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From Partitioning to Hierarchical Clustering

Global parameters to separate all clusters with a partitioning clustering method may
not exist:

Need a hierarchical clustering algorithm in these situations
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Hierarchical Clustering: Basic Notions

I Hierarchical decomposition of the data set (with respect to a given similarity
measure) into a set of nested clusters

I Result represented by a so called dendrogram (greek δενδρo = tree)
I Nodes in the dendrogram represent possible clusters
I Dendrogram can be constructed bottom-up (agglomerative approach) or top down

(divisive approach)
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Hierarchical Clustering: Example

I Interpretation of the dendrogram
I The root represents the whole data set
I A leaf represents a single object in the data set
I An internal node represents the union of all objects in its sub-tree
I The height of an internal node represents the distance between its two child nodes
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Agglomerative Hierarchical Clustering

Generic Algorithm

1. Initially, each object forms its own cluster

2. Consider all pairwise distances between the initial
clusters (objects)

3. Merge the closest pair (A,B) in the set of the current
clusters into a new cluster C = A ∪ B

4. Remove A and B from the set of current clusters; insert
C into the set of current clusters

5. If the set of current clusters contains only C (i.e., if C
represents all objects from the database): STOP

6. Else: determine the distance between the new cluster C
and all other clusters in the set of current clusters and
go to step 3.
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Single-Link Method and Variants

I Agglomerative hierarchical clustering requires a distance function for clusters

I Given: a distance function dist(p, q) for database objects

I The following distance functions for clusters (i.e., sets of objects) X and Y are
commonly used for hierarchical clustering:

Single-Link: distsl(X ,Y ) = minx∈X ,y∈Y dist(x , y)
Complete-Link: distcl(X ,Y ) = maxx∈X ,y∈Y dist(x , y)
Average-Link: distal(X ,Y ) = 1

|X |·|Y |
∑

x∈X ,y∈Y dist(x , y)
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Divisive Hierarchical Clustering

General Approach: Top Down

I Initially, all objects form one cluster
I Repeat until all clusters are singletons

I Choose a cluster to split → how?
I Replace the chosen cluster with the sub-clusters and split into two → how to split?

Example solution: DIANA

I Select the cluster C with largest diameter for splitting
I Search the most disparate object o in C (highest average dissimilarity)

I Splinter group S = {o}
I Iteratively assign the o′ /∈ S with the highest D(o′) > 0 to the splinter group until

D(o′) ≤ 0 for all o′ /∈ S , where

D(o′) =
∑

oj∈C\S

d(o′, oj )

|C \ S |
−
∑
oi∈S

d(o′, oi )

|S |
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Discussion Agglomerative vs. Divisive HC

I Divisive and Agglomerative HC need n − 1 steps
I Agglomerative HC has to consider n(n−1)

2 =
(
n
2

)
combinations in the first step

I Divisive HC potentially has 2n−1 − 1 many possibilities to split the data in its first
step. Not every possibility has to be considered (DIANA)

I Divisive HC is conceptually more complex since it needs a second ”flat” clustering
algorithm (splitting procedure)

I Agglomerative HC decides based on local patterns

I Divisive HC uses complete information about the global data distribution  able
to provide better clusterings than Agglomerative HC?
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Density-Based Hierarchical Clustering

I Observation: Dense clusters are completely contained by less dense clusters

I Idea: Process objects in the ”right” order and keep track of point density in their
neighborhood
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Core Distance and Reachability Distance
Parameters: ”generating” distance ε, fixed value MinPts

core-distε,MinPts(o)

I ”smallest distance such that o is a core object”
I if core-dist > ε: undefined

reach-distε,MinPts(p, o)

I ”smallest dist. s.t. p is directly density-reachable from o”
I if reach-dist > ε: ∞

reach-dist(p, o) =


dist(p, o) , dist(p, o) ≥ core-dist(o)

core-dist(o) , dist(p, o) < core-dist(o)

∞ , dist(p, o) > ε
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The Algorithm OPTICS

OPTICS1: Main Idea

”Ordering Points To Identify the Clustering Structure”
I Maintain two data structures

I seedList: Stores all objects with shortest reachability
distance seen so far (”distance of a jump to that point”) in
ascending order; organized as a heap

I clusterOrder : Resulting cluster order is constructed
sequentially (order of objects + reachability-distances)

I Visit each point
I Always make a shortest jump

1
Ankerst M., Breunig M., Kriegel H.-P., Sander J. ”OPTICS: Ordering Points To Identify the Clustering Structure”. SIGMOD (1999)
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The Algorithm OPTICS

1: seedList = ∅
2: while there are unprocessed objects in DB do
3: if seedList = ∅ then
4: insert arbitrary unprocessed object into

clusterOrder with reach-dist =∞
5: else
6: remove first object from seedList and insert into

clusterOrder with its current reach-dist

7: // Let o be the last object inserted into clusterOrder
8: mark o as processed
9: for p ∈ range(o, ε) do

10: // Insert/update p in seedList
11: compute reach-dist(p, o)
12: seedList.update(p, reach-dist(p, o))
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OPTICS: Example
ε = 44,MinPts = 3
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OPTICS: Example
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OPTICS: The Reachability Plot
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OPTICS: The Reachability Plot

I Plot the points together with their reachability-distances. Use the order in which
they where returned by the algorithm

I Represents the density-based clustering structure
I Easy to analyze
I Independent of the dimensionality of the data
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OPTICS: Parameter Sensitivity

I Relatively insensitive to parameter settings

I Good result if parameters are just ”large enough”
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Hierarchical Clustering: Discussion

Advantages

I Does not require the number of clusters to be known in advance
I No (standard methods) or very robust parameters (OPTICS)
I Computes a complete hierarchy of clusters
I Good result visualizations integrated into the methods
I A ”flat” partition can be derived afterwards (e.g. via a cut through the

dendrogram or the reachability plot)

Disadvantages

I May not scale well
I Runtime for the standard methods: O(n2 log n2)
I Runtime for OPTICS: without index support O(n2)

I User has to choose the final clustering
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Evaluation of Clustering Results

Type Positive Negative

Expert’s
Opinion

may reveal new insight
into the data

very expensive, results
are not comparable

External
Measures

objective evaluation needs ”ground truth”

Internal
Measures

no additional informa-
tion needed

approaches optimizing
the evaluation criteria
will always be preferred

Expert’s Opinion

External Measure

Internal Measure
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External Measures

Notation

Given a data set D, a clustering C = {C1, . . . ,Ck} and ground truth G = {G1, . . . ,Gl}.

Problem

Since the cluster labels are ”artificial”, permuting them should not change the score.

Solution

Instead of comparing cluster and ground truth labels directly, consider all pairs of
objects. Check whether they have the same label in G and if they have the same in C.
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Formalisation as Retrieval Problem for Clustering

C1 C2 C3
D

o

p

p′SC 3

∈ SC

With P = {(o, p) ∈ D × D | o 6= p} define:

I Same cluster label: SC = {(o, p) ∈ P | ∃Ci ∈ C : {o, p} ⊆ Ci}
I Different cluster label: SC = P \ SC

and analogously for G.
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Formalisation as Retrieval Problem for Clustering

Define

I TP = |SC ∩ SG |
(same cluster in both, ”true positives”)

I FP = |SC ∩ SG |
(same cluster in C, different cluster in G, ”false
positives”)

I TN = |SC ∩ SG |
(different cluster in both, ”true negatives”)

I FN = |SC ∩ SG |
(different cluster in C, same cluster in G, ”false
negatives”)

Note the difference to the definitions in
classification!

SC SC

SG

SG

TP FN

FP TN
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External Measures - Retrieval Problem

I Recall (0 ≤ rec ≤ 1, larger is better)

rec =
TP

TP + FN
=
|SC ∩ SG |
|SG |

I Precision (0 ≤ prec ≤ 1, larger is better)

prec =
TP

TP + FP
=
|SC ∩ SG |
|SC |

I F1-Measure (0 ≤ F1 ≤ 1, larger is better)

F1 =
2 · rec · prec

rec + prec
=

2|SC ∩ SG |
|SC |+ |SG |

SC SC

SG

SG

TP FN

FP TN
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External Measures - Retrieval Problem

I Rand Index (0 ≤ RI ≤ 1, larger is better):

RI (C | G) =
TP + TN

TP + TN + FP + FN
=
|SC ∩ SG |+ |SC ∩ SG |

|P|

I Adjusted Rand Index (ARI): Compares RI (C,G)
against expected (R,G) of random cluster assignment
R.

I Jaccard Coefficient (0 ≤ JC ≤ 1, larger is better):

JC =
TP

TP + FP + FN
=

|SC ∩ SG |
|P| − |SC ∩ SG |

SC SC

SG

SG

TP FN

FP TN
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External Measures - Retrieval Problem

I Confusion Matrix / Contingency Table N ∈ Nk×l with Nij = |Ci ∩ Gj |
G1 . . . Gl

C1 |C1 ∩ G1| . . . |C1 ∩ Gl |
...

...
. . .

Ck |Ck ∩ G1| |Ck ∩ Gl |

I Define Ni =
l∑

j=1
Nij (i.e. Ni = |Ci |)

I Define N =
k∑

i=1
Ni (i.e. N = |D|)
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External Measures - Information Theory

I (Shannon) Entropy:

H(C) = −
∑
Ci∈C

p(Ci ) log p(Ci ) = −
∑
Ci∈C

|Ci |
|D|

log
|Ci |
|D|

= −
k∑

i=1

Ni

N
log

Ni

N

I Mutual Entropy:

H(C | G) = −
∑
Ci∈C

p(Ci )
∑
Gj∈G

p(Gj | Ci ) log p(Gj | Ci )

= −
∑
Ci∈C

|Ci |
|D|

∑
Gj∈G

|Ci ∩ Gj |
|Ci |

log
|Ci ∩ Gj |
|Ci |

= −
k∑

i=1

Ni

N

l∑
j=1

Nij

Ni
log

Nij

Ni
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External Measures - Information Theory

I Mutual Information:

I (C,G) = H(C)− H(C | G) = H(G)− H(G | C)

I Normalized Mutual Information (NMI) (0 ≤ NMI ≤ 1, larger is better):

NMI (C,G) =
I (C,G)√

H(C)H(G)

I Adjusted Mutual Information (AMI): Compares MI (C,G) against expected
MI (R,G) of random cluster assignment R.
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Internal Measures: Cohesion

Notation

Let D be a set of size n = |D|, and let C = {C1, . . . ,Ck} be a partitioning of D.

Cohesion

Average distance between objects of the same cluster.

coh(Ci ) =

(
|Ci |

2

)−1 ∑
o,p∈Ci ,o 6=p

d(o, p)

Cohesion of clustering is equal to weighted mean of the clusters’
cohesions.

coh(C) =
k∑

i=1

|Ci |
n

coh(Ci )
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Internal Measures: Separation

Separation

Separation between to clusters: Average distance between pairs

sep(Ci ,Cj) =
1

|Ci ||Cj |
∑

o∈Ci ,p∈Cj

d(o, p)

Separation of one cluster: Minimum separation to another cluster:

sep(Ci ) = min
j 6=i

sep(Ci ,Cj)

Separation of clustering is equal to weighted mean of the clusters’
separations.

sep(C) =
k∑

i=1

|Ci |
n

sep(Ci )
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Evaluating the Distance Matrix
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after: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
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Evaluating the Distance Matrix

Distance matrices differ for different clustering approaches (here on random data)
k-means EM DBSCAN Complete Link
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after: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
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Cohesion and Separation

Problem

Suitable for convex cluster, but not for stretched clusters (cf. silhouette coefficient).
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Ambiguity of Clusterings

I Clustering according to: Color of shirt, direction of view, glasses, . . .
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Ambiguity of Clusterings

from: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)

4. Unsupervised Methods 4.1 Clustering 106



Ambiguity of Clusterings

”Philosophical” Problem

“What is a correct clustering?”

I Most approaches find clusters in every dataset,
even in uniformly distributed objects

I Are there clusters?
I Apply clustering algorithm
I Check for reasonability of clusters

I Problem: No clusters found 6= no clusters
existing

I Maybe clusters exists only in certain models,
but can not be found by used clustering
approach
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Hopkins Statistics

Sample

dataset
(n objects)

Random selection
(m objects) m<<n

m uniformly
distributed objects

w3

w4

w5

w6

w1
w2

u1

u2

u3
u4

u5

u6

H =

m∑
i=1

ui

m∑
i=1

ui +
m∑
i=1

wi

I wi : distance of selected objects to the next neighbor in dataset

I ui : distances of uniformly distributed objects to next neighbor in dataset

I 0 ≤ H ≤ 1;
I H ≈ 0: very regular data (e.g. grid);
I H ≈ 0.5: uniformly distributed data;
I H ≈ 1: strongly clustered¸
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Recap: Observed Clustering Methods

I Partitioning Methods: Find k partitions, minimizing some
objective function

I Probabilistic Model-Based Clustering (EM)

I Density-based Methods: Find clusters based on connectivity and
density functions

I Mean-Shift: Find modes in the point density

I Spectral Clustering: Find global minimum cut

I Hierarchical Methods: Create a hierarchical decomposition of
the set of objects

I Evaluation: External and internal measures
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