Ludwig-Maximilians-Universität München Lehrstuhl für Datenbanksysteme und Data Mining Prof. Dr. Thomas Seidl

Knowledge Discovery and Data Mining 1

(Data Mining Algorithms 1)

Winter Semester 2019/20

Counting Candidate Support

Motivation

Why is counting supports of candidates a problem?

- Huge number of candidates
- One transaction may contain many candidates

Solution

Store candidate itemsets in hash-tree

Counting Candidate Support: Hash Tree

Hash-Tree

- Leaves contain itemset lists with their support (e.g. counts)
- Interior nodes comprise hash tables
- subset function to find all candidates contained transaction

Example

Hash-Tree: Construction

Search

- Start at the root (level 1)
- ▶ At level *d*: Apply hash function *h* to *d*-th item in the itemset

Example

Hash-Tree: Construction

Insertion

- Search for the corresponding leaf node
- Insert the itemset into leaf; if an overflow occurs:
 - Transform the leaf node into an internal node
 - Distribute the entries to the new leaf nodes according to the hash function h

Hash-Tree: Counting

Search all candidates of length k in transaction $T = (t_1, \ldots, t_n)$

- At root:
 - Compute hash values for all items t_1, \ldots, t_{n-k+1}
 - Continue search in all resulting child nodes
- At internal node at level d (reached after hashing of item t_i):
 - ▶ Determine the hash values and continue the search for each item t_j with $i < j \le n k + d$
- At leaf node:
 - Check whether the itemsets in the leaf node are contained in transaction ${\cal T}$

Example

3-itemsets; $h(i) = i \mod 3$ Transaction: $\{1, 3, 7, 9, 12\}$

Apriori – Performance Bottlenecks

Huge Candidate Sets

- ▶ 10⁴ frequent 1-itemsets will generate 10⁷ candidate 2-itemsets
- \blacktriangleright To discover a frequent pattern of size 100, one needs to generate $2^{100}\approx 10^{30}$ candidates.

Multiple Database Scans

• Needs *n* or n + 1 scans, where *n* is the length of the longest pattern

Is it possible to mine the complete set of frequent itemsets without candidate generation?

Mining Frequent Patterns Without Candidate Generation

Idea

- Compress large database into compact tree structure; complete for frequent pattern mining, but avoiding several costly database scans (called FP-tree)
- Divide compressed database into *conditional databases* associated with one frequent item

minSup=2/12

Database TID	Items
1	с
2 3	cd c <mark>e</mark> f
4	cef
5 6	bcd
7	bcdg
9	bde
10 11	bh bi
12	b

- 2.1 Keep only freq. items; sort by descending freq.
- 2.2 Does path with common prefix exist?
 - Yes: Increment counter;

append suffix;

No: Create new branch

minSup=2/12

Database TID	Items	
1 2 3 4 5 6 7 8 9 10 11	c cd cef bcd bcd bcdg bde bd bd bh bh	 Scan DB once, find frequent 1-itemsets (single items); Order frequent items in frequency descending order
12 Header T Item	b Table 1 Frequency 8 7	 2. Scan DB again: 2.1 Keep only freq. items; sort by descending freq. 2.2 Does path with common prefix exist? Yes: Increment counter;
d e f	6 3 2	append suffix; <i>No</i> : Create new branch

minSup=2/12

Database TID	Items	Freq. Item
1	с	с
2	cd	cd
3	cef	cef
4	cef	cef
5	bcd	bcd
6	bcd	bcd
7	bcdg	bcd
8	bde	bde
9	bd	bd
10	bh	b
11	bi	b
12	b	b
Header T Item	able Frequency	y
b	8	
с	7	
d	6	
е	3	
f	2	

 Scan DB once, find frequent 1-itemsets (single items); Order frequent items in frequency descending order

- 2. Scan DB again:
 - 2.1 Keep only freq. items; sort by descending freq.
 - 2.2 Does path with common prefix exist?
 - Yes: Increment counter;

append suffix;

No: Create new branch

minSup=2/12

- Scan DB once, find frequent 1-itemsets (single items); Order frequent items in frequency descending order
- 2. Scan DB again:
 - 2.1 Keep only freq. items; sort by descending freq.
 - 2.2 Does path with common prefix exist?
 - Yes: Increment counter;
 - append suffix;
 - No: Create new branch

Benefits of the FP-Tree Structure

Completeness

- never breaks a long pattern of any transaction
- preserves complete information for frequent pattern mining

Compactness

- reduce irrelevant information infrequent items are gone
- ▶ frequency descending ordering: more frequent items are more likely to be shared
- never be larger than the original database (if not count node-links and counts)
- Experiments demonstrate compression ratios over 100

Mining Frequent Patterns Using FP-Tree

General Idea: (Divide-and-Conquer)

Recursively grow frequent pattern path using the FP-tree

Method

- 1. Construct conditional pattern base for each node in the FP-tree
- 2. Construct conditional FP-tree from each conditional pattern-base
- 3. Recursively mine conditional FP-trees and grow frequent patterns obtained so far; If the conditional FP-tree contains a single path, simply enumerate all the patterns

Major Steps to Mine FP-Tree: Conditional Pattern Base

- 1. Start from header table
- 2. Visit all nodes for this item (following links)
- Accumulate all transformed prefix paths to form conditional pattern base (the frequency can be read from the node).

Properties of FP-Tree for Conditional Pattern Bases

Node-Link Property

For any frequent item a_i , all the possible frequent patterns that contain a_i can be obtained by following a_i 's node-links, starting from a_i 's head in the FP-tree header.

Prefix Path Property

To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P needs to be accumulated, and its frequency count should carry the same count as node a_i .

Major Steps to Mine FP-Tree: Conditional FP-Tree

Conditional Pattern Item Cond. Patterns					
b	Ø				
С	b:3, ∅				
d	bc:3, b:2, c:1				
е	c:2, bd:1				
f	ce:2				

Example: *e*-conditional FP-Tree Item Frequency

		v_e
С	2	l l
b	1	
d	1	c:2

Construct conditional FP-tree from each conditional pattern-base

- ► The prefix paths of a suffix represent the conditional basis ~→ can be regarded as transactions of a database.
- For each pattern-base:
 - Accumulate the count for each item in the base
 - Re-sort items within sets by frequency
 - Construct the FP-tree for the frequent items of the pattern base

Major Steps to Mine FP-Tree: Conditional FP-Tree

Build conditional FP-Trees for each item						
Item	Cond. Patterns					
b	Ø					
С	b :3, Ø					
d	bc:3, b:2, c:1					
е	c:2, bd:1					
f	ce:2					
Ø b =	= Ø Ø c b:3	Ø d b:5 c:1 	Ø <i>e</i> c:2	Ø <i>t</i> c:2 		
		C:3		e:2		

f

Major Steps to Mine FP-Tree: Recursion

Base Case: Single Path

If the conditional FP-tree contains a single path, simply enumerate all the patterns (enumerate all combinations of sub-paths)

Major Steps to Mine FP-Tree: Recursion

Recursive Case: Non-degenerated Tree

If the conditional FP-tree is not just a single path, create conditional pattern base for this smaller tree, and recurse.

Principles of Frequent Pattern Growth

Pattern Growth Property

Let X be a frequent itemset in D, B be X's conditional pattern base, and Y be an itemset in B. Then $X \cup Y$ is a frequent itemset in D if and only if Y is frequent in B.

Example

"abcdef" is a frequent pattern, if and only if

- ▶ "abcde" is a frequent pattern, and
- "f" is frequent in the set of transactions containing "abcde"

Why Is Frequent Pattern Growth Fast?

Performance study¹ shows: FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection

Reasoning:

- No candidate generation, no candidate test (Apriori algorithm has to proceed breadth-first)
- Use compact data structure
- Eliminate repeated database scan
- Basic operation is counting and FP-tree building

Image Source: [1]

⁵Han, Pei & Yin, *Mining frequent patterns without candidate generation*, SIGMOD'00 4. Unsupervised Methods 4.3 Frequent Pattern Mining

Maximal or Closed Frequent Itemsets

Challenge

Often, there is a huge number of frequent itemsets (especially if minSup is set too low), e.g. a frequent itemset of length 100 contains $2^{100} - 1$ many frequent subsets

Closed Frequent Itemset

Itemset X is *closed* in dataset D if for all $Y \supset X : supp(Y) < supp(X)$.

 $\Rightarrow\,$ The set of closed frequent itemsets contains complete information regarding its corresponding frequent itemsets.

Maximal Frequent Itemset

Itemset X is maximal in dataset D if for all $Y \supset X : supp(Y) < minSup$.

- \Rightarrow The set of maximal itemsets does not contain the complete support information
- \Rightarrow More compact representation

Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods

- 4.1 Clustering
- 4.2 Outlier Detection

4.3 Frequent Pattern Mining

Introduction Frequent Itemset Mining Association Rule Mining Sequential Pattern Mining

Simple Association Rules: Introduction

Example

Transaction database:

D = { { butter, bread, milk, sugar}, { butter, flour, milk, sugar}, { butter, eggs, milk, salt}, { eggs}, { butter, flour, milk, salt, sugar}}

Frequent itemsets:itemssupport{butter}4{milk}4{butter, milk}4{sugar}3{butter, sugar}3{milk, sugar}3{butter, milk, sugar}3

Question of interest

- ► If milk and sugar are bought, will the customer always buy butter as well? milk, sugar ⇒ butter?
- In this case, what would be the probability of buying butter?

Simple Association Rules: Basic Notions

Let Items, Itemset, Database, Transaction, Transaction Length, k-itemset, (relative) Support, Frequent Itemset be defined as before. Additionally:

- ▶ The items in transactions and itemsets are **sorted** lexicographically: itemset $X = (x_1, ..., x_k)$, where $x_1 \le ..., \le x_k$
- ▶ Association rule: An association rule is an implication of the form $X \Rightarrow Y$ where $X, Y \subseteq I$ are two itemsets with $X \cap Y = \emptyset$
- Note: simply enumerating all possible association rules is not reasonable! What are the interesting association rules w.r.t. D?

Interestingness of Association Rules

Goal

Quantify the interestingness of an association rule with respect to a transaction database D.

Support

▶ Frequency (probability) of the entire rule with respect to *D*:

$$supp(X \Rightarrow Y) = P(X \cup Y) = \frac{|\{T \in D \mid X \cup Y \subseteq T\}|}{|D|} = supp(X \cup Y)$$

"Probability that a transaction in D contains the itemset."

Interestingness of Association Rules

Confidence

Indicates the strength of implication in the rule:

$$conf(X \Rightarrow Y) = P(Y \mid X) = \frac{|\{T \in D \mid X \subseteq T\} \cap \{T \in D \mid Y \subseteq T\}|}{|\{T \in D \mid X \subseteq T\}|}$$
$$= \frac{|\{T \in D \mid X \subseteq T \land Y \subseteq T\}|}{|\{T \in D \mid X \subseteq T\}|}$$
$$= \frac{|\{T \in D \mid X \cup Y \subseteq T\}|}{|\{T \in D \mid X \subseteq T\}|} = \frac{supp(X \cup Y)}{supp(X)}$$

"Conditional probability that a transaction in D containing the itemset X also contains itemset Y."

Interestingness of Association Rules

Rule form

"Body \Rightarrow Head [support, confidence]"

Association rule examples

- buys diapers \Rightarrow buys beer [0.5 %, 60%]
- major in CS \land takes DB \Rightarrow avg. grade A [1%, 75%]

Mining of Association Rules

Task of mining association rules

Given a database D, determine all association rules having a $supp \ge minSup$ and a $conf \ge minConf$ (so-called *strong association rules*).

Key steps of mining association rules

- 1. Find frequent itemsets, i.e., itemsets that have $supp \ge minSup$ (e.g. Apriori, FP-growth)
- 2. Use the frequent itemsets to generate association rules
 - For each itemset X and every nonempty subset Y ⊂ X generate rule Y ⇒ (X \ Y) if minSup and minConf are fulfilled
 - We have $2^{|X|} 2$ many association rule candidates for each itemset X

Mining of Association Rules

Example

Frequent itemsets:

1-itemset	count	2-itemset	count	3-itemset	count
{ a }	3	{ a,b }	3	{ a,b,c }	2
{ b }	4	{ a,c }	2		
{ c }	5	{ b,c }	4		

Rule candidates

- ► From 1-itemsets: None
- From 2-itemsets: $a \Rightarrow b$; $b \Rightarrow a$; $a \Rightarrow c$; $c \Rightarrow a$; $b \Rightarrow c$; $c \Rightarrow b$
- ▶ From 3-itemsets: $a, b \Rightarrow c$; $a, c \Rightarrow b$; $c, b \Rightarrow a$; $a \Rightarrow b, c$; $b \Rightarrow a, c$; $c \Rightarrow a, b$

Generating Rules from Frequent Itemsets

Rule generation

- ► For each frequent itemset X:
 - For each nonempty subset Y of X, form a rule $Y \Rightarrow (X \setminus Y)$
 - Delete those rules that do not have minimum confidence
- ► Note:
 - Support always exceeds *minSup*
 - > The support values of the frequent itemsets suffice to calculate the confidence
- Exploit anti-monotonicity for generating candidates for strong association rules!
 - $Y \Rightarrow Z$ not strong \implies for all $A \subseteq D : Y \Rightarrow Z \cup A$ not strong
 - ▶ $Y \Rightarrow Z$ not strong \implies for all $Y' \subseteq Y$: $(Y \setminus Y') \Rightarrow (Z \cup Y')$ not strong

Generating Rules from Frequent Itemsets

Example: $minConf = 60$	0%			
$conf(a \Rightarrow b) = 3/3$	✓			
$conf(b \Rightarrow a) = 3/4$	1			
$conf(a \Rightarrow c) = 2/3$	\checkmark	itemset	count	
$\mathit{conf}(\mathit{c} \Rightarrow \mathit{a}) = 2/5$	×	{ a }	3	
$conf(b \Rightarrow c) = 4/4$	1	{ b }	4	
$conf(c \Rightarrow b) = 4/5$	\checkmark	{c}	5	
$conf(b, c \Rightarrow a) = 1/2$	×	{ a.b }	3	
$\mathit{conf}(a,c\Rightarrowb)=1$	\checkmark	{ a.c }	2	
$conf(a,b \Rightarrow c) = 2/3$	1	{ b.c }	4	
$conf(a \Rightarrow b, c) = 2/3$	1	$\frac{(a,b,c)}{\{a,b,c\}}$	2	
$\mathit{conf}(b \Rightarrow \mathit{a}, \mathit{c}) = 2/4$	$ earrow $ (pruned with $b,c\Rightarrow a$)	[4,2,0]	_	
$\mathit{conf}(c \Rightarrow \mathit{a}, \mathit{b}) = 2/5$	$ earrow $ (pruned with $b,c\Rightarrow a$)			

Interestingness Measurements

Objective measures

Two popular measures:

- Support
- Confidence

Subjective measures [Silberschatz & Tuzhilin, KDD95]

A rule (pattern) is interesting if it is

- unexpected (surprising to the user) and/or
- actionable (the user can do something with it)

Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

- Among 5000 students
 - ► 3000 play basketball (=60%)
 - ▶ 3750 eat cereal (=75%)
 - ▶ 2000 both play basket ball and eat cereal (=40%)
- ► Rule "play basketball ⇒ eat cereal [40%, 66.7%]" is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%
- ► Rule "play basketball ⇒ not eat cereal [20%, 33.3%]" is far more accurate, although with lower support and confidence
- ► Observation: "play basketball" and "eat cereal" are negatively correlated

Not all strong association rules are interesting and some can be misleading.

► Augment the support and confidence values with interestingness measures such as the correlation: "A ⇒ B [supp, conf, corr]"

4. Unsupervised Methods