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Density-Based Clustering

Basic Idea

Clusters are dense regions in the data space,
separated by regions of lower density

Results of a k-medoid algorithm for k = 4:
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Density-Based Clustering: Basic Concept

Note

Different density-based approaches exist in the literature. Here we discuss the ideas
underlying the DBSCAN algorithm.

Intuition for Formalization

I For any point in a cluster, the local point density around that point has to exceed
some threshold

I The set of points from one cluster is spatially connected
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Density-Based Clustering: Basic Concept

Local Point Density

Local point density at a point q defined by two parameters:

I ε-radius for the neighborhood of point q

Nε(q) = {p ∈ D | dist(p, q) ≤ ε} (1)

In this chapter, we assume that q ∈ Nε(q)!

I MinPts: minimum number of points in the given neighbourhood Nε(q).
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Density-Based Clustering: Basic Concept

q

Core Point

q is called a core object (or core point) w.r.t. ε, MinPts if |Nε(q)| ≥ minPts
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Density-Based Clustering: Basic Definitions

p

q

p

q

(Directly) Density-Reachable

p directly density-reachable from q w.r.t. ε, MinPts if:

1. p ∈ Nε(q) and

2. q is core object w.r.t. ε,MinPts

Density-reachable is the transitive closure of directly density-reachable
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Density-Based Clustering: Basic Definitions

p

qo

Density-Connected

p is density-connected to a point q w.r.t. ε, MinPts if there is a point o such that
both, p and q are density-reachable from o w.r.t. ε,MinPts
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Density-Based Clustering: Basic Definitions

Density-Based Cluster

∅ ⊂ C ⊆ D with database D satisfying:

Maximality: If q ∈ C and p is density-reachable from q then p ∈ C
Connectivity: Each object in C is density-connected to all other objects in C
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Density-Based Clustering: Basic Definitions

Core

Border
Noise

Density-Based Clustering

A partitioning {C1, . . . ,Ck ,N} of the database D where

I C1, . . . ,Ck are all density-based clusters

I N = D \ (C1 ∪ . . . ∪ Ck) is called the noise (objects not in any cluster)
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Density-Based Clustering: DBSCAN Algorithm

Basic Theorem

I Each object in a density-based cluster C is density-reachable from any of its
core-objects

I Nothing else is density-reachable from core objects.
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Density-Based Clustering: DBSCAN Algorithm

Density-Based Spatial Clustering of Applications with Noise1

1: for all o ∈ D do
2: if o is not yet classified then
3: if o is a core-object then
4: Collect all objects density-reachable from o and assign them to a new cluster.
5: else
6: Assign o to noise N

Note

Density-reachable objects are collected by performing successive ε-neighborhood queries.

1
Ester M., Kriegel H.-P., Sander J., Xu X.: ”A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”, In

KDD 1996 , pp. 226-231.
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DBSCAN: Example
Parameters: ε = 1.75, minPts = 3. Clusters: C1

ε ε
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DBSCAN: Example
Parameters: ε = 1.75, minPts = 3. Clusters: C1; Noise: N

ε ε
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DBSCAN: Example
Parameters: ε = 1.75, minPts = 3. Clusters: C1, C2; Noise: N

ε ε
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Determining the Parameters ε and MinPts

Recap

Cluster: Point density higher than specified by ε and MinPts

Idea

Use the point density of the least dense cluster in the data set as parameters.

Problem

How to determine this?
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Determining the Parameters ε and MinPts

Heuristic

1. Fix a value for MinPts (default: 2d − 1 where d is the
dimension of the data space)

2. Compute the k-distance for all points p ∈ D (distance
from p to the its k-nearest neighbor), with k = minPts.

3. Create a k-distance plot, showing the k-distances of all
objects, sorted in decreasing order

4. The user selects ”border object” o from the
MinPts-distance plot: ε is set to MinPts-distance(o).

3
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Determining the Parameters ε and MinPts: Problematic Example
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Database Support for Density-Based Clustering

Standard DBSCAN evaluation is based on recursive database traversal. Böhm et al.2

observed that DBSCAN, among other clustering algorithms, may be efficiently built on
top of similarity join operations.

ε-Similarity Join

An ε-similarity join yields all pairs of ε-similar objects from two data sets Q, P:

Q ./ε P = {(q, p) ∈ Q × P | dist(q, p) ≤ ε}

SQL Query

SELECT ∗ FROM Q,P WHERE dist(Q,P) ≤ ε

2
Böhm C., Braunmüller, B., Breunig M., Kriegel H.-P.: High performance clustering based on the similarity join. CIKM 2000: 298-305.
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Database Support for Density-Based Clustering

ε-Similarity Self-Join

An ε-similarity self join yields all pairs of ε-similar objects from a database D.

D ./ε D = {(q, p) ∈ D × D | dist(q, p) ≤ ε}

SQL Query

SELECT ∗ FROM D q,D p WHERE dist(q, p) ≤ ε
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Database Support for Density-Based Clustering

The relation ”directly ε, MinPts-density reachable” may be expressed in terms of an
ε-similarity self join (abbreviate minPts with µ):

ddrε,µ = {(q, p) ∈ D × D | q is ε, µ-core-point ∧ p ∈ Nε(q)}
= {(q, p) ∈ D × D | dist(q, p) ≤ ε ∧ ∃≥µp′ ∈ D : dist(q, p′) ≤ ε}
= {(q, p) ∈ D × D | (q, p) ∈ D ./ε D ∧ ∃≥µp′(q, p′) ∈ D ./ε D}
= σ|πq(D./εD)|≥µ(D ./ε D) =: D ./ε,µ D

SQL Query

SELECT ∗ FROM D q,D p WHERE dist(q, p) ≤ ε GROUP BY q.id HAVING
count(q.id) ≥ µ

Afterwards, DBSCAN computes the connected components of D ./ε,µ D.
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Efficient Similarity Join Processing

For very large databases, efficient join techniques are available

I Block nested loop or index-based nested loop joins exploit secondary storage
structure of large databases.

I Dedicated similarity join, distance join, or spatial join methods based on spatial
indexing structures (e.g., R-Tree) apply particularly well. They may traverse their
hierarchical directories in parallel (see illustration below).

I Other join techniques including sort-merge join or hash join are not applicable.

Q

Q ./ε P

P
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DBSCAN: Discussion

Advantages

I Clusters can have arbitrary shape and size; no restriction to convex shapes

I Number of clusters is determined automatically

I Can separate clusters from surrounding noise

I Complexity: Nε-query: O(n), DBSCAN: O(n2).

I Can be supported by spatial index structures ( Nε-query: O(log n))

Disadvantages

I Input parameters may be difficult to determine

I In some situations very sensitive to input parameter setting
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Iterative Mode Search

Idea

Find modes in the point density.

Algorithm3

1. Select a window size ε, starting position m

2. Calculate the mean of all points inside the window W (m).

3. Shift the window to that position

4. Repeat until convergence.

3
K. Fukunaga, L. Hostetler: The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition, IEEE Trans

Information Theory, 1975
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Iterative Mode Search: Example
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Mean Shift: Core Algorithm

Algorithm4

Apply iterative mode search for each data point. Group those that converge to the
same mode (called Basin of Attraction).

4
D. Comaniciu, P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on pattern analysis and machine

intelligence, 2002

4. Unsupervised Methods 4.1 Clustering 59



Mean Shift: Extensions

Weighted Mean

Use different weights for the points in the window, with weights wx , resp. calculated
by some kernel κ:

m(i+1) =

∑
x∈W (m(i))

wx · x∑
x∈W (m(i))

wx
→ m(i+1) =

∑
x∈W (m(i))

κ(x) · x∑
x∈W (m(i))

κ(x)

Binning

First quantise data points to grid. Apply iterative mode seeking only once per bin.
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Mean Shift: Discussion

Disadvantages

I Relatively high complexity: Nε-query (=windowing): O(n). Algorithm: O(tn2)

Advantages

I Clusters can have arbitrary shape and size; no restriction to convex shapes

I Number of clusters is determined automatically

I Robust to outliers

I Easy implementation and parallelisation

I Single parameter: ε

I Support by spatial index: Nε-query (=windowing): O(log n). Algorithm:
O(tn log n)
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General Steps for Spectral Clustering I
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General Steps for Spectral Clustering II
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Clustering as Graph Partitioning

Approach

I Data is modeled by a similarity graph G = (V ,E )
I Vertices v ∈ V : Data objects
I Weighted edges {vi , vj} ∈ E : Similarity of vi and vj
I Common variants: ε-neighborhood graph, k-nearest

neighbor graph, fully connected graph

I Cluster the data by partitioning the similarity graph
I Idea: Find global minimum cut

I Only considers inter-cluster edges, tends to cut small
vertex sets from the graph

I Partitions graph into two clusters

I Instead, we want a balanced multi-way partitioning
I Such problems are NP-hard, use approximations
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Spectral Clustering

Given

Undirected graph G with weighted edges

I Let W be the (weighted) adjacency matrix of the graph

I And D its degree matrix with Dii =
∑n

j=1 Wij ;
other entries are 0

Aim

Partition G into k subsets, minimizing a function of the edge
weights between/within the partitions. 2 connected components
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Spectral Clustering

Idea

I Consider the indicator vector fC for the cluster C , i.e.

fC
(i) =

{
1 if vi ∈ C

0 else

and e.g. the Laplacian matrix L = D −W
I Further, consider the function fLf T = 1

2

∑n
i=1

∑n
j=1 Wij(fi − fj)

2 (derivation see

exercise)
I Small if f corresponds to a good partitioning
I Given an indicator vector fC , the function fCLf

T
C measures the weight of the

inter-cluster edges! (see next slide)
I Since L is positive semi-definite we have fLf T ≥ 0
I Formulate a minimization problem on fLf T
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Connected Components and Eigenvectors

I General goal: find indicator vectors minimizing function fLf T besides the trivial
indicator vector fC = (1, . . . , 1)

I Problem: Finding solution is NP-hard (cf. graph cut problems)

I How can we relax the problem to find a (good) solution more efficiently?

Observations: For the special case with k connected components

I the k indicator vectors fulfilling fCLf
T
C = 0 yield the perfect clustering

I The indicator vector for each component is an eigenvector of L with
eigenvalue 0

I The k indicator vectors are orthogonal to each other (linearly independent)
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Connected Components and Eigenvectors

Lemma

The number of linearly independent eigenvectors with eigenvalue 0 for L equals the
number of connected components in the graph.

I the eigendecomposition on the Laplacian matrix can be done
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Spectral Clustering: Example for Special Case

I Special case: The graph consists of k independent connected components
(here: k = 3 and each consisting of 3 knots)

I The k components yield a ”perfect” clustering (no edges between clusters), i.e. optimal
clustering by indicator vectors fC1 = (1, 1, 1, 0, 0, 0, 0, 0, 0), fC2 = (0, 0, 0, 1, 1, 1, 0, 0, 0)
and fC3 = (0, 0, 0, 0, 0, 0, 1, 1, 1)

I Because of the block form of L, we get fCLf
T
C = 0 for each component C ,

i.e. L has zero-eigenvectors.
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Spectral Clustering: General Case

I In general: L does not have zero-eigenvectors
I One large connected component, no perfect clustering
I Determine the (linear independent) eigenvectors with the k smallest eigenvalues!

I Example: The 3 clusters are now connected by
additional edges

I Smallest eigenvalues of L: (0.23, 0.70, 3.43)

Eigenvectors of L
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Spectral Clustering: Data Transformation
I How to find the clusters based on the eigenvectors?

I Easy in special setting: 0-1 values; now: arbitrary real numbers
I Data transformation: Represent each vertex by a vector of its corresponding

components in the eigenvectors
I In the special case, the representations of vertices from the same connected

component are equal, e.g. v1, v2, v3 are transformed to (1, 0, 0)
I In general case only similar eigenvector representations

I Clustering (e.g. k-Means) on transformed data points yields final result
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Illustration: Embedding of Vertices to a Vector Space

Spectral layout of previous example
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Spectral Clustering: Discussion

Advantages

I No assumptions on the shape of the clusters
I Easy to implement

Disadvantages

I May be sensitive to construction of the similarity graph
I Runtime: k smallest eigenvectors can be computed in O(n3) (worst case)

I However: Much faster on sparse graphs, faster variants have been developed

I Several variations of spectral clustering exist, using different Laplacian matrices
which can be related to different graph cut problems 1

1
Von Luxburg, U.: A tutorial on spectral clustering, in Statistics and Computing, 2007
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