lower
levels

milk
supp=10%

1.5%
supp=6%

3.5%
supp=4%

minSup=3%

minSup=5%
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Multilevel Association Mining using Reduced Support

Level-by-level independent method

Examine each node in the hierarchy, regardless of the frequency of its parent node.

Level-cross-filtering by single item

Examine a node only if its parent node at the preceding level is frequent.

Level-cross-filtering by k-itemset

Examine a k-itemset at a given level only if its parent k-itemset at the preceding level
is frequent.
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Multi-level Association: Redundancy Filtering

Some rules may be redundant due to ”ancestor” relationships between items.

Example

I R1: milk ⇒ wheat bread [8%, 70%]

I R2: 1.5% milk ⇒ wheat bread [2%, 72%]

We say that rule 1 is an ancestor of rule 2.

Redundancy

A rule is redundant if its support is close to the ”expected” value, based on the rule’s
ancestor.

¸
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Interestingness of Hierarchical Association Rules: Notions

Let X ,X ′,Y ,Y ′ ⊆ I be itemsets.

I X ′ is ancestor of X iff there exists ancestors x ′1, . . . , x
′
k of x1, . . . , xk ∈ X and

xk+1, . . . , xn with n = |X | such that X ′ = {x ′1, . . . , x ′k , xk+1, . . . , xn}
I Let X ′ and Y ′ be ancestors of X and Y . Then we call the rules X ′ ⇒ Y ′,

X ⇒ Y ′, and X ′ ⇒ Y ancestors of the rule X ⇒ Y .
I The rule X ′ ⇒ Y ′ is a direct ancestor of rule X ⇒ Y in a set of rules if:

1. Rule X ′ ⇒ Y ′ is an ancestor of rule X ⇒ Y , and
2. There is no rule X ′′ ⇒ Y ′′ being ancestor of X ⇒ Y and X ′ ⇒ Y ′ is an ancestor of

X ′′ ⇒ Y ′′
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R-Interestingness

R-Interestingness

A hierarchical association rule X ⇒ Y is called R-interesting if:

I There are no direct ancestors of X ⇒ Y or

I The actual support is larger than R times the expected support or

I The actual confidence is larger than R times the expected confidence

Example in tutorial
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R-Interestingness: Expected Support

Given the rule for X ⇒ Y and its ancestor rule X ′ ⇒ Y ′ the expected support of
X ⇒ Y is defined as:

EZ ′ [P(Z )] = P(Z ′) ·
j∏

i=1

P(yi )

P(yi )′

where Z = X ∪ Y = {z1, . . . , zn}, Z ′ = X ′ ∪ Y ′ = {z ′1, . . . , z ′j , zj+1, . . . , zn} and each
z ′i ∈ Z ′ is an ancestor of zi ∈ Z .

R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.
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R-Interestingness: Expected Confidence

Given the rule for X ⇒ Y and its ancestor rule X ′ ⇒ Y ′, then the expected confidence
of X ⇒ Y is defined as:

EX ′⇒Y ′ [P(Y |X )] = P(Y ′ | X ′) ·
j∏

i=1

P(yi )

P(yi )′

where Y = {y1, . . . , yn} and Y ′ = {y ′1, . . . , y ′j , yj+1, . . . , yn} and each y ′i ∈ Y ′ is an
ancestor of yi ∈ Y .

R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.
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Summary Frequent Itemset & Association Rule Mining

I Frequent Itemsets
I Mining: Apriori algorithm, hash trees, FP-tree
I support, confidence

I Simple Association Rules
I Mining: (Apriori)
I Interestingness measures: support, confidence, correlation

I Hierarchical Association Rules
I Mining: Top-Down Progressive Deepening
I Multilevel support thresholds, redundancy, R-interestingness

I Further Topics (not covered)
I Quantitative Association Rules (for numerical attributes)
I Multi-dimensional association rule mining
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Motivation

Motivation

I So far we only considered sets of items. In many applications the order of the
items is the crucial information.

I The ordering encodes e.g. temporal aspects, patterns in natural language.

I In an ordered sequence, items are allowed to occur more than one time.

Applications

Bioinformatics (DNA/protein sequences), Web mining, text mining (NLP), sensor data
mining, process mining, . . .
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Sequential Pattern Mining: Basic Notions I

We now consider transactions having an order of the items. Define:

I Alphabet Σ is a set of symbols or characters (denoting items)
e.g. Σ = {A,B,C ,D,E}

I Sequence S = s1s2 . . . sk is an ordered list of a length |S | = k items where
si ∈ Σ is an item at position i also denoted as S [i ].

e.g. S = CAB, s3 = B

I A k-sequence is a sequence of length k
e.g. S = CAB is a 3-sequence

I Consecutive subsequence R = r1r2 . . . rm of S = s1s2 . . . sn is also a
sequence in Σ s.t. r1r2 . . . rm = sj sj+1 . . . sj+m−1, with 1 ≤ j ≤ n −m + 1.
We say S contains R and denote this by R ⊆ S

e.g. R1 = AB ⊆ S = CAB
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Sequential Pattern Mining: Basic Notions II

I In a more general subsequence R of S we allow for gaps between the items of R,
i.e. the items of the subsequence R ⊆ S must have the same order of the ones in
S but there can be some other items between them

e.g. R2 = CB is a subsequence of S = CAB

I A prefix of a sequence S is any consecutive subsequence of the form
S [1 : i ] = s1s2 . . . si with 0 ≤ i ≤ n, S [1 : 0] is the empty prefix

e.g. R3 = C ,R4 = CA,R5 = CAB are prefixes of S = CAB

I A suffix of a sequence S is any consecutive subsequence of the form
S [i : n] = si si+1 . . . sn with 1 ≤ i ≤ n + 1, S [n + 1 : n] is the empty suffix.

e.g. R4 = AB is a suffix of S = CAB

I (Relative) support of a sequence R in D: supp(R) = |{S ∈ D | R ⊆ S}|/|D|
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Sequential Pattern Mining: Basic Notions III

I S is frequent (or sequential) if supp(S) ≥ minSup for threshold minSup.

I A frequent sequence is maximal if it is not a subsequence of any other frequent
sequence

I A frequent sequence is closed if it is not a subsequence of any other frequent
sequence with the same support
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Sequential Pattern Mining

Task

Find all frequent subsequences occuring in many transactions.

Difficulty

The number of possible patterns is even larger than for frequent itemset mining!

Example

There are |Σ|k different k-sequences, where k > |Σ| is possible and often encountered,
e.g. when dealing with DNA sequences where the alphabet only comprises four
symbols.
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Sequential Pattern Mining Algorithms

Breadth-First Search Based

I GSP (Generalized Sequential Pattern) algorithm6

I SPADE7

I . . .

Depth-First Search Based

I PrefixSpan8

I SPAM9

I . . .

6
Sirkant & Aggarwal: Mining sequential patterns: Generalizations and performance improvements. EDBT 1996

7
Zaki M J. SPADE: An efficient algorithm for mining frequent sequences. Machine learning, 2001, 42(1-2): 31-60.

8
Pei at. al.: Mining sequential patterns by pattern-growth: PrefixSpan approach. TKDE 2004

9
Ayres, Jay, et al: Sequential pattern mining using a bitmap representation. SIGKDD 2002.
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GSP (Generalized Sequential Pattern) algorithm

I Breadth-first search: Generate frequent sequences ascending by length

I Given the set of frequent sequences at level k , generate all possible sequence
extensions or candidates at level k + 1

I Uses the Apriori principle (anti-monotonicity)

I Next compute the support of each candidate and prune the ones with
supp(c) < minSup

I Stop the search when no more frequent extensions are possible
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Projection-Based Sequence Mining: PrefixSpan: Representation

I The sequence search space can be organized in a prefix search tree

I The root (level 0) contains the empty sequence with each item x ∈ Σ as one of its
children

I A node labelled with sequence: S = s1s2 . . . sk at level k has children of the form
S ′ = s1s2 . . . sk sk+1 at level k + 1 (i.e. S is a prefix of S ′ or S ′ is an extension of
S)
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Prefix Search Tree: Example

ID Sequence

S1 CAGAAGT
S2 TGACAG
S3 GAG
S4 AGTT
S5 ATAG

minSup = .8

∅ (5)

A(5)

C(2)

G(4)

T(5)

AA(3)

AC(-)

AG(5)

AT(3)

GA(3)

GC(-)

GG(3)

GT(2)

TA(1)

TC(-)

TG(2)

TT(1)

AGA(-)

AGC(-)

AGG(-)

AGT(-)

seq (count) frequent

seq ( - ) infrequent (pruned)

seq (count) infrequent

prunes

generates
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Projected Database

I For a database D and an item s ∈ Σ, the projected database w.r.t. s is denoted
Ds and is found as follows: For each sequence Si ∈ D do

I Find the first occurrence of s in Si , say at position p
I suffSi ,s ← suffix(Si ) starting at position p + 1
I Remove infrequent items from suffSi ,s

I Ds = Ds ∪ suffSi ,s

Example

minSup = .8 (i.e. 4 transactions)
ID Sequence DA DG DT

S1 CAGAAGT GAAGT AAGT ∅
S2 TGACAG AG AAG GAAG
S3 GAG G AG -
S4 AGTT GTT TT T
S5 ATAG TAG ∅ AG
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Projection-Based Sequence Mining: PrefixSpan Algorithm

I The PrefixSpan algorithm computes the support for only the individual items in
the projected databased Ds

I Then performs recursive projections on the frequent items in a depth-first manner

1: Initialization: DR ← D,R ← ∅,F ← ∅
2: procedure PrefixSpan(DR ,R,minSup,F)
3: for all s ∈ Σ such that supp(s,DR ) ≥ minSup do
4: Rs ← R + s . append s to the end of R
5: F ← F ∪ {(Rs , sup(s,DR ))} . calculate support of s for each Rs within DR

6: Ds ← ∅
7: for all Si ∈ DR do
8: S ′i ← projection of Si w.r.t. item s
9: Remove all infrequent symbols from S ′i

10: if S ′ 6= ∅ then
11: Ds ← Ds ∪ S ′i
12: if Ds 6= ∅ then
13: PrefixSpan(Ds ,Rs ,minSup,F)
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PrefixSpan: Example

minSup = 0.8 (i.e. 4 transactions)

D∅

ID Sequence

S1 CAGAAGT
S2 TGACAG
S3 GAG
S4 AGTT
S5 ATAG

A(5)C(2)G(5)T(4)

DG

ID Sequence

S1 AAGT
S2 AAG
S3 AG
S4 TT
S5 ∅
A(3)G(3)T(2)

DT

ID Sequence

S1 ∅
S2 GAAG
- -

S4 T
S5 AG

A(2)G(2)T(1)

DA

ID Sequence

S1 GAAGT
S2 AG
S3 G
S4 GTT
S5 TAG

A(3)G(5)T(3)

DAG

ID Sequence

S1 G
S2 ∅
S3 ∅
S4 ∅
S5 ∅

G(1)

Hence, the frequent sequences are: ∅, A, G, T, AG
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Interval-based Sequential Pattern Mining

Interval-Based Representation

I Deals with the more common interval-based items s (or events).

I Each event has a starting t+
s and an ending time point t−s , where t+

s < t−s

Application

Health data analysis, Stock market data analysis, etc.

Relationships

Predefined relationships between items are more complex.

I Point-based relationships: before, after, same time.

I Interval-based relationships: Allen’s relations10, End point representation11, etc.

10
Allen: Maintaining knowledge about temporal intervals. In Communications of the ACM 1983

11
Wu, Shin-Yi, and Yen-Liang Chen: Mining nonambiguous temporal patterns for interval-based events. TKDE 2007
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Allen’s Relations
Before Overlaps Contains Starts Finished-By Meets Equal
After Overlapped-By During Started-By Finishes Met-by Equal

Problem

I Allen’s relationships only describe the relation between two intervals.

I Describing the relationship between k intervals unambiguously requires O(k2)
comparisons.

A B

C

A B

C
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Interval-based Sequential Pattern Mining

I TPrefixSpan12 converts interval-based sequences into point-based sequences:

A

B
{A+}, {A−}, {B+}, {B−}

A

B
{A+}, {B+}, {A−}, {B−}

A

B
{A+}, {A−,B+}, {B−}

I Similar prefix projection mining approach as PrefixSpan algorithm.

I Validation checking is necessary in each expanding iteration to make sure that the
appended time point can form an interval with a time point in the prefix.

12
Wu, Shin-Yi, and Yen-Liang Chen: Mining nonambiguous temporal patterns for interval-based events. TKDE 2007
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Allen’s Relations with Point Transformation: Example

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

A is the interval starting at time 3 and
ending at time 6.
→ Point Transformation maps it in the

2-dim space with A = (3, 6).

A is the reference point in this example!
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Allen’s Relations with Point Transformation: Example

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

Before: BA
After: CA
Overlaps: DA
Overlapped-By: EA
During: FA
Contains: GA

Started-By: HA
Starts: IA
Finished-By: JA
Finishes: AJ
Met-By: KA
Meets: LA
Equal: AA
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Allen’s Relations with Point Transformation: Example

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

Before: BA
After: CA
Overlaps: DA
Overlapped-By: EA
During: FA
Contains: GA

Started-By: HA
Starts: IA
Finished-By: JA
Finishes: AJ
Met-By: KA
Meets: LA
Equal: AA
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Allen’s Relations with Point Transformation: Example

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

Before: BA
After: CA
Overlaps: DA
Overlapped-By: EA
During: FA
Contains: GA

Started-By: HA
Starts: IA
Finished-By: JA
Finishes: AJ
Met-By: KA
Meets: LA
Equal: AA
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Allen’s Relations with Point Transformation: Example
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An Open Issue: Considering Timing Information
Idea
Learn pattern from data by clustering, e.g. QTempIntMiner13, Event Space Miner14, PIVOTMiner15

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

0
0

2

2

4

4

6

6

8

8

start

end

I

II

III

IV

V VI

13
Guyet, T., & Quiniou, R.: Mining temporal patterns with quantitative intervals. ICDMW 2008

14
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