Ludwig-Maximilians-Universität München Lehrstuhl für Datenbanksysteme und Data Mining Prof. Dr. Thomas Seidl

Knowledge Discovery and Data Mining 1

(Data Mining Algorithms 1)

Winter Semester 2019/20

Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods

4.1 Clustering

Introduction Partitioning Methods Probabilistic Model-Based Methods **Density-Based Methods** Mean-Shift Spectral Clustering Hierarchical Methods Evaluation

5. Advanced Topics

Density-Based Clustering

Basic Idea

Clusters are dense regions in the data space, separated by regions of lower density

Results of a k-medoid algorithm for k = 4:

Density-Based Clustering: Basic Concept

Note

Different density-based approaches exist in the literature. Here we discuss the ideas underlying the DBSCAN algorithm.

Intuition for Formalization

- For any point in a cluster, the local point density around that point has to exceed some threshold
- > The set of points from one cluster is spatially connected

Density-Based Clustering: Basic Concept

Local Point Density

Local point density at a point q defined by two parameters:

• ϵ -radius for the neighborhood of point q

$$N_{\epsilon}(q) = \{ p \in D \mid dist(p,q) \le \epsilon \}$$
(1)

In this chapter, we assume that $q \in N_{\epsilon}(q)!$

• *MinPts*: minimum number of points in the given neighbourhood $N_{\epsilon}(q)$.

Density-Based Clustering: Basic Concept

Core Point

q is called a core object (or core point) w.r.t. ϵ , *MinPts* if $|N_{\epsilon}(q)| \geq minPts$

(Directly) Density-Reachable

p directly density-reachable from q w.r.t. ϵ , MinPts if:

- 1. $p \in N_{\epsilon}(q)$ and
- 2. q is core object w.r.t. ϵ , MinPts

Density-reachable is the transitive closure of directly density-reachable

Density-Connected

p is *density-connected* to a point *q* w.r.t. ϵ , *MinPts* if there is a point *o* such that both, *p* and *q* are density-reachable from *o* w.r.t. ϵ , *MinPts*

4. Unsupervised Methods

Density-Based Cluster

$\emptyset \subset C \subseteq D$ with database D satisfying:

Maximality:If $q \in C$ and p is density-reachable from q then $p \in C$ Connectivity:Each object in C is density-connected to all other objects in C

Density-Based Clustering

A partitioning $\{C_1, \ldots, C_k, N\}$ of the database D where

- C_1, \ldots, C_k are all density-based clusters
- $N = D \setminus (C_1 \cup \ldots \cup C_k)$ is called the *noise* (objects not in any cluster)

Density-Based Clustering: DBSCAN Algorithm

Basic Theorem

- Each object in a density-based cluster C is density-reachable from any of its core-objects
- ▶ Nothing else is density-reachable from core objects.

Density-Based Clustering: DBSCAN Algorithm

Density-Based Spatial Clustering of Applications with Noise¹

- 1: for all $o \in D$ do
- 2: **if** *o* is not yet classified **then**
- 3: **if** *o* is a core-object **then**
- 4: Collect all objects density-reachable from *o* and assign them to a new cluster.
- 5: else
- 6: Assign *o* to noise *N*

Note

Density-reachable objects are collected by performing successive ϵ -neighborhood queries.

4.1 Clustering

¹Ester M., Kriegel H.-P., Sander J., Xu X.: "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise", In KDD 1996, pp. 226-231.

DBSCAN: Example

Parameters: $\epsilon = 1.75$, minPts = 3. Clusters: C_1

DBSCAN: Example

Parameters: $\epsilon = 1.75$, minPts = 3. Clusters: C_1 ; Noise: N

DBSCAN: Example

Parameters: $\epsilon = 1.75$, minPts = 3. Clusters: C_1 , C_2 ; Noise: N

Determining the Parameters ϵ and *MinPts*

Recap

Cluster: Point density higher than specified by ϵ and *MinPts*

Idea

Use the point density of the least dense cluster in the data set as parameters.

Problem

How to determine this?

Determining the Parameters ϵ and *MinPts*

Heuristic

- 1. Fix a value for MinPts (default: 2d 1 where d is the dimension of the data space)
- 2. Compute the k-distance for all points $p \in D$ (distance from p to the its k-nearest neighbor), with k = minPts.
- 3. Create a *k*-distance plot, showing the *k*-distances of all objects, sorted in decreasing order
- The user selects "border object" *o* from the MinPts-distance plot: *ϵ* is set to MinPts-distance(*o*).

Determining the Parameters ϵ and *MinPts*: Problematic Example

Database Support for Density-Based Clustering

Standard DBSCAN evaluation is based on recursive database traversal. Böhm et al.² observed that DBSCAN, among other clustering algorithms, may be efficiently built on top of similarity join operations.

ϵ -Similarity Join

An ϵ -similarity join yields all pairs of ϵ -similar objects from two data sets Q, P:

$$Q \bowtie_{\epsilon} P = \{(q, p) \in Q \times P \mid \textit{dist}(q, p) \leq \epsilon\}$$

SQL Query

SELECT * FROM Q, P WHERE $dist(Q, P) \leq \epsilon$

²Böhm C., Braunmüller, B., Breunig M., Kriegel H.-P.: *High performance clustering based on the similarity join*. CIKM 2000: 298-305.

^{4.} Unsupervised Methods

^{4.1} Clustering

Database Support for Density-Based Clustering

ϵ -Similarity Self-Join

An ϵ -similarity self join yields all pairs of ϵ -similar objects from a database D.

$$D \Join_{\epsilon} D = \{(q,p) \in D imes D \mid \mathit{dist}(q,p) \leq \epsilon\}$$

SQL Query

SELECT * FROM D q, D p WHERE $dist(q, p) \le \epsilon$

Database Support for Density-Based Clustering

The relation "directly ϵ , *MinPts*-density reachable" may be expressed in terms of an ϵ -similarity self join (abbreviate *minPts* with μ):

$$egin{aligned} ddr_{\epsilon,\mu} &= \{(q,p)\in D imes D\mid q ext{ is }\epsilon,\mu ext{-core-point }\wedge p\in N_\epsilon(q)\}\ &= \{(q,p)\in D imes D\mid dist(q,p)\leq \epsilon\wedge \exists_{\geq\mu}p'\in D: dist(q,p')\leq \epsilon\}\ &= \{(q,p)\in D imes D\mid (q,p)\in D\bowtie_\epsilon D\wedge \exists_{\geq\mu}p'(q,p')\in D\bowtie_\epsilon D\}\ &= \sigma_{|\pi_q(D\bowtie_\epsilon D)|\geq\mu}(D\bowtie_\epsilon D)=:D\bowtie_{\epsilon,\mu}D \end{aligned}$$

SQL Query

SELECT * FROM *D q*, *D p* WHERE $dist(q, p) \le \epsilon$ GROUP BY *q.id* HAVING $count(q.id) \ge \mu$

Afterwards, DBSCAN computes the connected components of $D \bowtie_{\epsilon,\mu} D$.

4. Unsupervised Methods

Efficient Similarity Join Processing

For very large databases, efficient join techniques are available

- Block nested loop or index-based nested loop joins exploit secondary storage structure of large databases.
- Dedicated similarity join, distance join, or spatial join methods based on spatial indexing structures (e.g., R-Tree) apply particularly well. They may traverse their hierarchical directories in parallel (see illustration below).
- ► Other join techniques including sort-merge join or hash join are not applicable.

 $Q \bowtie_{\epsilon} P$

DBSCAN: Discussion

Advantages

- Clusters can have arbitrary shape and size; no restriction to convex shapes
- Number of clusters is determined automatically
- Can separate clusters from surrounding noise
- Complexity: N_{ϵ} -query: $\mathcal{O}(n)$, DBSCAN: $\mathcal{O}(n^2)$.
- Can be supported by spatial index structures ($\rightsquigarrow N_{\epsilon}$ -query: $\mathcal{O}(\log n)$)

Disadvantages

- Input parameters may be difficult to determine
- In some situations very sensitive to input parameter setting

Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods

4.1 Clustering

Introduction Partitioning Methods Probabilistic Model-Based Methods Density-Based Methods **Mean-Shift** Spectral Clustering Hierarchical Methods Evaluation

5. Advanced Topics

Iterative Mode Search

Idea

Find modes in the point density.

Algorithm³

- 1. Select a window size ϵ , starting position m
- 2. Calculate the mean of all points inside the window W(m).
- 3. Shift the window to that position
- 4. Repeat until convergence.

³K. Fukunaga, L. Hostetler: The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition, IEEE Trans Information Theory, 1975

^{4.} Unsupervised Methods

Iterative Mode Search: Example

58

Mean Shift: Core Algorithm

Algorithm⁴

Apply iterative mode search for each data point. Group those that converge to the same mode (called *Basin of Attraction*).

⁴D. Comaniciu, P. Meer. *Mean shift: A robust approach toward feature space analysis.* IEEE Trans. on pattern analysis and machine intelligence, 2002

^{4.} Unsupervised Methods

Mean Shift: Extensions

Weighted Mean

Use different weights for the points in the window, with weights w_x , resp. calculated by some kernel κ :

$$m^{(i+1)} = \frac{\sum\limits_{x \in W(m^{(i)})} w_x \cdot x}{\sum\limits_{x \in W(m^{(i)})} w_x} \quad \rightarrow \quad m^{(i+1)} = \frac{\sum\limits_{x \in W(m^{(i)})} \kappa(x) \cdot x}{\sum\limits_{x \in W(m^{(i)})} \kappa(x)}$$

Binning

First quantise data points to grid. Apply iterative mode seeking only once per bin.

Mean Shift: Discussion

Disadvantages

▶ Relatively high complexity: N_{ϵ} -query (=windowing): $\mathcal{O}(n)$. Algorithm: $\mathcal{O}(tn^2)$

Advantages

- Clusters can have arbitrary shape and size; no restriction to convex shapes
- Number of clusters is determined automatically
- Robust to outliers
- Easy implementation and parallelisation
- Single parameter: ϵ
- Support by spatial index: N_ℓ-query (=windowing): O(log n). Algorithm: O(tn log n)

Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods

4.1 Clustering

Introduction Partitioning Methods Probabilistic Model-Based Methods Density-Based Methods Mean-Shift **Spectral Clustering**

Hierarchical Meth Evaluation

5. Advanced Topics

General Steps for Spectral Clustering I

General Steps for Spectral Clustering II

Clustering as Graph Partitioning

Approach

- Data is modeled by a similarity graph G = (V, E)
 - Vertices $v \in V$: Data objects
 - Weighted edges $\{v_i, v_j\} \in E$: Similarity of v_i and v_j
 - Common variants: ε-neighborhood graph, k-nearest neighbor graph, fully connected graph
- Cluster the data by partitioning the similarity graph
 - Idea: Find global minimum cut
 - Only considers inter-cluster edges, tends to cut small vertex sets from the graph
 - Partitions graph into two clusters
 - Instead, we want a balanced multi-way partitioning
 - Such problems are NP-hard, use approximations

Spectral Clustering

Given

Undirected graph G with weighted edges

- Let W be the (weighted) adjacency matrix of the graph
- ► And D its degree matrix with D_{ii} = ∑ⁿ_{j=1} W_{ij}; other entries are 0

Aim

Partition G into k subsets, minimizing a function of the edge weights between/within the partitions.

2 connected components

Spectral Clustering

Idea

• Consider the *indicator vector* f_C for the cluster C, i.e.

$$f_C{}^{(i)} = egin{cases} 1 & ext{if } v_i \in C \ 0 & ext{else} \end{cases}$$

and e.g. the Laplacian matrix L = D - W

- Further, consider the function $fLf^T = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n W_{ij}(f_i f_j)^2$ (derivation see exercise)
 - Small if f corresponds to a good partitioning
 - ► Given an indicator vector f_C, the function f_CLf_C^T measures the weight of the inter-cluster edges! (see next slide)
 - Since L is positive semi-definite we have $fLf^T \ge 0$
 - ► Formulate a minimization problem on *fLf*^T

Connected Components and Eigenvectors

- General goal: find indicator vectors minimizing function fLf^T besides the trivial indicator vector $f_C = (1, ..., 1)$
- Problem: Finding solution is NP-hard (cf. graph cut problems)
- ▶ How can we relax the problem to find a (good) solution more efficiently?

Observations: For the special case with k connected components

- the k indicator vectors fulfilling $f_C L f_C^T = 0$ yield the perfect clustering
- ► The indicator vector for each component is an eigenvector of *L* with eigenvalue 0
- The k indicator vectors are orthogonal to each other (linearly independent)

Connected Components and Eigenvectors

Lemma

The number of linearly independent eigenvectors with eigenvalue 0 for L equals the number of connected components in the graph.

▶ the eigendecomposition on the Laplacian matrix can be done

Spectral Clustering: Example for Special Case

- Special case: The graph consists of k independent connected components (here: k = 3 and each consisting of 3 knots)
- ▶ The *k* components yield a "perfect" clustering (no edges between clusters), i.e. optimal clustering by indicator vectors $f_{C_1} = (1, 1, 1, 0, 0, 0, 0, 0, 0)$, $f_{C_2} = (0, 0, 0, 1, 1, 1, 0, 0, 0)$ and $f_{C_3} = (0, 0, 0, 0, 0, 0, 1, 1, 1)$

0	1	1	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0
0	0	0	1	0	2	0	0	0
0	0	0	1	2	0	0	0	0
0	0	0	0	0	0	0	3	1
0	0	0	0	0	0	3	0	1
0	0	0	0	0	0	1	1	0
_			_		_	_	_	_

Adjacency matrix W

Degree matrix D

Laplacian matrix L = D - W

• Because of the block form of L, we get $f_C L f_C^T = 0$ for each component C, i.e. L has zero-eigenvectors.

Spectral Clustering: General Case

- ► In general: *L* does not have zero-eigenvectors
 - One large connected component, no perfect clustering
 - ▶ Determine the (linear independent) eigenvectors with the *k* smallest eigenvalues!
- Example: The 3 clusters are now connected by additional edges -1.3 3.3 0 0 0 n ο. -6.6 -0.2 -4.3 -0. -0.2 -4.3 0 0 0 0 0 0 0 1.3 3.3 -0.4 0 0 0 0 0 (v6) 0 0 0 0 0 0 0 1.3 3.3 0 0 0 0 0 0 0 0 0 0 Laplacian matrix L Adjacency matrix W Degree matrix D Eigenvectors of L
- ▶ Smallest eigenvalues of *L*: (0.23, 0.70, 3.43)

Spectral Clustering: Data Transformation

- How to find the clusters based on the eigenvectors?
 - ► Easy in special setting: 0-1 values; now: arbitrary real numbers
- Data transformation: Represent each vertex by a vector of its corresponding components in the eigenvectors
 - ► In the special case, the representations of vertices from the same connected component are equal, e.g. v₁, v₂, v₃ are transformed to (1,0,0)
 - In general case only similar eigenvector representations
- ▶ Clustering (e.g. k-Means) on transformed data points yields final result

Illustration: Embedding of Vertices to a Vector Space

Spectral layout of previous example

Spectral Clustering: Discussion

Advantages

- No assumptions on the shape of the clusters
- Easy to implement

Disadvantages

- May be sensitive to construction of the similarity graph
- Runtime: k smallest eigenvectors can be computed in $\mathcal{O}(n^3)$ (worst case)
 - ▶ However: Much faster on sparse graphs, faster variants have been developed
- Several variations of spectral clustering exist, using different Laplacian matrices which can be related to different graph cut problems ¹

¹Von Luxburg, U.: A tutorial on spectral clustering, in Statistics and Computing, 2007

^{4.} Unsupervised Methods

^{4.1} Clustering