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Counting Candidate Support

Motivation

Why is counting supports of candidates a problem?

I Huge number of candidates

I One transaction may contain many candidates

Solution

Store candidate itemsets in hash-tree
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Counting Candidate Support: Hash Tree

Hash-Tree

I Leaves contain itemset lists with their support (e.g. counts)

I Interior nodes comprise hash tables

I subset function to find all candidates contained transaction

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)
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Hash-Tree: Construction

Search

I Start at the root (level 1)

I At level d : Apply hash function h to d-th item in the itemset

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)
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Hash-Tree: Construction

Insertion

I Search for the corresponding leaf node
I Insert the itemset into leaf; if an overflow occurs:

I Transform the leaf node into an internal node
I Distribute the entries to the new leaf nodes according to the hash function h

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)
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Hash-Tree: Counting
Search all candidates of length k in transaction T = (t1, . . . , tn)
I At root:

I Compute hash values for all items t1, . . . , tn−k+1

I Continue search in all resulting child nodes
I At internal node at level d (reached after hashing of item ti ):

I Determine the hash values and continue the search for each item tj with
i < j ≤ n − k + d

I At leaf node:
I Check whether the itemsets in the leaf node are contained in transaction T

Example

3-itemsets;
h(i) = i mod 3
Transaction:
{1, 3, 7, 9, 12}

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

3

9 7 3,9 7

1,7

9,12
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Apriori – Performance Bottlenecks

Huge Candidate Sets

I 104 frequent 1-itemsets will generate 107 candidate 2-itemsets

I To discover a frequent pattern of size 100, one needs to generate 2100 ≈ 1030

candidates.

Multiple Database Scans

I Needs n or n + 1 scans, where n is the length of the longest pattern

Is it possible to mine the complete set of frequent itemsets without candidate
generation?
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Mining Frequent Patterns Without Candidate Generation

Idea

I Compress large database into compact tree structure; complete for frequent
pattern mining, but avoiding several costly database scans (called FP-tree)

I Divide compressed database into conditional databases associated with one
frequent item
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FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

minSup=2/12

1. Scan DB once, find
frequent 1-itemsets
(single items); Order
frequent items in
frequency descending
order

2. Scan DB again:
2.1 Keep only freq. items; sort

by descending freq.
2.2 Does path with common

prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch
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FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

minSup=2/12

Header Table
Item Frequency

b 8
c 7
d 6
e 3
f 2

1

1. Scan DB once, find
frequent 1-itemsets
(single items); Order
frequent items in
frequency descending
order

2. Scan DB again:
2.1 Keep only freq. items; sort

by descending freq.
2.2 Does path with common

prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch
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FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

Freq. Item

c
cd
cef
cef
bcd
bcd
bcd
bde
bd
b
b
b

minSup=2/12

Header Table
Item Frequency

b 8
c 7
d 6
e 3
f 2

1

2.1

1. Scan DB once, find
frequent 1-itemsets
(single items); Order
frequent items in
frequency descending
order

2. Scan DB again:
2.1 Keep only freq. items; sort

by descending freq.
2.2 Does path with common

prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch
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FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

Freq. Item

c
cd
cef
cef
bcd
bcd
bcd
bde
bd
b
b
b

minSup=2/12

Header Table
Item Frequency

b 8
c 7
d 6
e 3
f 2

Head

∅

b:8

c:3

d:3

d:2

e:1

c:4

e:2

f:2

d:1

1

2.1

2.2

1. Scan DB once, find
frequent 1-itemsets
(single items); Order
frequent items in
frequency descending
order

2. Scan DB again:
2.1 Keep only freq. items; sort

by descending freq.
2.2 Does path with common

prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch
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Benefits of the FP-Tree Structure

Completeness

I never breaks a long pattern of any transaction

I preserves complete information for frequent pattern mining

Compactness

I reduce irrelevant information – infrequent items are gone

I frequency descending ordering: more frequent items are more likely to be shared

I never be larger than the original database (if not count node-links and counts)

I Experiments demonstrate compression ratios over 100
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Mining Frequent Patterns Using FP-Tree

General Idea: (Divide-and-Conquer)

Recursively grow frequent pattern path using the FP-tree

Method

1. Construct conditional pattern base for each node in the FP-tree

2. Construct conditional FP-tree from each conditional pattern-base

3. Recursively mine conditional FP-trees and grow frequent patterns obtained so far;
If the conditional FP-tree contains a single path, simply enumerate all the patterns
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Major Steps to Mine FP-Tree: Conditional Pattern Base
Header Table

Item Frequency

b 8
c 7
d 6
e 3
f 2

Head

∅

b:8

c:3

d:3

d:2

e:1

c:4

e:2

f:2

d:1Conditional Pattern
Item Cond. Patterns

Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

1

2

3

1. Start from header table

2. Visit all nodes for this
item (following links)

3. Accumulate all
transformed prefix paths
to form conditional
pattern base (the
frequency can be read
from the node).
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Properties of FP-Tree for Conditional Pattern Bases

Node-Link Property

For any frequent item ai , all the possible frequent patterns that contain ai can be
obtained by following ai ’s node-links, starting from ai ’s head in the FP-tree header.

Prefix Path Property

To calculate the frequent patterns for a node ai in a path P, only the prefix sub-path
of ai in P needs to be accumulated, and its frequency count should carry the same
count as node ai .
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Major Steps to Mine FP-Tree: Conditional FP-Tree

Conditional Pattern
Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

Example: e-conditional FP-Tree
Item Frequency

c 2
b 1
d 1

∅ | e

c:2

Construct conditional FP-tree from each
conditional pattern-base

I The prefix paths of a suffix represent
the conditional basis  can be
regarded as transactions of a database.

I For each pattern-base:
I Accumulate the count for each item

in the base
I Re-sort items within sets by

frequency
I Construct the FP-tree for the

frequent items of the pattern base
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Major Steps to Mine FP-Tree: Conditional FP-Tree

I Build conditional FP-Trees for each item

Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

∅ | b = ∅ ∅ | c

b:3

∅ | d

b:5

c:3

c:1

∅ | e

c:2

∅ | f

c:2

e:2
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Major Steps to Mine FP-Tree: Recursion

Base Case: Single Path

If the conditional FP-tree contains a single path, simply enumerate all the patterns
(enumerate all combinations of sub-paths)

Example

∅ | f

c:2

e:2

 

All frequent patterns concerning f :
f,

fc, fe
fce
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Major Steps to Mine FP-Tree: Recursion

Recursive Case: Non-degenerated Tree

If the conditional FP-tree is not just a single path, create conditional pattern base for
this smaller tree, and recurse.

Example

∅ | d

b:5

c:3

c:1

Conditional Pattern Base
Item Cond. Patterns

b ∅
c b:3, ∅

∅ | db = ∅ ∅ | dc

b:3
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Principles of Frequent Pattern Growth

Pattern Growth Property

Let X be a frequent itemset in D, B be X ’s conditional pattern base, and Y be an
itemset in B. Then X ∪ Y is a frequent itemset in D if and only if Y is frequent in B.

Example

”abcdef” is a frequent pattern, if and only if

I ”abcde” is a frequent pattern, and

I ”f” is frequent in the set of transactions containing ”abcde”
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Why Is Frequent Pattern Growth Fast?

Performance study1 shows: FP-growth is an order
of magnitude faster than Apriori, and is also faster
than tree-projection

Reasoning:

I No candidate generation, no candidate test
(Apriori algorithm has to proceed breadth-first)

I Use compact data structure

I Eliminate repeated database scan

I Basic operation is counting and FP-tree
building

Image Source: [1]

5Han, Pei & Yin, Mining frequent patterns without candidate generation, SIGMOD’00
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Maximal or Closed Frequent Itemsets

Challenge

Often, there is a huge number of frequent itemsets (especially if minSup is set too low), e.g. a
frequent itemset of length 100 contains 2100 − 1 many frequent subsets

Closed Frequent Itemset

Itemset X is closed in dataset D if for all Y ⊃ X : supp(Y ) < supp(X ).

⇒ The set of closed frequent itemsets contains complete information regarding its
corresponding frequent itemsets.

Maximal Frequent Itemset

Itemset X is maximal in dataset D if for all Y ⊃ X : supp(Y ) < minSup.

⇒ The set of maximal itemsets does not contain the complete support information

⇒ More compact representation
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Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering
4.2 Outlier Detection
4.3 Frequent Pattern Mining

Introduction
Frequent Itemset Mining
Association Rule Mining
Sequential Pattern Mining



Simple Association Rules: Introduction

Example

Transaction database:

D = { { butter , bread ,milk, sugar},
{ butter , flour ,milk, sugar},
{ butter , eggs,milk, salt},
{ eggs},
{ butter , flour ,milk, salt, sugar}}

Frequent itemsets:
items support
{butter} 4
{milk} 4
{butter, milk} 4
{sugar} 3
{butter, sugar} 3
{milk, sugar} 3
{butter, milk, sugar} 3

Question of interest

I If milk and sugar are bought, will the customer always buy butter as well?
milk, sugar ⇒ butter?

I In this case, what would be the probability of buying butter?
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Simple Association Rules: Basic Notions

Let Items, Itemset, Database, Transaction, Transaction Length, k-itemset, (relative)
Support, Frequent Itemset be defined as before. Additionally:

I The items in transactions and itemsets are sorted lexicographically: itemset
X = (x1, . . . , xk ), where x1 ≤, . . . ,≤ xk

I Association rule: An association rule is an implication of the form X ⇒ Y where
X ,Y ⊆ I are two itemsets with X ∩ Y = ∅

I Note: simply enumerating all possible association rules is not reasonable!

What are the interesting association rules w.r.t. D?
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Interestingness of Association Rules

Goal

Quantify the interestingness of an association rule with respect to a transaction
database D.

Support

I Frequency (probability) of the entire rule with respect to D:

supp(X ⇒ Y ) = P(X ∪ Y ) =
|{T ∈ D | X ∪ Y ⊆ T}|

|D|
= supp(X ∪ Y )

I ”Probability that a transaction in D contains the itemset.”
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Interestingness of Association Rules

Confidence

I Indicates the strength of implication in the rule:

conf (X ⇒ Y ) = P(Y | X ) =
|{T ∈ D | X ⊆ T} ∩ {T ∈ D | Y ⊆ T}|

|{T ∈ D | X ⊆ T}|

=
|{T ∈ D | X ⊆ T ∧ Y ⊆ T}|

|{T ∈ D | X ⊆ T}|

=
|{T ∈ D | X ∪ Y ⊆ T}|
|{T ∈ D | X ⊆ T}|

=
supp(X ∪ Y )

supp(X )

I ”Conditional probability that a transaction in D containing the itemset X also
contains itemset Y .”
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Interestingness of Association Rules

Rule form

”Body ⇒ Head [support, confidence]”

Association rule examples

I buys diapers ⇒ buys beer [0.5 %, 60%]

I major in CS ∧ takes DB ⇒ avg. grade A [1%, 75%]
buys
diapers

buys
beer

buys
both
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Mining of Association Rules

Task of mining association rules

Given a database D, determine all association rules having a supp ≥ minSup and a
conf ≥ minConf (so-called strong association rules).

Key steps of mining association rules

1. Find frequent itemsets, i.e., itemsets that have supp ≥ minSup (e.g. Apriori,
FP-growth)

2. Use the frequent itemsets to generate association rules
I For each itemset X and every nonempty subset Y ⊂ X generate rule Y ⇒ (X \ Y )

if minSup and minConf are fulfilled
I We have 2|X | − 2 many association rule candidates for each itemset X
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Mining of Association Rules

Example

I Frequent itemsets:

1-itemset count 2-itemset count 3-itemset count
{ a } 3 { a,b } 3 { a,b,c } 2
{ b } 4 { a,c } 2
{ c } 5 { b,c } 4

I Rule candidates
I From 1-itemsets: None
I From 2-itemsets: a⇒ b; b ⇒ a; a⇒ c ; c ⇒ a; b ⇒ c ; c ⇒ b
I From 3-itemsets: a, b ⇒ c ; a, c ⇒ b; c , b ⇒ a; a⇒ b, c ; b ⇒ a, c ; c ⇒ a, b
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Generating Rules from Frequent Itemsets

Rule generation

I For each frequent itemset X :
I For each nonempty subset Y of X , form a rule Y ⇒ (X \ Y )
I Delete those rules that do not have minimum confidence

I Note:
I Support always exceeds minSup
I The support values of the frequent itemsets suffice to calculate the confidence

I Exploit anti-monotonicity for generating candidates for strong association rules!
I Y ⇒ Z not strong =⇒ for all A ⊆ D : Y ⇒ Z ∪ A not strong
I Y ⇒ Z not strong =⇒ for all Y ′ ⊆ Y : (Y \ Y ′)⇒ (Z ∪ Y ′) not strong
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Generating Rules from Frequent Itemsets

Example: minConf = 60%

conf (a⇒ b) = 3/3 3

conf (b ⇒ a) = 3/4 3

conf (a⇒ c) = 2/3 3

conf (c ⇒ a) = 2/5 7

conf (b ⇒ c) = 4/4 3

conf (c ⇒ b) = 4/5 3

conf (b, c ⇒ a) = 1/2 7

conf (a, c ⇒ b) = 1 3

conf (a, b ⇒ c) = 2/3 3

conf (a⇒ b, c) = 2/3 3

conf (b ⇒ a, c) = 2/4 7 (pruned with b, c ⇒ a)
conf (c ⇒ a, b) = 2/5 7 (pruned with b, c ⇒ a)

itemset count
{ a } 3
{ b } 4
{ c } 5

{ a,b } 3
{ a,c } 2
{ b,c } 4

{ a,b,c } 2
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Interestingness Measurements

Objective measures

Two popular measures:

I Support

I Confidence

Subjective measures [Silberschatz & Tuzhilin, KDD95]

A rule (pattern) is interesting if it is

I unexpected (surprising to the user) and/or

I actionable (the user can do something with it)
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Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

I Among 5000 students
I 3000 play basketball (=60%)
I 3750 eat cereal (=75%)
I 2000 both play basket ball and eat cereal (=40%)

I Rule ”play basketball ⇒ eat cereal [40%, 66.7%]” is misleading because the
overall percentage of students eating cereal is 75% which is higher than 66.7%

I Rule ”play basketball ⇒ not eat cereal [20%, 33.3%]” is far more accurate,
although with lower support and confidence

I Observation: ”play basketball” and ”eat cereal” are negatively correlated

Not all strong association rules are interesting and some can be misleading.

I Augment the support and confidence values with interestingness measures such as
the correlation: ”A ⇒ B [supp, conf , corr ]”
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