
Ludwig-Maximilians-Universität München
Lehrstuhl für Datenbanksysteme und Data Mining

Prof. Dr. Thomas Seidl

Knowledge Discovery and Data Mining 1
(Data Mining Algorithms 1)

Winter Semester 2019/20



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering

Introduction
Partitioning Methods
Probabilistic Model-Based Methods
Density-Based Methods
Mean-Shift
Spectral Clustering
Hierarchical Methods
Evaluation

4.2 Outlier Detection
4.3 Frequent Pattern Mining



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering

Introduction
Partitioning Methods
Probabilistic Model-Based Methods
Density-Based Methods
Mean-Shift
Spectral Clustering
Hierarchical Methods
Evaluation

4.2 Outlier Detection
4.3 Frequent Pattern Mining



Supervised vs. Unsupervised Learning

Unsupervised Learning (clustering)

I The class labels of training data are unknown
I Given a set of measurements, observations, etc. with the aim of establishing the

existence of classes or clusters in the data
I Classes (=clusters) are to be determined

Supervised Learning (classification)

I Supervision: The training data (observations, measurements, etc.) are
accompanied by labels indicating the class of the observations

I Classes are known in advance (a priori)

I New data is classified based on information extracted from the training set

4. Unsupervised Methods 4.1 Clustering 1



What is Clustering?

Clustering

Grouping a set of data objects into clusters (=collections of data
objects).

I Similar to one another within the same cluster

I Dissimilar to the objects in other clusters

Typical Usage

I As a stand-alone tool to get insight into data distribution

I As a preprocessing step for other algorithms

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5

10

5

0

5

10

15

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

10

5

0

5

10

4. Unsupervised Methods 4.1 Clustering 2



General Applications of Clustering

I Preprocessing – as a data reduction (instead of sampling)
I Image data bases (color histograms for filter distances)
I Stream clustering (handle endless data sets for offline clustering)

I Pattern Recognition and Image Processing
I Spatial Data Analysis:

I create thematic maps in Geographic Information Systems by clustering feature spaces
I detect spatial clusters and explain them in spatial data mining

I Business Intelligence (especially market research)
I WWW

I Documents (Web Content Mining)
I Web-logs (Web Usage Mining)

I Biology, e.g. Clustering of gene expression data

4. Unsupervised Methods 4.1 Clustering 3



Application Example: Downsampling Images
I Reassign color values to k distinct colors

I Cluster pixels using color difference, not spatial data

65536 256 16

8 4 2

4. Unsupervised Methods 4.1 Clustering 4



Major Clustering Approaches

I Partitioning algorithms: Find k partitions, minimizing some
objective function

I Probabilistic Model-Based Clustering (EM)

I Density-based: Find clusters based on connectivity and density
functions

I Hierarchical algorithms: Create a hierarchical decomposition of
the set of objects

I Other methods:
I Grid-based
I Neural networks (SOMs)
I Graph-theoretical methods
I Subspace Clustering

4. Unsupervised Methods 4.1 Clustering 5



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering

Introduction
Partitioning Methods
Probabilistic Model-Based Methods
Density-Based Methods
Mean-Shift
Spectral Clustering
Hierarchical Methods
Evaluation

4.2 Outlier Detection
4.3 Frequent Pattern Mining



Partitioning Algorithms: Basic Concept

Partition

Given a set D, a partitioning C = {C1, . . . ,Ck} of D fulfils:

I Ci ⊆ D for all 1 ≤ i ≤ k

I Ci ∩ Cj = ∅ ⇐⇒ i 6= j

I
⋃

Ci = D

(i.e. each element of D is in exactly one set Ci )

Goal

Construct a partitioning of a database D of n objects into a set of k (k ≤ n) clusters
minimizing an objective function.

Exhaustively enumerating all possible partitionings into k sets in order to find the
global minimum is too expensive.

4. Unsupervised Methods 4.1 Clustering 6



Partitioning Algorithms: Basic Concept

Popular Heuristic Methods

I Choose k representatives for clusters, e.g., randomly
I Improve these initial representatives iteratively:

I Assign each object to the cluster it “fits best” in the current clustering
I Compute new cluster representatives based on these assignments
I Repeat until the change in the objective function from one iteration to the next

drops below a threshold

Example

I k-means: Each cluster is represented by the center of the cluster

I k-medoid: Each cluster is represented by one of its objects

4. Unsupervised Methods 4.1 Clustering 7



k-Means Clustering: Basic Idea

Idea1

Find a clustering such that the
within-cluster variation of each cluster is
small and use the centroid of a cluster as
representative.

Objective

For a given k, form k groups so that the
sum of the (squared) distances between the
mean of the groups and their elements is
minimal

Poor clustering

μ

μ

μ

clustermean
distance

μ Centroids

Good clustering

μ

μ

μ

μ Centroids

1
S.P. Lloyd: Least squares quantization in PCM. In IEEE Information Theory, 1982 (original version: technical report, Bell Labs, 1957)

4. Unsupervised Methods 4.1 Clustering 8



k-Means Clustering: Basic Notions

I Objects p = (p1, . . . , pd ) are points in a d-dimensional vector space (the mean µS

of a set of points S must be defined: µS = 1
|S|
∑

p∈S

p)

I Measure for the compactness of a cluster Cj (sum of squared distances):
SSE (Cj ) =

∑
p∈Cj

||p − µCj
||22

I Measure for the compactness of a clustering C:
SSE (C) =

∑
Cj∈C

SSE (Cj ) =
∑

p∈D

||p − µC(p)||22

I Optimal Partitioning: argmin
C

SSE (C)

I Optimizing the within-cluster variation is computationally challenging (NP-hard)
 use efficient heuristic algorithms

4. Unsupervised Methods 4.1 Clustering 9



k-Means Clustering: Algorithm

k-Means Algorithm: Lloyd’s algorithm

1: Given: k
2: Initialization: Choose k arbitrary representatives
3: repeat
4: Assign each object to the cluster with the nearest representative.
5: Compute the centroids of the clusters of the current partitioning.
6: until representatives do not change

Example

Start Update Reassign Update Reassign

4. Unsupervised Methods 4.1 Clustering 10



k-Means: Voronoi Model for Convex Cluster Regions

Voronoi Diagram

I For a given set of points P = {p1, . . . , pk} (here: cluster representatives), a
Voronoi diagram partitions the data space into Voronoi cells, one cell per point

I The cell of a point p ∈ P covers all points in the data space for which p is the
nearest neighbors among the points from P

Observations

I The Voronoi cells of two neighboring points
pi , pj ∈ P are separated by the perpendicular
hyperplane (”Mittelsenkrechte”) between pi and pj .

I Voronoi cells are intersections of half spaces and thus
convex regions

4. Unsupervised Methods 4.1 Clustering 11



k-Means: Discussion

Strength

I Relatively efficient: O(tkn) (n: #obj., k: #clus., t: #it.; typically: k, t � n)

I Easy implementation

Weaknesses

I Applicable only when mean is defined

I Need to specify k , the number of clusters, in advance

I Sensitive to noisy data and outliers

I Clusters are forced to convex space partitions (Voronoi Cells)

I Result and runtime strongly depend on the initial partition; often terminates at a
local optimum – however: methods for a good initialization exist

4. Unsupervised Methods 4.1 Clustering 12



Variants: Basic Idea

One Problem of k-Means

Applicable only when mean is defined (vector space)

Alternatives for Mean representatives

I Median: (Artificial) Representative object ”in the middle”

I Mode: Value that appears most often (see exercise)

I Medoid: Representative object ”in the middle” (see exercise)

Objective

Find k representatives so that the sum of total distances (TD) between objects and
their closest representative is minimal (more robust against outliers).

4. Unsupervised Methods 4.1 Clustering 13



k-Median

A B C D E F G H I J K
tiny

small

medium

large

huge

data point

median

Idea

I If there is an ordering on the data use median instead of mean.

I Compute median separately per dimension ( efficient computation)

4. Unsupervised Methods 4.1 Clustering 14



K -Means/Median/Mode/Medoid Clustering: Discussion

k-Means k-Median k-Mode k-Medoid

data numerical (mean) ordinal categorical metric

efficiency high O (tkn) low O
(
tk(n − k)2

)
sensitivity
to outliers

high low

I Strength: Easy implementation (many variations and optimizations exist)
I Weaknesses

I Need to specify k in advance
I Clusters are forced to convex space partitions (Voronoi Cells)
I Result and runtime strongly depend on the initial partition; often terminates at a

local optimum – however: methods for good initialization exist

4. Unsupervised Methods 4.1 Clustering 15



Initialization of Partitioning Clustering Methods

I Naive
I Choose sample A of the dataset
I Cluster A and use centers as initialization

I k-means++1

I Select first center uniformly at random
I Choose next point with probability proportional to the

squared distance to the nearest center already chosen
I Repeat until k centers have been selected
I Guarantees an approximation ratio of O(log k) (standard

k-means can generate arbitrarily bad clusterings)

I In general: Repeat with different initial centers and
choose result with lowest clustering error

Bad initialization

Good initialization

1
Arthur, D., Vassilvitskii, S. ”k-means++: The Advantages of Careful Seeding.” ACM-SIAM Symposium on Discrete Algorithms (2007)

4. Unsupervised Methods 4.1 Clustering 16



Choice of the Parameter k

I Idea for a method:
I Determine a clustering for each k = 2, . . . , n − 1
I Choose the ”best” clustering

I But how to measure the quality of a clustering?
I A measure should not be monotonic over k
I The measures for the compactness of a clustering SSE and TD are monotonously

decreasing with increasing value of k .

Silhouette-Coefficient 1

Quality measure for k-means or k-medoid clusterings that is not monotonic over k.

1
Rousseeuw, P. ”Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis”. Computational and Applied

Mathematics (1987)

4. Unsupervised Methods 4.1 Clustering 17



The Silhouette Coefficient

Basic idea

I How good is the clustering = how appropriate is the mapping of objects to clusters
I Elements in cluster should be ”similar” to their representative

I Measure the average distance of objects to their representative: a(o)

I Elements in different clusters should be ”dissimilar”
I Measure the average distance of objects to alternative clusters (i.e. second closest

cluster): b(o)

4. Unsupervised Methods 4.1 Clustering 18



The Silhouette Coefficient

I a(o) = ”Avg. distance between o and objects
in its cluster A.”

a(o) =
1

|C (o)|
∑

p∈C(o)

d(o, p)

I b(o): ”Smallest avg. distance between o and
objects in other cluster.”

b(o) = min
Ci 6=C(o)

 1

|Ci |
∑
p∈Ci

d(o, p)



4. Unsupervised Methods 4.1 Clustering 19



The Silhouette Coefficient

I The silhouette of o is then defined as

s(o) =

{
0 if a(o) = 0, e.g. |Ci | = 1

b(o)−a(o)
max(a(o),b(o)) else

I The value range of the silhouette coefficient is [−1, 1]

I The silhouette of a cluster Ci is defined as

s(Ci ) =
1

|Ci |
∑
o∈Ci

s(o)

I The silhouette of a clustering C = (C1, . . . ,Ck ) is defined as

s(C) =
1

|D|
∑
o∈D

s(o)

where D denotes the whole dataset

4. Unsupervised Methods 4.1 Clustering 20



The Silhouette Coefficient

I ”Reading” the silhouette coefficient: Let a(o) 6= 0
I b(o)� a(o) =⇒ s(o) ≈ 1: good assignment of o to its cluster A
I b(o) ≈ a(o) =⇒ s(o) ≈ 0: o is in-between A and B
I b(o)� a(o) =⇒ s(o) ≈ −1: bad, on average o is closer to members of B

I Silhouette coefficient s(C) of a clustering: Average silhouette of all objects
I 0.7 < s(C) ≤ 1.0: strong structure
I 0.5 < s(C) ≤ 0.7: medium structure
I 0.25 < s(C) ≤ 0.5: weak structure
I s(C) ≤ 0.25: no structure

4. Unsupervised Methods 4.1 Clustering 21



Silhouette Coefficient: Example

dataset with 10 clusters

Image from Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
4. Unsupervised Methods 4.1 Clustering 22



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering

Introduction
Partitioning Methods
Probabilistic Model-Based Methods
Density-Based Methods
Mean-Shift
Spectral Clustering
Hierarchical Methods
Evaluation

4.2 Outlier Detection
4.3 Frequent Pattern Mining



Expectation Maximization (EM)

I Statistical approach for finding maximum likelihood
estimates of parameters in probabilistic models.

I Here: Using EM as clustering algorithm

I Approach: Observations are drawn from one of several
components of a mixture distribution.

I Main idea:
I Define clusters as probability distributions → each

object has a certain probability of belonging to each
cluster

I Iteratively improve the parameters of each distribution
(e.g. center, ”width” and ”height” of a Gaussian
distribution) until some quality threshold is reached

↓

↓

Additional Literature: C. M. Bishop ”Pattern Recognition and Machine Learning”, Springer, 2009
4. Unsupervised Methods 4.1 Clustering 23



Excursus: Gaussian Mixture Distributions

Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

Gaussian Distribution

I Univariate: single variable x ∈ R:

p(x | µ, σ2) = N (x | µ, σ2) =
1

√
2πσ2

exp

(
−

1

2σ2
(x − µ)2

)

with mean µ ∈ R and variance σ2 ∈ R
I Multivariate: d-dimensional vector x ∈ Rd :

p(x | µ,Σ) = N (x | µ,Σ) =
1√

(2π)d |Σ|
exp

(
−

1

2
(x − µ)T Σ−1(x − µ)

)

with mean vector µ ∈ Rd and covariance matrix Σ ∈ Rd×d

4. Unsupervised Methods 4.1 Clustering 24



Excursus: Gaussian Mixture Distributions

Gaussian mixture distribution with k components

I For d-dimensional vector x ∈ Rd :

p(x) =
k∑

l=1

πl · N (x | µl ,Σl )

with mixing coefficients πl ∈ R,
∑

l πl = 1 and 0 ≤ πl ≤ 1

4. Unsupervised Methods 4.1 Clustering 25



EM: Exemplary Application

Example taken from: C. M. Bishop ”Pattern Recognition and Machine Learning”, 2009
4. Unsupervised Methods 4.1 Clustering 26



EM: Clustering Model

Clustering

A clustering M = (C1, . . . ,Ck ) is represented by a mixture
distribution with parameters θ = (π1, µ1,Σ1, . . . , πk , µk ,Σk ):

p(x | θ) =
k∑

l=1

πl · N (x | µl ,Σl )

Cluster

Each cluster is represented by one component of the mixture
distribution:

p(x | µl ,Σl ) = N (x | µl ,Σl )

4. Unsupervised Methods 4.1 Clustering 27



EM: Maximum Likelihood Estimation

I Given a dataset X = {x1, . . . , xn} ⊆ Rd , the likelihood
that all data points xi ∈ X are generated (independently)
by the mixture model with parameters θ is given as:

p(X | θ) =
n∏

i=1

p(xi | θ)

Goal

Find the maximum likelihood estimate (MLE), i.e., the
parameters θML with maximal likelihood:

θML = argmax
θ
{p(X | θ)}

4. Unsupervised Methods 4.1 Clustering 28



EM: Maximum Likelihood Estimation

I Goal: Find MLE. For convenience, we use the log-likelihood:

θML = argmax
θ
{p(X | θ)} = argmax

θ
{log p(X | θ)}

I The log-likelihood can be written as

log p(X | θ) = log
n∏

i=1

k∑
l=1

πl · p(xi | µl ,Σl )

=
n∑

i=1

log
k∑

l=1

πl · p(xi | µl ,Σl )

I Maximization w.r.t. the means:

∂ log p(X | θ)

∂µj

!
= 0

4. Unsupervised Methods 4.1 Clustering 29



EM: Maximum Likelihood Estimation

I Maximization w.r.t. the means yields

µj =

∑n
i=1 γj (xi )xi∑n

i=1 γj (xi )

I Maximization w.r.t. the covariance matrices yields

Σj =

∑n
i=1 γj (xi )(xi − µj )(xi − µj )

T∑n
i=1 γj (xi )

I Maximization w.r.t. the mixing coefficients yields

πj =

∑n
i=1 γj (xi )∑k

l=1

∑n
i=1 γl (xi )

4. Unsupervised Methods 4.1 Clustering 30



EM: Maximum Likelihood Estimation

Problem with finding the optimal parameters θML:

µj =

∑n
i=1 γj (xi )xi∑n

i=1 γj (xi )
and γj (xi ) =

πj · N (xi | µj ,Σj )∑k
l=1 πj · N (xi | µl ,Σk )

I Non-linear mutual dependencies

I Optimizing the Gaussian of cluster j depends on all other Gaussians.

I There is no closed-form solution!

I Approximation through iterative optimization procedures

I Break the mutual dependencies by optimizing µj and γj (xi ) independently

4. Unsupervised Methods 4.1 Clustering 31



EM: Iterative Optimization

Iterative Optimization

1. Initialize means µj , covariances Σj , and mixing coefficients πj and evaluate the
initial log-likelihood.

2. E-step: Evaluate the responsibilities using the current parameter values:

γnew
j (xi ) =

πj · N (xi | µj ,Σj )∑k
l=1 πj · N (xi | µl ,Σl )

3. M-step: Re-estimate the parameters using the current responsibilities:

µnew
j =

∑n
i=1 γ

new
j (xi )xi∑n

i=1 γ
new
j (xi )

...

4. Unsupervised Methods 4.1 Clustering 32



EM: Iterative Optimization

Iterative Optimization

...

Σnew
j =

∑n
i=1 γ

new
j (xi )(xi − µnew

j )(xi − µnew
j )T∑n

i=1 γ
new
j (xi )

πnew
j =

∑n
i=1 γ

new
j (xi )∑k

l=1

∑n
i=1 γ

new
l (xi )

4. Evaluate the new log-likelihood log p(X | θnew ) and check for convergence of
parameters or log-likelihood (| log p(X | θnew )− log p(X | θ)| ≤ ε). If the
convergence criterion is not satisfied, set θ = θnew and go to step 2.

4. Unsupervised Methods 4.1 Clustering 33



EM: Turning the Soft Clustering into a Partitioning

I EM obtains a soft clustering (each object belongs to each cluster with a certain
probability) reflecting the uncertainty of the most appropriate assignment

I Modification to obtain a partitioning variant: Assign each object to the cluster to
which it belongs with the highest probability

C (xi ) = argmax
l∈{1,...,k}

{γl (xi )}

Example taken from: C. M. Bishop ”Pattern Recognition and Machine Learning”, 2009
4. Unsupervised Methods 4.1 Clustering 34



EM: Discussion

I Superior to k-Means for clusters of varying size or clusters
having differing variances

I More accurate data representation

I Convergence to (possibly local) maximum
I Computational effort for t iterations: O(tnk)

I t is quite high in many cases

I Both, result and runtime, strongly depend on
I the initial assignment

I Do multiple random starts and choose the final estimate
with highest likelihood

I Initialize with clustering algorithms (e.g., k-Means): usually
converges much faster

I Local maxima and initialization issues have been addressed
in various extensions of EM

I a proper choice of k (next slide)

4. Unsupervised Methods 4.1 Clustering 35



EM: Model Selection for Determining Parameter k

Problem

Classical trade-off problem for selecting the proper number of components k :

I If k is too high, the mixture may overfit the data

I If k is too low, the mixture may not be flexible enough to approximate the data

Idea

Determine candidate models θk for k ∈ {kmin, . . . , kmax} and select the model
according to some quality measure qual :

θk∗ = max
k∈{kmin,...,kmax}

{qual(θk )}

I Silhouette Coefficient (as for k-Means) only works for partitioning approaches

I The likelihood is nondecreasing in k

4. Unsupervised Methods 4.1 Clustering 36



EM: Model Selection for Determining Parameter k

Solution

Deterministic or stochastic model selection methods 1 which try to balance the
goodness of fit with simplicity.

I Deterministic:
qual(θk ) = log p(X | θk )− P(k)

where P(k) is an increasing function penalizing higher values of k

I Stochastic: Based on Markov Chain Monte Carlo (MCMC)

1G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.
4. Unsupervised Methods 4.1 Clustering 37



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering

Introduction
Partitioning Methods
Probabilistic Model-Based Methods
Density-Based Methods
Mean-Shift
Spectral Clustering
Hierarchical Methods
Evaluation

4.2 Outlier Detection
4.3 Frequent Pattern Mining



Density-Based Clustering

Basic Idea

Clusters are dense regions in the data space,
separated by regions of lower density

Results of a k-medoid algorithm for k = 4:

4. Unsupervised Methods 4.1 Clustering 38



Density-Based Clustering: Basic Concept

Note

Different density-based approaches exist in the literature. Here we discuss the ideas
underlying the DBSCAN algorithm.

Intuition for Formalization

I For any point in a cluster, the local point density around that point has to exceed
some threshold

I The set of points from one cluster is spatially connected

4. Unsupervised Methods 4.1 Clustering 39



Density-Based Clustering: Basic Concept

Local Point Density

Local point density at a point q defined by two parameters:

I ε-radius for the neighborhood of point q

Nε(q) = {p ∈ D | dist(p, q) ≤ ε} (1)

In this chapter, we assume that q ∈ Nε(q)!

I MinPts: minimum number of points in the given neighbourhood Nε(q).

4. Unsupervised Methods 4.1 Clustering 40



Density-Based Clustering: Basic Concept

q

Core Point

q is called a core object (or core point) w.r.t. ε, MinPts if |Nε(q)| ≥ minPts

4. Unsupervised Methods 4.1 Clustering 41



Density-Based Clustering: Basic Definitions

p

q

p

q

(Directly) Density-Reachable

p directly density-reachable from q w.r.t. ε, MinPts if:

1. p ∈ Nε(q) and

2. q is core object w.r.t. ε,MinPts

Density-reachable is the transitive closure of directly density-reachable

4. Unsupervised Methods 4.1 Clustering 42



Density-Based Clustering: Basic Definitions

p

qo

Density-Connected

p is density-connected to a point q w.r.t. ε, MinPts if there is a point o such that
both, p and q are density-reachable from o w.r.t. ε,MinPts

4. Unsupervised Methods 4.1 Clustering 43



Density-Based Clustering: Basic Definitions

Density-Based Cluster

∅ ⊂ C ⊆ D with database D satisfying:

Maximality: If q ∈ C and p is density-reachable from q then p ∈ C
Connectivity: Each object in C is density-connected to all other objects in C

4. Unsupervised Methods 4.1 Clustering 44



Density-Based Clustering: Basic Definitions

Core

Border
Noise

Density-Based Clustering

A partitioning {C1, . . . ,Ck ,N} of the database D where

I C1, . . . ,Ck are all density-based clusters

I N = D \ (C1 ∪ . . . ∪ Ck ) is called the noise (objects not in any cluster)

4. Unsupervised Methods 4.1 Clustering 45



Density-Based Clustering: DBSCAN Algorithm

Basic Theorem

I Each object in a density-based cluster C is density-reachable from any of its
core-objects

I Nothing else is density-reachable from core objects.

4. Unsupervised Methods 4.1 Clustering 46



Density-Based Clustering: DBSCAN Algorithm

Density-Based Spatial Clustering of Applications with Noise1

1: for all o ∈ D do
2: if o is not yet classified then
3: if o is a core-object then
4: Collect all objects density-reachable from o and assign them to a new cluster.
5: else
6: Assign o to noise N

Note

Density-reachable objects are collected by performing successive ε-neighborhood queries.

1
Ester M., Kriegel H.-P., Sander J., Xu X.: ”A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”, In

KDD 1996 , pp. 226-231.

4. Unsupervised Methods 4.1 Clustering 47



DBSCAN: Example
Parameters: ε = 1.75, minPts = 3. Clusters: C1

ε ε

4. Unsupervised Methods 4.1 Clustering 48



DBSCAN: Example
Parameters: ε = 1.75, minPts = 3. Clusters: C1; Noise: N

ε ε

4. Unsupervised Methods 4.1 Clustering 48



DBSCAN: Example
Parameters: ε = 1.75, minPts = 3. Clusters: C1, C2; Noise: N

ε ε

4. Unsupervised Methods 4.1 Clustering 48



Determining the Parameters ε and MinPts

Recap

Cluster: Point density higher than specified by ε and MinPts

Idea

Use the point density of the least dense cluster in the data set as parameters.

Problem

How to determine this?

4. Unsupervised Methods 4.1 Clustering 49



Determining the Parameters ε and MinPts

Heuristic

1. Fix a value for MinPts (default: 2d − 1 where d is the
dimension of the data space)

2. Compute the k-distance for all points p ∈ D (distance
from p to the its k-nearest neighbor), with k = minPts.

3. Create a k-distance plot, showing the k-distances of all
objects, sorted in decreasing order

4. The user selects ”border object” o from the
MinPts-distance plot: ε is set to MinPts-distance(o).

3
-d

is
ta

n
ce

"border object"

Objects

first "kink"

4. Unsupervised Methods 4.1 Clustering 50



Determining the Parameters ε and MinPts: Problematic Example

A

B

C

D

E

D

F

G

D1
D2

G1

G2
G3

A

B

C

E
F

G1

G2

D2
D1

D

G

G3

A, B, C

B

B, D, E

Objects

A,B,C

B,D,E

D1,D2,G1,
G2,G3

D,F,G

4. Unsupervised Methods 4.1 Clustering 51



Database Support for Density-Based Clustering

Standard DBSCAN evaluation is based on recursive database traversal. Böhm et al.2

observed that DBSCAN, among other clustering algorithms, may be efficiently built on
top of similarity join operations.

ε-Similarity Join

An ε-similarity join yields all pairs of ε-similar objects from two data sets Q, P:

Q ./ε P = {(q, p) ∈ Q × P | dist(q, p) ≤ ε}

SQL Query

SELECT ∗ FROM Q,P WHERE dist(Q,P) ≤ ε

2
Böhm C., Braunmüller, B., Breunig M., Kriegel H.-P.: High performance clustering based on the similarity join. CIKM 2000: 298-305.

4. Unsupervised Methods 4.1 Clustering 52



Database Support for Density-Based Clustering

ε-Similarity Self-Join

An ε-similarity self join yields all pairs of ε-similar objects from a database D.

D ./ε D = {(q, p) ∈ D × D | dist(q, p) ≤ ε}

SQL Query

SELECT ∗ FROM D q,D p WHERE dist(q, p) ≤ ε

4. Unsupervised Methods 4.1 Clustering 53



Database Support for Density-Based Clustering

The relation ”directly ε, MinPts-density reachable” may be expressed in terms of an
ε-similarity self join (abbreviate minPts with µ):

ddrε,µ = {(q, p) ∈ D × D | q is ε, µ-core-point ∧ p ∈ Nε(q)}
= {(q, p) ∈ D × D | dist(q, p) ≤ ε ∧ ∃≥µp′ ∈ D : dist(q, p′) ≤ ε}
= {(q, p) ∈ D × D | (q, p) ∈ D ./ε D ∧ ∃≥µp′(q, p′) ∈ D ./ε D}
= σ|πq(D./εD)|≥µ(D ./ε D) =: D ./ε,µ D

SQL Query

SELECT ∗ FROM D q,D p WHERE dist(q, p) ≤ ε GROUP BY q.id HAVING
count(q.id) ≥ µ

Afterwards, DBSCAN computes the connected components of D ./ε,µ D.

4. Unsupervised Methods 4.1 Clustering 54



Efficient Similarity Join Processing

For very large databases, efficient join techniques are available

I Block nested loop or index-based nested loop joins exploit secondary storage
structure of large databases.

I Dedicated similarity join, distance join, or spatial join methods based on spatial
indexing structures (e.g., R-Tree) apply particularly well. They may traverse their
hierarchical directories in parallel (see illustration below).

I Other join techniques including sort-merge join or hash join are not applicable.

Q

Q ./ε P

P

4. Unsupervised Methods 4.1 Clustering 55



DBSCAN: Discussion

Advantages

I Clusters can have arbitrary shape and size; no restriction to convex shapes

I Number of clusters is determined automatically

I Can separate clusters from surrounding noise

I Complexity: Nε-query: O(n), DBSCAN: O(n2).

I Can be supported by spatial index structures ( Nε-query: O(log n))

Disadvantages

I Input parameters may be difficult to determine

I In some situations very sensitive to input parameter setting

4. Unsupervised Methods 4.1 Clustering 56



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering

Introduction
Partitioning Methods
Probabilistic Model-Based Methods
Density-Based Methods
Mean-Shift
Spectral Clustering
Hierarchical Methods
Evaluation

4.2 Outlier Detection
4.3 Frequent Pattern Mining



Iterative Mode Search

Idea

Find modes in the point density.

Algorithm3

1. Select a window size ε, starting position m

2. Calculate the mean of all points inside the window W (m).

3. Shift the window to that position

4. Repeat until convergence.

3
K. Fukunaga, L. Hostetler: The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition, IEEE Trans

Information Theory, 1975

4. Unsupervised Methods 4.1 Clustering 57



Iterative Mode Search: Example

4. Unsupervised Methods 4.1 Clustering 58



Mean Shift: Core Algorithm

Algorithm4

Apply iterative mode search for each data point. Group those that converge to the
same mode (called Basin of Attraction).

4
D. Comaniciu, P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on pattern analysis and machine

intelligence, 2002

4. Unsupervised Methods 4.1 Clustering 59



Mean Shift: Extensions

Weighted Mean

Use different weights for the points in the window, with weights wx , resp. calculated
by some kernel κ:

m(i+1) =

∑
x∈W (m(i))

wx · x∑
x∈W (m(i))

wx
→ m(i+1) =

∑
x∈W (m(i))

κ(x) · x∑
x∈W (m(i))

κ(x)

Binning

First quantise data points to grid. Apply iterative mode seeking only once per bin.

4. Unsupervised Methods 4.1 Clustering 60



Mean Shift: Discussion

Disadvantages

I Relatively high complexity: Nε-query (=windowing): O(n). Algorithm: O(tn2)

Advantages

I Clusters can have arbitrary shape and size; no restriction to convex shapes

I Number of clusters is determined automatically

I Robust to outliers

I Easy implementation and parallelisation

I Single parameter: ε

I Support by spatial index: Nε-query (=windowing): O(log n). Algorithm:
O(tn log n)

4. Unsupervised Methods 4.1 Clustering 61



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering

Introduction
Partitioning Methods
Probabilistic Model-Based Methods
Density-Based Methods
Mean-Shift
Spectral Clustering
Hierarchical Methods
Evaluation

4.2 Outlier Detection
4.3 Frequent Pattern Mining



General Steps for Spectral Clustering I

4. Unsupervised Methods 4.1 Clustering 62



General Steps for Spectral Clustering II

4. Unsupervised Methods 4.1 Clustering 63



Clustering as Graph Partitioning

Approach

I Data is modeled by a similarity graph G = (V ,E )
I Vertices v ∈ V : Data objects
I Weighted edges {vi , vj} ∈ E : Similarity of vi and vj

I Common variants: ε-neighborhood graph, k-nearest
neighbor graph, fully connected graph

I Cluster the data by partitioning the similarity graph
I Idea: Find global minimum cut

I Only considers inter-cluster edges, tends to cut small
vertex sets from the graph

I Partitions graph into two clusters

I Instead, we want a balanced multi-way partitioning
I Such problems are NP-hard, use approximations

4. Unsupervised Methods 4.1 Clustering 64



Spectral Clustering - Preliminaries

Given

Undirected graph G with weighted edges

I Let W be the (weighted) adjacency matrix of the graph

I And D its degree matrix with Dii =
∑n

j=1 Wij ;
other entries are 0

I Definition of the Laplacian matrix : L = D −W

Aim

Partition G into k subsets, minimizing a function of the edge
weights between/within the partitions.

2 connected components

4. Unsupervised Methods 4.1 Clustering 65



Spectral Clustering : Preliminaries

Properties of L

1. For every vector f ∈ Rn, we have: fLf T = 1
2

∑n
i=1

∑n
j=1 Wij (fi − fj )

2

2. L is symmetric and positive semi-definite

3. The smallest eigenvalue of L is 0, with corresponding eigenvector 1

4. L has n non-negative, real-valued eigenvalues 0 = λ0 ≤ λ1 ≤ . . . ≤ λn

Indicator vector

I Consider the indicator vector fC for the cluster C , i.e.

fC
(i) =

{
1 if vi ∈ C

0 else

4. Unsupervised Methods 4.1 Clustering 66



Spectral Clustering: Graph Partitioning with Eigendecomposition

I General goal: find indicator vectors minimizing function fLf T besides the trivial
indicator vector fC = (1, . . . , 1)

I Problem: Finding solution is NP-hard (cf. graph cut problems)

I How can we relax the problem to find a (good) solution more efficiently?

Recap: Eigendecomposition

I Eigendecomposition on the Laplacian L:
LV = V Λ, where the columns in V are the eigenvectors and Λ is a diagonal
matrix with corresponding eigenvalues.

I Each element in Λ : λi = v T
i Lvi ≥ 0 (def. of positive semi-definite).

4. Unsupervised Methods 4.1 Clustering 67



Spectral Clustering: k Connected Components

Observations: For the special case with k connected components

I The k indicator vectors fulfilling fC Lf T
C = 0 yield the perfect clustering

I The indicator vector for each component is an eigenvector of L with eigenvalue 0

I The k indicator vectors are orthogonal to each other (linearly independent)

Lemma: Number of connected components

The number of linearly independent eigenvectors with eigenvalue 0 for L equals the
number of connected components in the graph.

4. Unsupervised Methods 4.1 Clustering 68



Spectral Clustering: Example for k connected components

I The graph consists of k = 3 independent connected components

I The k components yield a ”perfect” clustering (no edges between clusters),
minimizing fCi

Lf T
Ci

= 0 is given by the indicator vectors
fC1 = (1, 1, 1, 0, 0, 0, 0, 0, 0), fC2 = (0, 0, 0, 1, 1, 1, 0, 0, 0) and
fC3 = (0, 0, 0, 0, 0, 0, 1, 1, 1)

L =

L1

L2

L3



I Because of the block form of L, we get fCi
Lf T

Ci
= 0 for each component Ci , i.e.

the multiplicity of the eigenvalue 0 is 3 (λ0 = λ1 = λ2 = 0).

4. Unsupervised Methods 4.1 Clustering 69



Spectral Clustering: General Case

Observations: General Case

I All weights wij are non-negative, i.e. fLf T can be minimized by making fi be
similar to fj if the vertices vi and vj are connected

I Eigengap heuristic: Choose the number of clusters k such that all eigenvalues
λ1, . . . , λk are small, but λk+1 is relatively large.
Motivations for that are:

I k disconneted cluster have eigenvalue 0 and then there is a gap to λk+1 > 0
I The sizes of cuts are closely related to the size of the first eigenvalues

4. Unsupervised Methods 4.1 Clustering 70



Spectral Clustering: General Case

I In general: Multiplicity of eigenvalue 0 is 1 (i.e, only λ0 = 0)
I One large connected component → no perfect clustering possible
I Determine the (linear independent) eigenvectors with the k smallest eigenvalues!

I Example: The 3 clusters are now connected by additional edges

Eigenvectors (vi )
3
i=1 of L

I Smallest eigenvalues of L, excluding non-trivial solutions (λi , i ≥ 1):
(0.23, 0.70, 3.43)(Notice eigengap between λ2 and λ3)

4. Unsupervised Methods 4.1 Clustering 71



Spectral Clustering: Data Transformation
I How to find the clusters based on the eigenvectors?

I Easy in special setting: 0-1 values; now: arbitrary real numbers
I Data transformation: Represent each vertex by a vector of its corresponding

components in the eigenvectors
I In the special case, the representations of vertices from the same connected

component are equal, e.g. v1, v2, v3 are transformed to (1, 0, 0)
I In general case only similar eigenvector representations

I Clustering (e.g. k-Means) on transformed data points yields final result

4. Unsupervised Methods 4.1 Clustering 72



Illustration: Embedding of Vertices to a Vector Space

Spectral layout of previous example

4. Unsupervised Methods 4.1 Clustering 73



Spectral Clustering: Discussion

Advantages

I No assumptions on the shape of the clusters
I Easy to implement

Disadvantages

I May be sensitive to construction of the similarity graph
I Runtime: k smallest eigenvectors can be computed in O(n3) (worst case)

I However: Much faster on sparse graphs, faster variants have been developed

I Several variations of spectral clustering exist, using different Laplacian matrices
which can be related to different graph cut problems 1

1
Von Luxburg, U.: A tutorial on spectral clustering, in Statistics and Computing, 2007

4. Unsupervised Methods 4.1 Clustering 74



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering

Introduction
Partitioning Methods
Probabilistic Model-Based Methods
Density-Based Methods
Mean-Shift
Spectral Clustering
Hierarchical Methods
Evaluation

4.2 Outlier Detection
4.3 Frequent Pattern Mining



From Partitioning to Hierarchical Clustering

Global parameters to separate all clusters with a partitioning clustering method may
not exist:

Need a hierarchical clustering algorithm in these situations

4. Unsupervised Methods 4.1 Clustering 75



Hierarchical Clustering: Basic Notions

I Hierarchical decomposition of the data set (with respect to a given similarity
measure) into a set of nested clusters

I Result represented by a so called dendrogram (greek δενδρo = tree)
I Nodes in the dendrogram represent possible clusters
I Dendrogram can be constructed bottom-up (agglomerative approach) or top down

(divisive approach)

bottom top

4. Unsupervised Methods 4.1 Clustering 76



Hierarchical Clustering: Example

I Interpretation of the dendrogram
I The root represents the whole data set
I A leaf represents a single object in the data set
I An internal node represents the union of all objects in its sub-tree
I The height of an internal node represents the distance between its two child nodes

4. Unsupervised Methods 4.1 Clustering 77



Agglomerative Hierarchical Clustering

Generic Algorithm

1. Initially, each object forms its own cluster

2. Consider all pairwise distances between the initial
clusters (objects)

3. Merge the closest pair (A,B) in the set of the current
clusters into a new cluster C = A ∪ B

4. Remove A and B from the set of current clusters; insert
C into the set of current clusters

5. If the set of current clusters contains only C (i.e., if C
represents all objects from the database): STOP

6. Else: determine the distance between the new cluster C
and all other clusters in the set of current clusters and
go to step 3.

4. Unsupervised Methods 4.1 Clustering 78



Single-Link Method and Variants

I Agglomerative hierarchical clustering requires a distance function for clusters

I Given: a distance function dist(p, q) for database objects

I The following distance functions for clusters (i.e., sets of objects) X and Y are
commonly used for hierarchical clustering:

Single-Link: distsl (X ,Y ) = minx∈X ,y∈Y dist(x , y)
Complete-Link: distcl (X ,Y ) = maxx∈X ,y∈Y dist(x , y)
Average-Link: distal (X ,Y ) = 1

|X |·|Y |
∑

x∈X ,y∈Y dist(x , y)

4. Unsupervised Methods 4.1 Clustering 79



Divisive Hierarchical Clustering

General Approach: Top Down

I Initially, all objects form one cluster
I Repeat until all clusters are singletons

I Choose a cluster to split → how?
I Replace the chosen cluster with the sub-clusters and split into two → how to split?

Example solution: DIANA

I Select the cluster C with largest diameter for splitting
I Search the most disparate object o in C (highest average dissimilarity)

I Splinter group S = {o}
I Iteratively assign the o′ /∈ S with the highest D(o′) > 0 to the splinter group until

D(o′) ≤ 0 for all o′ /∈ S , where

D(o′) =
∑

oj∈C\S

d(o′, oj )

|C \ S |
−
∑
oi∈S

d(o′, oi )

|S |

4. Unsupervised Methods 4.1 Clustering 80



Discussion Agglomerative vs. Divisive HC

I Divisive and Agglomerative HC need n − 1 steps
I Agglomerative HC has to consider n(n−1)

2 =
(

n
2

)
combinations in the first step

I Divisive HC potentially has 2n−1 − 1 many possibilities to split the data in its first
step. Not every possibility has to be considered (DIANA)

I Divisive HC is conceptually more complex since it needs a second ”flat” clustering
algorithm (splitting procedure)

I Agglomerative HC decides based on local patterns

I Divisive HC uses complete information about the global data distribution  able
to provide better clusterings than Agglomerative HC?

4. Unsupervised Methods 4.1 Clustering 81



Density-Based Hierarchical Clustering

I Observation: Dense clusters are completely contained by less dense clusters

I Idea: Process objects in the ”right” order and keep track of point density in their
neighborhood

4. Unsupervised Methods 4.1 Clustering 82



Core Distance and Reachability Distance
Parameters: ”generating” distance ε, fixed value MinPts

core-distε,MinPts(o)

I ”smallest distance such that o is a core object”
I if core-dist > ε: undefined

reach-distε,MinPts(p, o)

I ”smallest dist. s.t. p is directly density-reachable from o”
I if reach-dist > ε: ∞

reach-dist(p, o) =


dist(p, o) , dist(p, o) ≥ core-dist(o)

core-dist(o) , dist(p, o) < core-dist(o)

∞ , dist(p, o) > ε

4. Unsupervised Methods 4.1 Clustering 83



The Algorithm OPTICS

OPTICS1: Main Idea

”Ordering Points To Identify the Clustering Structure”
I Visit each point

I Always make a shortest jump

I Maintain two data structures
I seedList: Stores all objects with shortest reachability

distance seen so far (”distance of a jump to that point”) in
ascending order; organized as a heap

I clusterOrder : Resulting cluster order is constructed
sequentially (order of objects + reachability-distances)

1
Ankerst M., Breunig M., Kriegel H.-P., Sander J. ”OPTICS: Ordering Points To Identify the Clustering Structure”. SIGMOD (1999)

4. Unsupervised Methods 4.1 Clustering 84



The Algorithm OPTICS

1: seedList = ∅
2: while there are unprocessed objects in DB do
3: if seedList = ∅ then
4: insert arbitrary unprocessed object into

clusterOrder with reach-dist =∞
5: else
6: remove first object from seedList and insert into

clusterOrder with its current reach-dist

7: // Let o be the last object inserted into clusterOrder
8: mark o as processed
9: for p ∈ range(o, ε) do

10: // Insert/update p in seedList
11: compute reach-dist(p, o)
12: seedList.update(p, reach-dist(p, o))

4. Unsupervised Methods 4.1 Clustering 85



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: Example

4. Unsupervised Methods 4.1 Clustering 86



OPTICS: The Reachability Plot

4. Unsupervised Methods 4.1 Clustering 87



OPTICS: The Reachability Plot

I Plot the points together with their reachability-distances. Use the order in which
they where returned by the algorithm

I Represents the density-based clustering structure
I Easy to analyze
I Independent of the dimensionality of the data

4. Unsupervised Methods 4.1 Clustering 88



OPTICS: Parameter Sensitivity

I Relatively insensitive to parameter settings

I Good result if parameters are just ”large enough”

4. Unsupervised Methods 4.1 Clustering 89



Hierarchical Clustering: Discussion

Advantages

I Does not require the number of clusters to be known in advance
I No (standard methods) or very robust parameters (OPTICS)
I Computes a complete hierarchy of clusters
I Good result visualizations integrated into the methods
I A ”flat” partition can be derived afterwards (e.g. via a cut through the

dendrogram or the reachability plot)

Disadvantages

I May not scale well
I Runtime for the standard methods: O(n2 log n2)
I Runtime for OPTICS: without index support O(n2)

I User has to choose the final clustering

4. Unsupervised Methods 4.1 Clustering 90



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering

Introduction
Partitioning Methods
Probabilistic Model-Based Methods
Density-Based Methods
Mean-Shift
Spectral Clustering
Hierarchical Methods
Evaluation

4.2 Outlier Detection
4.3 Frequent Pattern Mining



Evaluation of Clustering Results

Type Positive Negative

Expert’s
Opinion

may reveal new insight
into the data

very expensive, results
are not comparable

External
Measures

objective evaluation needs ”ground truth”

Internal
Measures

no additional informa-
tion needed

approaches optimizing
the evaluation criteria
will always be preferred

Expert’s Opinion

External Measure

Internal Measure
4. Unsupervised Methods 4.1 Clustering 91



External Measures

Notation

Given a data set D, a clustering C = {C1, . . . ,Ck} and ground truth G = {G1, . . . ,Gl}.

Problem

Since the cluster labels are ”artificial”, permuting them should not change the score.

Solution

Instead of comparing cluster and ground truth labels directly, consider all pairs of
objects. Check whether they have the same label in G and if they have the same in C.

4. Unsupervised Methods 4.1 Clustering 92



Formalisation as Retrieval Problem for Clustering

C1 C2 C3
D

o

p

p′SC 3

∈ SC

With P = {(o, p) ∈ D × D | o 6= p} define:

I Same cluster label: SC = {(o, p) ∈ P | ∃Ci ∈ C : {o, p} ⊆ Ci}
I Different cluster label: SC = P \ SC

and analogously for G.

4. Unsupervised Methods 4.1 Clustering 93



Formalisation as Retrieval Problem for Clustering

Define

I TP = |SC ∩ SG |
(same cluster in both, ”true positives”)

I FP = |SC ∩ SG |
(same cluster in C, different cluster in G, ”false
positives”)

I TN = |SC ∩ SG |
(different cluster in both, ”true negatives”)

I FN = |SC ∩ SG |
(different cluster in C, same cluster in G, ”false
negatives”)

Note the difference to the definitions in
classification!

SC SC

SG

SG

TP FN

FP TN

4. Unsupervised Methods 4.1 Clustering 94



External Measures - Retrieval Problem

I Recall (0 ≤ rec ≤ 1, larger is better)

rec =
TP

TP + FN
=
|SC ∩ SG |
|SG |

I Precision (0 ≤ prec ≤ 1, larger is better)

prec =
TP

TP + FP
=
|SC ∩ SG |
|SC |

I F1-Measure (0 ≤ F1 ≤ 1, larger is better)

F1 =
2 · rec · prec

rec + prec
=

2|SC ∩ SG |
|SC |+ |SG |

SC SC

SG

SG

TP FN

FP TN

4. Unsupervised Methods 4.1 Clustering 95



External Measures - Retrieval Problem

I Rand Index (0 ≤ RI ≤ 1, larger is better):

RI (C | G) =
TP + TN

TP + TN + FP + FN
=
|SC ∩ SG |+ |SC ∩ SG |

|P|

I Adjusted Rand Index (ARI): Compares RI (C,G)
against expected (R,G) of random cluster assignment
R.

I Jaccard Coefficient (0 ≤ JC ≤ 1, larger is better):

JC =
TP

TP + FP + FN
=

|SC ∩ SG |
|P| − |SC ∩ SG |

SC SC

SG

SG

TP FN

FP TN

4. Unsupervised Methods 4.1 Clustering 96



External Measures - Retrieval Problem

I Confusion Matrix / Contingency Table N ∈ Nk×l with Nij = |Ci ∩ Gj |
G1 . . . Gl

C1 |C1 ∩ G1| . . . |C1 ∩ Gl |
...

...
. . .

Ck |Ck ∩ G1| |Ck ∩ Gl |

I Define Ni =
l∑

j=1
Nij (i.e. Ni = |Ci |)

I Define N =
k∑

i=1
Ni (i.e. N = |D|)

4. Unsupervised Methods 4.1 Clustering 97



External Measures - Information Theory

I (Shannon) Entropy:

H(C) = −
∑
Ci∈C

p(Ci ) log p(Ci ) = −
∑
Ci∈C

|Ci |
|D|

log
|Ci |
|D|

= −
k∑

i=1

Ni

N
log

Ni

N

I Mutual Entropy:

H(C | G) = −
∑
Ci∈C

p(Ci )
∑
Gj∈G

p(Gj | Ci ) log p(Gj | Ci )

= −
∑
Ci∈C

|Ci |
|D|

∑
Gj∈G

|Ci ∩ Gj |
|Ci |

log
|Ci ∩ Gj |
|Ci |

= −
k∑

i=1

Ni

N

l∑
j=1

Nij

Ni
log

Nij

Ni

4. Unsupervised Methods 4.1 Clustering 98



External Measures - Information Theory

I Mutual Information:

I (C,G) = H(C)− H(C | G) = H(G)− H(G | C)

I Normalized Mutual Information (NMI) (0 ≤ NMI ≤ 1, larger is better):

NMI (C,G) =
I (C,G)√

H(C)H(G)

I Adjusted Mutual Information (AMI): Compares MI (C,G) against expected
MI (R,G) of random cluster assignment R.

4. Unsupervised Methods 4.1 Clustering 99



Internal Measures: Cohesion

Notation

Let D be a set of size n = |D|, and let C = {C1, . . . ,Ck} be a partitioning of D.

Cohesion

Average distance between objects of the same cluster.

coh(Ci ) =

(
|Ci |

2

)−1 ∑
o,p∈Ci ,o 6=p

d(o, p)

Cohesion of clustering is equal to weighted mean of the clusters’
cohesions.

coh(C) =
k∑

i=1

|Ci |
n

coh(Ci )

4. Unsupervised Methods 4.1 Clustering 100



Internal Measures: Separation

Separation

Separation between to clusters: Average distance between pairs

sep(Ci ,Cj ) =
1

|Ci ||Cj |
∑

o∈Ci ,p∈Cj

d(o, p)

Separation of one cluster: Minimum separation to another cluster:

sep(Ci ) = min
j 6=i

sep(Ci ,Cj )

Separation of clustering is equal to weighted mean of the clusters’
separations.

sep(C) =
k∑

i=1

|Ci |
n

sep(Ci )

4. Unsupervised Methods 4.1 Clustering 101



Evaluating the Distance Matrix

7.5 5.0 2.5 0.0 2.5 5.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

dataset
(well separated)

0 20 40 60 80

0

20

40

60

80

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Distance matrix
(sorted by k-means cluster label)

after: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)

4. Unsupervised Methods 4.1 Clustering 102



Evaluating the Distance Matrix

Distance matrices differ for different clustering approaches (here on random data)
k-means EM DBSCAN Complete Link

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

after: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)

4. Unsupervised Methods 4.1 Clustering 103



Cohesion and Separation

Problem

Suitable for convex cluster, but not for stretched clusters (cf. silhouette coefficient).

4. Unsupervised Methods 4.1 Clustering 104



Ambiguity of Clusterings

I Clustering according to: Color of shirt, direction of view, glasses, . . .

4. Unsupervised Methods 4.1 Clustering 105



Ambiguity of Clusterings

I Clustering according to: Color of shirt, direction of view, glasses, . . .

4. Unsupervised Methods 4.1 Clustering 105



Ambiguity of Clusterings

from: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)

4. Unsupervised Methods 4.1 Clustering 106



Ambiguity of Clusterings

”Philosophical” Problem

“What is a correct clustering?”

I Most approaches find clusters in every dataset,
even in uniformly distributed objects

I Are there clusters?
I Apply clustering algorithm
I Check for reasonability of clusters

I Problem: No clusters found 6= no clusters
existing

I Maybe clusters exists only in certain models,
but can not be found by used clustering
approach

4. Unsupervised Methods 4.1 Clustering 107



Hopkins Statistics

Sample

dataset
(n objects)

Random selection
(m objects) m<<n

m uniformly
distributed objects

w3

w4

w5

w6

w1
w2

u1

u2

u3
u4

u5

u6

H =

m∑
i=1

ui

m∑
i=1

ui +
m∑

i=1
wi

I wi : distance of selected objects to the next neighbor in dataset

I ui : distances of uniformly distributed objects to next neighbor in dataset

I 0 ≤ H ≤ 1;
I H ≈ 0: very regular data (e.g. grid);
I H ≈ 0.5: uniformly distributed data;
I H ≈ 1: strongly clustered¸

4. Unsupervised Methods 4.1 Clustering 108



Recap: Observed Clustering Methods

I Partitioning Methods: Find k partitions, minimizing some
objective function

I Probabilistic Model-Based Clustering (EM)

I Density-based Methods: Find clusters based on connectivity and
density functions

I Mean-Shift: Find modes in the point density

I Spectral Clustering: Find global minimum cut

I Hierarchical Methods: Create a hierarchical decomposition of
the set of objects

I Evaluation: External and internal measures

4. Unsupervised Methods 4.1 Clustering 109



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering
4.2 Outlier Detection

Introduction
Density-based Outliers
Angle-based Outliers
Tree-based Outliers

4.3 Frequent Pattern Mining



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering
4.2 Outlier Detection

Introduction
Density-based Outliers
Angle-based Outliers
Tree-based Outliers

4.3 Frequent Pattern Mining



Introduction

What is an outlier?

Hawkins (1980) ”An outlier is an observation which deviates so much
from the other observations as to arouse suspicions that it was generated by
a different mechanism.”

I Statistics-based intuition:
I Normal data objects follow a

“generating mechanism”, e.g. some
given statistical process

I Abnormal objects deviate from this
generating mechanism

4. Unsupervised Methods 4.2 Outlier Detection 110



Introduction

Applications

I Fraud detection
I Purchasing behavior of a credit card owner usually changes when the card is stolen
I Abnormal buying patterns can characterize credit card abuse

I Medicine
I Whether a particular test result is abnormal may depend on other characteristics of

the patients (e.g. gender, age, . . . )
I Unusual symptoms or test results may indicate potential health problems of a patient

I Public health
I The occurrence of a particular disease, e.g. tetanus, scattered across various

hospitals of a city indicate problems with the corresponding vaccination program in
that city

I Whether an occurrence is abnormal depends on different aspects like frequency,
spatial correlation, etc.

4. Unsupervised Methods 4.2 Outlier Detection 111



Introduction

Applications (cont’d)

I Sports statistics
I In many sports, various parameters are recorded for players in order to evaluate the

players’ performances
I Outstanding (in a positive as well as a negative sense) players may be identified as

having abnormal parameter values
I Sometimes, players show abnormal values only on a subset or a special combination

of the recorded parameters

I Detecting measurement errors
I Data derived from sensors (e.g. in a given scientific experiment) may contain

measurement errors
I Abnormal values could provide an indication of a measurement error
I Removing such errors can be important in other data mining and data analysis tasks
I ”One person’s noise could be another person’s signal.”

4. Unsupervised Methods 4.2 Outlier Detection 112



Introduction

Important Properties of Outlier Models

I Global vs. local approach
I ”Outlierness” regarding whole dataset (global) or regarding a subset of data (local)?

I Labeling vs. Scoring
I Binary decision or outlier degree score?

I Assumptions about ”Outlierness”
I What are the characteristics of an outlier object?

I An object is a cluster-based outlier if it does not strongly belong to any cluster.

4. Unsupervised Methods 4.2 Outlier Detection 113



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering
4.2 Outlier Detection

Introduction
Density-based Outliers
Angle-based Outliers
Tree-based Outliers

4.3 Frequent Pattern Mining



Density-Based Approaches

General Idea

I Compare the density around a point with the density around its local neighbors.

I The relative density of a point compared to its neighbors is computed as an
outlier score.

I Approaches also differ in how to estimate density.

Basic Assumption

I The density around a normal data object is similar to the density around its
neighbors.

I The density around an outlier is considerably different to the density around its
neighbors.

4. Unsupervised Methods 4.2 Outlier Detection 114



Density-Based Approaches

Problems

I Different definitions of density: e.g.,
#points within a specified distance ε
from the given object

I The choice of ε is critical (too small
=⇒ normal points considered as
outliers; too big =⇒ outliers
considered normal)

I A global notion of density is
problematic (as it is in clustering);
fails when data contain regions of
different densities

D has a higher absolute density than A but
compared to its neighborhood, Ds density is

lower.

4. Unsupervised Methods 4.2 Outlier Detection 115



Density-Based Approaches

Failure Case of Distance-Based

I D(ε, π): parameters ε, π cannot be
chosen s.t. o2 is outlier, but none of
the points in C1 (e.g. q)

I kNN-distance: kNN-distance of
objects in C1 (e.g. q) larger than the
kNN-distance of o2.

4. Unsupervised Methods 4.2 Outlier Detection 116



Density-Based Approaches

Score (k = 7)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

4.0

4.5

Decision (LOFk(o) > 2)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

4.0

4.5

4. Unsupervised Methods 4.2 Outlier Detection 117



Density-Based Approaches

Solution

Consider the relative density w.r.t. to the neighbourhood.

Model

I Local Density (ld) of point p (inverse of avg. distance of kNNs of p)

ldk (p) =

1

k

∑
o∈kNN(p)

dist(p, o)

−1

I Local Outlier Factor (LOF) of p (avg. ratio of lds of kNNs of p and ld of p)

LOFk (p) =
1

k

∑
o∈kNN(p)

ldk (o)

ldk (p)

4. Unsupervised Methods 4.2 Outlier Detection 118



Density-Based Approaches

Extension (Smoothing factor)

I Reachability ”distance”

rdk (p, o) = max{kdist(o), dist(p, o)}

I Local reachability distance lrdk

lrdk (p) =

 1

k

∑
o∈kNN(p)

rd(p, o)

−1

I Replace ld by lrd

LOFk (p) =
1

k

∑
o∈kNN(p)

lrdk (o)

lrdk (p)

4. Unsupervised Methods 4.2 Outlier Detection 119



Density-Based Approaches

Discussion

I LOF ≈ 1 =⇒ point in cluster

I LOF � 1 =⇒ outlier.

I Choice of k defines the reference set

4. Unsupervised Methods 4.2 Outlier Detection 120



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering
4.2 Outlier Detection

Introduction
Density-based Outliers
Angle-based Outliers
Tree-based Outliers

4.3 Frequent Pattern Mining



Angle-Based Approach

General Idea

I Angles are more stable than distances
in high dimensional spaces

I o outlier if most other objects are
located in similar directions

I o no outlier if many other objects are
located in varying directions • inlier

• outlier

Basic Assumption

I Outliers are at the border of the data distribution

I Normal points are in the center of the data distribution

4. Unsupervised Methods 4.2 Outlier Detection 121



Angle-Based Approach

Model

I Consider for a given point p the angle between −→px and −→py for any two x , y from
the database

I Measure the variance of the angle spectrum

4. Unsupervised Methods 4.2 Outlier Detection 122



Angle-Based Approach

Model (cont’d)

I Weighted by the corresponding distances (for lower dimensional data sets where
angles are less reliable)
Angle-based Outlier Detection5:

ABOD(p) = VARx ,y∈D

(
1

‖−→xp‖2‖−→yp‖2
cos
(−→xp,−→yp

))
= VARx ,y∈D

( 〈−→xp,−→yp
〉

‖−→xp‖2
2‖
−→yp‖2

2

)
I Small ABOD ⇐⇒ outlier

5
Kriegel, Hans-Peter, Matthias Schubert, and Arthur Zimek. ”Angle-based outlier detection in high-dimensional data.” Proceedings of the 14th

ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2008.

4. Unsupervised Methods 4.2 Outlier Detection 123



Angle-Based Approaches

Score (all pairs)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

4.0

4.5

Decision (ABOD(o) < 0.2)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0

2.5

3.0

3.5

4.0

4.5

4. Unsupervised Methods 4.2 Outlier Detection 124



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering
4.2 Outlier Detection

Introduction
Density-based Outliers
Angle-based Outliers
Tree-based Outliers

4.3 Frequent Pattern Mining



Tree-Based Approaches: Isolation Forest

General Idea

Outlierness = how easy it is to separate a point from the rest by random space
splitting?

Basic Assumption

I Anomalies are the minority consisting of fewer instances

I Anomalies have attribute-values that are very different from those of normal
instances

4. Unsupervised Methods 4.2 Outlier Detection 125



Tree-Based Approaches

Isolation Tree - Training

1. Randomly select one dimension

2. Randomly select a split position in that dimension

3. Repeat until: a) only one point left or b) height reaches predefined threshold h

Normal point path length=10 splits Outlier point path length=4 splits

4. Unsupervised Methods 4.2 Outlier Detection 126



Tree-Based Approaches: Training

Isolation Forest - Training

1. Random sample ψ points, build
an isolation tree

2. Repeat for t times ⇒ a forest of t
isolation trees

Average path lengths converge

4. Unsupervised Methods 4.2 Outlier Detection 127



Tree-Based Approaches: Anomaly Score

I Let h(x) be the path length of x on an isolation tree, and estimate E (h(x)) by the
average path length among t isolation trees.

I Let c(ψ) = 2H(ψ − 1)− 2(ψ − 1)/ψ, which is the expected path length of
unsuccessful search in BST of ψ points; H(·) is the harmonic number.

I Define the anomaly score of a point x as s(x) = 2
− E(h(x))

c(ψ)

I Observe s(x) ∈ (0, 1)
I E (h(x))→ c(ψ) yields s → 0.5,
I E (h(x))→ 0 yields s → 1,
I E (h(x))→ n − 1 yields s → 0.

I Usually, set s = 0.5 as threshold, i.e. the average of the expected path length

4. Unsupervised Methods 4.2 Outlier Detection 128



Tree-Based Approaches: Discussion

I Advantages:
I Anomaly score between 0 and 1
I Very efficient, especially on large

dataset
I A model (the forest) is learned

from the training dataset
I Easy for parallelization
I Can be adapted to categorical data

I Disadvantages:
I Only detects global outliers (of

course, follow-up approaches are
available)

I Not efficient on high-dimensional
data

iForest anomaly score contour

4. Unsupervised Methods 4.2 Outlier Detection 129



Recap - Outlier Detection

I Properties: global vs. local, labeling vs. scoring

I Clustering-Based Outliers: Identification as non-(cluster-members)

I Statistical Outliers: Assume probability distribution; outliers = unlikely to be
generated by distribution

I Distance-Based Outliers: Distance to neighbors as outlier metric

I Density-Based Outliers: Relative density around the point as outlier metric

I Angle-Based Outliers: Angles between outliers and random point pairs vary only
slightly

4. Unsupervised Methods 4.2 Outlier Detection 130



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering
4.2 Outlier Detection
4.3 Frequent Pattern Mining

Introduction
Frequent Itemset Mining
Association Rule Mining
Sequential Pattern Mining



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering
4.2 Outlier Detection
4.3 Frequent Pattern Mining

Introduction
Frequent Itemset Mining
Association Rule Mining
Sequential Pattern Mining



What is Frequent Pattern Mining?

Setting: Transaction Databases

A database of transactions, where each transaction comprises a set of items, e.g. one
transaction is the basket of one customer in a grocery store.

Frequent Pattern Mining

Finding frequent patterns, associations, correlations, or causal structures among sets of
items or objects in transaction databases, relational databases, and other information
repositories.

Applications

Basket data analysis, cross-marketing, catalogue design, loss-leader analysis, clustering,
classification, recommendation systems, etc.

4. Unsupervised Methods 4.3 Frequent Pattern Mining 131



What is Frequent Pattern Mining?

Task 1: Frequent Itemset Mining

Find all subsets of items that occur together in many transactions.

Example

Which items are bought together frequently?

D = {{butter , bread ,milk , sugar},
{butter , flour ,milk, sugar},
{butter , eggs,milk, salt},
{eggs},
{butter , flour ,milk, salt, sugar}}

 80% of transactions contain the itemset {milk, butter}

4. Unsupervised Methods 4.3 Frequent Pattern Mining 132



What is Frequent Pattern Mining?

Task 2: Association Rule Mining

Find all rules that correlate the presence of one set of items with that of another set of
items in the transaction database.

Example

98% of people buying tires and auto accessories also get automotive service done

4. Unsupervised Methods 4.3 Frequent Pattern Mining 133



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering
4.2 Outlier Detection
4.3 Frequent Pattern Mining

Introduction
Frequent Itemset Mining
Association Rule Mining
Sequential Pattern Mining



Mining Frequent Itemsets: Basic Notions

I Items I = {i1, . . . , im}: a set of literals (denoting items)

I Itemset X : Set of items X ⊆ I

I Database D: Set of transactions T , each transaction is a set of items T ⊆ I

I Transaction T contains an itemset X : X ⊆ T

I Length of an itemset X equals its cardinality |X |
I k-itemset: itemset of length k

I (Relative) Support of an itemset: supp(X ) = |{T ∈ D | X ⊆ T}|/|D|
I X is frequent if supp(X ) ≥ minSup for threshold minSup.

Task

Given a database D and a threshold minSup, find all frequent itemsets X ⊆ I .

4. Unsupervised Methods 4.3 Frequent Pattern Mining 134



Mining Frequent Itemsets: Basic Idea

Näive Algorithm

Count the frequency of all possible subsets of I in the database D.

Problem

Too expensive since there are 2m such itemsets for m items (for |I | = m, 2m =
cardinality of the powerset of I ).

4. Unsupervised Methods 4.3 Frequent Pattern Mining 135



Mining Frequent Patterns: Apriori Principle

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

Hasse diagram shows lattice structure of
complete partial order of item subsets
I frequent

I non-frequent

Apriori Principle (anti-monotonicity)

I Any (non-empty) subset of a frequent itemset A is frequent:

∀A′ ⊆ A : supp(A) ≥ minSup =⇒ supp(A′) ≥ minSup

I Any superset of a non-frequent itemset A is non-frequent:

∀A′′ ⊇ A : supp(A) < minSup =⇒ supp(A′′) < minSup

4. Unsupervised Methods 4.3 Frequent Pattern Mining 136



Apriori Algorithm

Idea

I First count the 1-itemsets, then the 2-itemsets, then the 3-itemsets, and so on

I When counting (k + 1)-itemsets, only consider those (k + 1)-itemsets where all
subsets of length k have been determined as frequent in the previous step

4. Unsupervised Methods 4.3 Frequent Pattern Mining 137



Apriori Algorithm
variable Ck : candidate itemsets of size k
variable Lk : frequent itemsets of size k
L1 = {frequent items}
for (k = 1; Lk 6= ∅; k++) do

join Lk with itself to produce Ck+1 . JOIN STEP
discard (k + 1)-itemsets from Ck+1 that . . . . PRUNE STEP

. . . contain non-frequent k-itemsets as subsets

Ck+1 = candidates generated from Lk

for each transaction T ∈ D do
Increment the count of all candidates in Ck+1 . . .

. . . that are contained in T

Lk+1 = candidates in Ck+1 with minSupp

return
⋃

k Lk

Produce
candidates.

Prove
candidates.

4. Unsupervised Methods 4.3 Frequent Pattern Mining 138



Apriori Algorithm: Generating Candidates – Join Step

Requirements for Candidate (k + 1)-itemsets

I Completeness: Must contain all frequent (k + 1)-itemsets (superset property
Ck+1 ⊇ Lk+1)

I Selectiveness: Significantly smaller than the set of all (k + 1)-subsets

Suppose the itemsets are sorted by any order (e.g. lexicographic)

Step 1: Joining (Ck+1 = Lk ./ Lk)

I Consider frequent k-itemsets p and q

I p and q are joined if they share the same first (k − 1) items.

4. Unsupervised Methods 4.3 Frequent Pattern Mining 139



Apriori Algorithm: Generating Candidates – Join Step

Example

I k = 3 ( =⇒ k + 1 = 4)

I p = (a, c , f ) ∈ Lk

I q = (a, c, g) ∈ Lk

I r = (a, c , f , g) ∈ Ck+1

SQL example

insert into Ck+1

select p.i1, p.i2, . . . , p.ik , q.ik

from Lk : p, Lk : q

where p.i1 = q.i1, . . . , p.ik−1 = q.ik−1, p.ik < q.ik

4. Unsupervised Methods 4.3 Frequent Pattern Mining 140



Apriori Algorithm: Generating Candidates – Prune Step

Step 2: Pruning (Lk+1 = {X ∈ Ck+1 | supp(X ) ≥ minSup})

I Näive: Check support of every itemset in Ck+1  inefficient for huge Ck+1

I Better: Apply Apriori principle first: Remove candidate (k + 1)-itemsets which
contain a non-frequent k-subset s, i.e., s /∈ Lk

Pseudocode

for all c ∈ Ck+1 do
for all k-subsets s of c do

if s /∈ Lk then
Delete c from Ck+1

4. Unsupervised Methods 4.3 Frequent Pattern Mining 141



Apriori Algorithm: Generating Candidates – Prune Step

Example

I L3 = {acf , acg , afg , afh, cfg}
I Candidates after join step: {acfg , afgh}
I In the pruning step: delete afgh because fgh /∈ L3, i.e. fgh is not a frequent

3-itemset (also agh /∈ L3)

I C4 = {acfg}  check the support to generate L4

4. Unsupervised Methods 4.3 Frequent Pattern Mining 142



Apriori Algorithm: Full example

Database
TID items

0 acdf
1 bce
2 abce
3 aef

minSup = 0.5

Alphabetic Ordering
k candidate prune count threshold

1

a 3 a
b 2 b
c 3 c
d 1
e 3 e
f 2 f

2

ab 1
ac 2 ac
ae 2 ae
af 2 af
bc 2 bc
be 2 be
bf 0
ce 2 ce
cf 1
ef 1

3

ace 1
acf with cf
aef with ef
bce 2 bce

Frequency-Ascending Ordering
k candidate prune count threshold

1

d 1
b 2 b
f 2 f
a 3 a
c 3 c
e 3 e

2

bf 0
ba 1
bc 2 bc
be 2 be
fa 2 fa
fc 1
fe 1
ac 2 ac
ae 2 ae
ce 2 ce

3

bce 2 bce
ace 1

4. Unsupervised Methods 4.3 Frequent Pattern Mining 143



Counting Candidate Support

Motivation

Why is counting supports of candidates a problem?

I Huge number of candidates

I One transaction may contain many candidates

Solution

Store candidate itemsets in hash-tree

4. Unsupervised Methods 4.3 Frequent Pattern Mining 144



Counting Candidate Support: Hash Tree

Hash-Tree

I Leaves contain itemset lists with their support (e.g. counts)

I Interior nodes comprise hash tables

I subset function to find all candidates contained transaction

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

4. Unsupervised Methods 4.3 Frequent Pattern Mining 145



Hash-Tree: Construction

Search

I Start at the root (level 1)

I At level d : Apply hash function h to d-th item in the itemset

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

4. Unsupervised Methods 4.3 Frequent Pattern Mining 146



Hash-Tree: Construction

Insertion

I Search for the corresponding leaf node
I Insert the itemset into leaf; if an overflow occurs:

I Transform the leaf node into an internal node
I Distribute the entries to the new leaf nodes according to the hash function h

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

4. Unsupervised Methods 4.3 Frequent Pattern Mining 147



Hash-Tree: Counting
Search all candidates of length k in transaction T = (t1, . . . , tn)
I At root:

I Compute hash values for all items t1, . . . , tn−k+1

I Continue search in all resulting child nodes
I At internal node at level d (reached after hashing of item ti ):

I Determine the hash values and continue the search for each item tj with
i < j ≤ n − k + d

I At leaf node:
I Check whether the itemsets in the leaf node are contained in transaction T

Example

3-itemsets;
h(i) = i mod 3
Transaction:
{1, 3, 7, 9, 12}

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

3

9 7 3,9 7

1,7

9,12

4. Unsupervised Methods 4.3 Frequent Pattern Mining 148



Apriori – Performance Bottlenecks

Huge Candidate Sets

I 104 frequent 1-itemsets will generate 107 candidate 2-itemsets

I To discover a frequent pattern of size 100, one needs to generate 2100 ≈ 1030

candidates.

Multiple Database Scans

I Needs n or n + 1 scans, where n is the length of the longest pattern

Is it possible to mine the complete set of frequent itemsets without candidate
generation?

4. Unsupervised Methods 4.3 Frequent Pattern Mining 149



Mining Frequent Patterns Without Candidate Generation

Idea

I Compress large database into compact tree structure; complete for frequent
pattern mining, but avoiding several costly database scans (called FP-tree)

I Divide compressed database into conditional databases associated with one
frequent item

4. Unsupervised Methods 4.3 Frequent Pattern Mining 150



FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

minSup=2/12

1. Scan DB once to identify
frequent items
(1-itemsets)

2. Scan DB again:
2.1 Keep frequent items only;

sort them within itemsets
by descending frequency

2.2 Does path with common
prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch

4. Unsupervised Methods 4.3 Frequent Pattern Mining 151



FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

minSup=2/12

Header Table
Item Frequency

b 8
c 7
d 6
e 3
f 2

1

1. Scan DB once to identify
frequent items
(1-itemsets)

2. Scan DB again:
2.1 Keep frequent items only;

sort them within itemsets
by descending frequency

2.2 Does path with common
prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch

4. Unsupervised Methods 4.3 Frequent Pattern Mining 151



FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

Freq. Item

c
cd
cef
cef
bcd
bcd
bcd
bde
bd
b
b
b

minSup=2/12

Header Table
Item Frequency

b 8
c 7
d 6
e 3
f 2

1

2.1

1. Scan DB once to identify
frequent items
(1-itemsets)

2. Scan DB again:
2.1 Keep frequent items only;

sort them within itemsets
by descending frequency

2.2 Does path with common
prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch

4. Unsupervised Methods 4.3 Frequent Pattern Mining 151



FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

Freq. Item

c
cd
cef
cef
bcd
bcd
bcd
bde
bd
b
b
b

minSup=2/12

Header Table
Item Frequency

b 8
c 7
d 6
e 3
f 2

Head

∅

b:8

c:3

d:3

d:2

e:1

c:4

e:2

f:2

d:1

1

2.1

2.2

1. Scan DB once to identify
frequent items
(1-itemsets)

2. Scan DB again:
2.1 Keep frequent items only;

sort them within itemsets
by descending frequency

2.2 Does path with common
prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch

4. Unsupervised Methods 4.3 Frequent Pattern Mining 151



Benefits of the FP-Tree Structure

Completeness

I never breaks a long pattern of any transaction

I preserves complete information for frequent pattern mining

Compactness

I reduce irrelevant information – infrequent items are gone

I frequency descending ordering: more frequent items are more likely to be shared

I never be larger than the original database (if not count node-links and counts)

I Experiments demonstrate compression ratios over 100

4. Unsupervised Methods 4.3 Frequent Pattern Mining 152



Mining Frequent Patterns Using FP-Tree

General Idea: (Divide-and-Conquer)

Recursively grow frequent pattern path using the FP-tree

Method

1. Construct conditional pattern base for each node in the FP-tree

2. Construct conditional FP-tree from each conditional pattern-base

3. Recursively mine conditional FP-trees and grow frequent patterns obtained so far;
If the conditional FP-tree contains a single path, simply enumerate all the patterns

4. Unsupervised Methods 4.3 Frequent Pattern Mining 153



Major Steps to Mine FP-Tree: Conditional Pattern Base
Header Table

Item Frequency

b 8
c 7
d 6
e 3
f 2

Head

∅

b:8

c:3

d:3

d:2

e:1

c:4

e:2

f:2

d:1Conditional Pattern
Item Cond. Patterns

Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

1

2

3

1. Start from header table

2. Visit all nodes for this
item (following links)

3. Accumulate all
transformed prefix paths
to form conditional
pattern base (the
frequency can be read
from the node).

4. Unsupervised Methods 4.3 Frequent Pattern Mining 154



Properties of FP-Tree for Conditional Pattern Bases

Node-Link Property

For any frequent item ai , all the possible frequent patterns that contain ai can be
obtained by following ai ’s node-links, starting from ai ’s head in the FP-tree header.

Prefix Path Property

To calculate the frequent patterns for a node ai in a path P, only the prefix sub-path
of ai in P needs to be accumulated, and its frequency count should carry the same
count as node ai .

4. Unsupervised Methods 4.3 Frequent Pattern Mining 155



Major Steps to Mine FP-Tree: Conditional FP-Tree

Conditional Pattern
Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

Example: e-conditional FP-Tree
Item Frequency

c 2
b 1
d 1

∅ | e

c:2

Construct conditional FP-tree from each
conditional pattern-base

I The prefix paths of a suffix represent
the conditional basis  can be
regarded as transactions of a database.

I For each pattern-base:
I Accumulate the count for each item

in the base
I Re-sort items within sets by

frequency
I Construct the FP-tree for the

frequent items of the pattern base

4. Unsupervised Methods 4.3 Frequent Pattern Mining 156



Major Steps to Mine FP-Tree: Conditional FP-Tree

I Build conditional FP-Trees for each item

Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

∅ | b = ∅ ∅ | c

b:3

∅ | d

b:5

c:3

c:1

∅ | e

c:2

∅ | f

c:2

e:2

4. Unsupervised Methods 4.3 Frequent Pattern Mining 157



Major Steps to Mine FP-Tree: Recursion

Base Case: Single Path

If the conditional FP-tree contains a single path, simply enumerate all the patterns
(enumerate all combinations of sub-paths)

Example

∅ | f

c:2

e:2

 

All frequent patterns concerning f :
f,

fc, fe
fce

4. Unsupervised Methods 4.3 Frequent Pattern Mining 158



Major Steps to Mine FP-Tree: Recursion

Recursive Case: Non-degenerated Tree

If the conditional FP-tree is not just a single path, create conditional pattern base for
this smaller tree, and recurse.

Example

∅ | d

b:5

c:3

c:1

Conditional Pattern Base
Item Cond. Patterns

b ∅
c b:3, ∅

∅ | db = ∅ ∅ | dc

b:3

4. Unsupervised Methods 4.3 Frequent Pattern Mining 159



Principles of Frequent Pattern Growth

Pattern Growth Property

Let X be a frequent itemset in D, B be X ’s conditional pattern base, and Y be an
itemset in B. Then X ∪ Y is a frequent itemset in D if and only if Y is frequent in B.

Example

”abcdef” is a frequent pattern, if and only if

I ”abcde” is a frequent pattern, and

I ”f” is frequent in the set of transactions containing ”abcde”

4. Unsupervised Methods 4.3 Frequent Pattern Mining 160



Why Is Frequent Pattern Growth Fast?

Performance study1 shows: FP-growth is much
faster than Apriori, and is also faster than
tree-projection

Reasoning:

I No candidate generation, no candidate test
(Apriori algorithm has to proceed breadth-first)

I Use compact data structure

I Eliminate repeated database scan

I Basic operation is counting and FP-tree
building

Image Source: [1]

5Han, Pei & Yin, Mining frequent patterns without candidate generation, SIGMOD’00
4. Unsupervised Methods 4.3 Frequent Pattern Mining 161



Maximal or Closed Frequent Itemsets

Challenge

Often, there is a huge number of frequent itemsets (especially if minSup is set too low), e.g. a
frequent itemset of length 100 contains 2100 − 1 many frequent subsets

Closed Frequent Itemset

Itemset X is closed in dataset D if for all Y ⊃ X : supp(Y ) < supp(X ).

⇒ The set of closed frequent itemsets contains complete information regarding its
corresponding frequent itemsets.

Maximal Frequent Itemset

Itemset X is maximal in dataset D if for all Y ⊃ X : supp(Y ) < minSup.

⇒ The set of maximal itemsets does not contain the complete support information

⇒ More compact representation

4. Unsupervised Methods 4.3 Frequent Pattern Mining 162



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering
4.2 Outlier Detection
4.3 Frequent Pattern Mining

Introduction
Frequent Itemset Mining
Association Rule Mining
Sequential Pattern Mining



Simple Association Rules: Introduction

Example

Transaction database:

D = {{butter , bread ,milk, sugar},
{butter , flour ,milk, sugar},
{butter , eggs,milk, salt},
{eggs},
{butter , flour ,milk, salt, sugar}}

Frequent itemsets:
items support
{butter} 4
{milk} 4
{butter, milk} 4
{sugar} 3
{butter, sugar} 3
{milk, sugar} 3
{butter, milk, sugar} 3

Question of interest

I If milk and sugar are bought, will the customer always buy butter as well?
milk, sugar ⇒ butter?

I In this case, what would be the probability of buying butter?

4. Unsupervised Methods 4.3 Frequent Pattern Mining 163



Simple Association Rules: Basic Notions

Let Items, Itemset, Database, Transaction, Transaction Length, k-itemset, (relative)
Support, Frequent Itemset be defined as before. Additionally:

I The items in transactions and itemsets are sorted lexicographically: itemset
X = (x1, . . . , xk ), where x1 ≤, . . . ,≤ xk

I Association rule: An association rule is an implication of the form X ⇒ Y where
X ,Y ⊆ I are two itemsets with X ∩ Y = ∅

I Note: simply enumerating all possible association rules is not reasonable!

What are the interesting association rules w.r.t. D?

4. Unsupervised Methods 4.3 Frequent Pattern Mining 164



Interestingness of Association Rules

Goal

Quantify the interestingness of an association rule with respect to a transaction
database D.

Support

I Frequency (probability) of the entire rule with respect to D:

supp(X ⇒ Y ) = P(X ∪ Y ) =
|{T ∈ D | X ∪ Y ⊆ T}|

|D|
= supp(X ∪ Y )

I ”Probability that a transaction in D contains the itemset.”

4. Unsupervised Methods 4.3 Frequent Pattern Mining 165



Interestingness of Association Rules

Confidence

I Indicates the strength of implication in the rule:

conf (X ⇒ Y ) =
supp(X ∪ Y )

supp(X )

(∗)
=

P(X ∩ Y )

P(X )
= P(Y | X )

(*) Note that the support of the union of the items in X and Y , i.e. supp(X ∪Y )
can be interpreted by the joint probability P(X ∩ Y )

I P(Y | X ) = conditional probability that a transaction in D containing the itemset
X also contains itemset Y

4. Unsupervised Methods 4.3 Frequent Pattern Mining 166



Interestingness of Association Rules

Rule form

”Body ⇒ Head [support, confidence]”

Association rule examples

I buys diapers ⇒ buys beer [0.5 %, 60%]

I major in CS ∧ takes DB ⇒ avg. grade A [1%, 75%]
buys
diapers

buys
beer

buys
both

4. Unsupervised Methods 4.3 Frequent Pattern Mining 167



Mining of Association Rules

Task of mining association rules

Given a database D, determine all association rules having a supp ≥ minSup and a
conf ≥ minConf (so-called strong association rules).

Key steps of mining association rules

1. Find frequent itemsets, i.e., itemsets that have supp ≥ minSup (e.g. Apriori,
FP-growth)

2. Use the frequent itemsets to generate association rules
I For each itemset X and every nonempty subset Y ⊂ X generate rule Y ⇒ (X \ Y )

if minSup and minConf are fulfilled
I We have 2|X | − 2 many association rule candidates for each itemset X

4. Unsupervised Methods 4.3 Frequent Pattern Mining 168



Mining of Association Rules

Example

I Frequent itemsets:

1-itemset count 2-itemset count 3-itemset count
{ a } 3 { a,b } 3 { a,b,c } 2
{ b } 4 { a,c } 2
{ c } 5 { b,c } 4

I Rule candidates
I From 1-itemsets: None
I From 2-itemsets: a⇒ b; b ⇒ a; a⇒ c ; c ⇒ a; b ⇒ c ; c ⇒ b
I From 3-itemsets: a, b ⇒ c ; a, c ⇒ b; c , b ⇒ a; a⇒ b, c ; b ⇒ a, c ; c ⇒ a, b

4. Unsupervised Methods 4.3 Frequent Pattern Mining 169



Generating Rules from Frequent Itemsets

Rule generation

I For each frequent itemset X :
I For each nonempty subset Y of X , form a rule Y ⇒ (X \ Y )
I Delete those rules that do not have minimum confidence

I Note:
I Support always exceeds minSup
I The support values of the frequent itemsets suffice to calculate the confidence

I Exploit anti-monotonicity for generating candidates for strong association rules!
I Y ⇒ Z not strong =⇒ for all A ⊆ D : Y ⇒ Z ∪ A not strong
I Y ⇒ Z not strong =⇒ for all Y ′ ⊆ Y : (Y \ Y ′)⇒ (Z ∪ Y ′) not strong

4. Unsupervised Methods 4.3 Frequent Pattern Mining 170



Generating Rules from Frequent Itemsets

Example: minConf = 60%

conf (a⇒ b) = 3/3 = 1 3

conf (b ⇒ a) = 3/4 3

conf (a⇒ c) = 2/3 3

conf (c ⇒ a) = 2/5 7

conf (b ⇒ c) = 4/4 = 1 3

conf (c ⇒ b) = 4/5 3

conf (a, b ⇒ c) = 2/3 3

conf (a, c ⇒ b) = 2/2 = 1 3

conf (b, c ⇒ a) = 2/4 = .5 7

conf (a⇒ b, c) = 2/3 3

conf (b ⇒ a, c) = 2/4 7 (pruned wrt. b, c ⇒ a)
conf (c ⇒ a, b) = 2/5 7 (pruned wrt. b, c ⇒ a)

itemset count
{ a } 3
{ b } 4
{ c } 5

{ a,b } 3
{ a,c } 2
{ b,c } 4

{ a,b,c } 2

4. Unsupervised Methods 4.3 Frequent Pattern Mining 171



Interestingness Measurements

Objective measures

Two popular measures:

I Support

I Confidence

Subjective measures [Silberschatz & Tuzhilin, KDD95]

A rule (pattern) is interesting if it is

I unexpected (surprising to the user) and/or

I actionable (the user can do something with it)

4. Unsupervised Methods 4.3 Frequent Pattern Mining 172



Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

I Among 5000 students
I 3000 play basketball (=60%)
I 3750 eat cereal (=75%)
I 2000 both play basket ball and eat cereal (=40%)

I Rule ”play basketball ⇒ eat cereal [40%, 66.7%]” is misleading because the
overall percentage of students eating cereal is 75% which is higher than 66.7%

I Rule ”play basketball ⇒ not eat cereal [20%, 33.3%]” is far more accurate,
although with lower support and confidence

I Observation: ”play basketball” and ”eat cereal” are negatively correlated

Not all strong association rules are interesting and some can be misleading.

I Augment the support and confidence values with interestingness measures such as
the correlation: ”A ⇒ B [supp, conf , corr ]”

4. Unsupervised Methods 4.3 Frequent Pattern Mining 173



Other Interestingness Measures: Correlation

Correlation

Correlation (sometimes called Lift) is a simple measure between two items A and B:

corrA,B =
P(A ∩ B)

P(A)P(B)
=

P(B | A)

P(B)
=

conf (A⇒ B)

supp(B)

I The two rules A⇒ B and B ⇒ A have the same correlation coefficient

I Takes both P(A) and P(B) in consideration

I corrA,B > 1: The two items A and B are positively correlated

I corrA,B = 1: There is no correlation between the two items A and B

I corrA,B < 1: The two items A and B are negatively correlated

4. Unsupervised Methods 4.3 Frequent Pattern Mining 174



Other Interestingness Measures: Correlation

Example 2

T item
X Y Z

1 1 0
1 1 1
1 0 1
1 0 1
0 0 1
0 0 1
0 0 1
0 0 1

rule support confidence correlation
X ⇒ Y 25% 50% 2
X ⇒ Z 37.5% 75% 0.89
Y ⇒ Z 12.5% 50% 0.57

I X and Y : positively correlated

I X and Z : negatively related

I Support and confidence of X ⇒ Z dominates

I But: items X and Z are negatively correlated

I Items X and Y are positively correlated

4. Unsupervised Methods 4.3 Frequent Pattern Mining 175



Hierarchical Association Rules: Motivation

Problem

I High minSup: apriori finds only few rules

I Low minSup: apriori finds unmanagably many rules

Solution

Exploit item taxonomies (generalizations, is-a hierarchies) which exist in many
applications

Example

clothes

outerwear

jackets jeans

shirts
shoes

sport shoes boots

4. Unsupervised Methods 4.3 Frequent Pattern Mining 176



Hierarchical Association Rules

New Task

Find all generalized association rules between generalized items, i.e. Body and Head of
a rule may have items of any level of the hierarchy

Generalized Association Rule

X ⇒ Y with X ,Y ⊂ I ,X ∩ Y = ∅ and no item in Y is an ancestor of any item in X

Example

I Jeans ⇒ Boots; supp < minSup

I Jackets ⇒ Boots; supp < minSup

I Outerwear ⇒ Boots; supp > minSup

4. Unsupervised Methods 4.3 Frequent Pattern Mining 177



Hierarchical Association Rules: Characteristics

Y

Xi
. . .X1

. . . Xk

Characteristics

Let Y =
k⊎

i=1
Xi be a generalisation.

I For all 1 ≤ i ≤ k it holds supp(Y ⇒ Z ) ≥ supp(Xi ⇒ Z )

I In general, supp(Y ⇒ Z ) =
k∑

i=1
supp(Xi ⇒ Z ) does not hold (a transaction might

contain elements from multiple low-level concepts, e.g. boots and sport shoes).

4. Unsupervised Methods 4.3 Frequent Pattern Mining 178



Mining Multi-Level Associations

Top-Down, Progressive-Deepening Approach

1. First find high-level strong rules, e.g. milk ⇒
bread [20%, 60%]

2. Then find their lower-level ”weaker” rules, e.g.
low-fat milk ⇒ wheat bread [6%, 50%].

Support Threshold Variants

Different minSup threshold across multi-levels lead
to different algorithms:

I adopting the same minSup across multi-levels

I adopting reduced minSup at lower levels

food

milk bread

. . .1.5% 3.5%

. . . . . .

4. Unsupervised Methods 4.3 Frequent Pattern Mining 179



Minimum Support for Multiple Levels

Uniform Support

I Search procedure is simplified
(monotonicity)

I User only specifies one
threshold

milk
supp=10%

1.5%
supp=6%

3.5%
supp=4%

minSup=5%

minSup=5%

Reduced Support (Variable Support)

I Takes into account lower
frequency of items in lower
levels

milk
supp=10%

1.5%
supp=6%

3.5%
supp=4%

minSup=3%

minSup=5%

4. Unsupervised Methods 4.3 Frequent Pattern Mining 180



Multilevel Association Mining using Reduced Support

Level-by-level independent method

Examine each node in the hierarchy, regardless of the frequency of its parent node.

Level-cross-filtering by single item

Examine a node only if its parent node at the preceding level is frequent.

Level-cross-filtering by k-itemset

Examine a k-itemset at a given level only if its parent k-itemset at the preceding level
is frequent.

4. Unsupervised Methods 4.3 Frequent Pattern Mining 181



Multi-level Association: Redundancy Filtering

Some rules may be redundant due to ”ancestor” relationships between items.

Example

I R1: milk ⇒ wheat bread [8%, 70%]

I R2: 1.5% milk ⇒ wheat bread [2%, 72%]

We say that rule 1 is an ancestor of rule 2.

Redundancy

A rule is redundant if its support is close to the ”expected” value, based on the rule’s
ancestor.

¸

4. Unsupervised Methods 4.3 Frequent Pattern Mining 182



Interestingness of Hierarchical Association Rules: Notions

Let X ,X ′,Y ,Y ′ ⊆ I be itemsets.

I X ′ is ancestor of X iff there exists ancestors x ′1, . . . , x
′
k of x1, . . . , xk ∈ X and

xk+1, . . . , xn with n = |X | such that X ′ = {x ′1, . . . , x ′k , xk+1, . . . , xn}
I Let X ′ and Y ′ be ancestors of X and Y . Then we call the rules X ′ ⇒ Y ′,

X ⇒ Y ′, and X ′ ⇒ Y ancestors of the rule X ⇒ Y .
I The rule X ′ ⇒ Y ′ is a direct ancestor of rule X ⇒ Y in a set of rules if:

1. Rule X ′ ⇒ Y ′ is an ancestor of rule X ⇒ Y , and
2. There is no rule X ′′ ⇒ Y ′′ being ancestor of X ⇒ Y and X ′ ⇒ Y ′ is an ancestor of

X ′′ ⇒ Y ′′

4. Unsupervised Methods 4.3 Frequent Pattern Mining 183



R-Interestingness

R-Interestingness

A hierarchical association rule X ⇒ Y is called R-interesting if:

I There are no direct ancestors of X ⇒ Y or

I The actual support is larger than R times the expected support or

I The actual confidence is larger than R times the expected confidence

Example in tutorial

4. Unsupervised Methods 4.3 Frequent Pattern Mining 184



R-Interestingness: Expected Support

Given the rule for X ⇒ Y and its ancestor rule X ′ ⇒ Y ′ the expected support of
X ⇒ Y is defined as:

EZ ′ [P(Z )] = P(Z ′) ·
j∏

i=1

P(yi )

P(yi )′

where Z = X ∪ Y = {z1, . . . , zn}, Z ′ = X ′ ∪ Y ′ = {z ′1, . . . , z ′j , zj+1, . . . , zn} and each
z ′i ∈ Z ′ is an ancestor of zi ∈ Z .

R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.
4. Unsupervised Methods 4.3 Frequent Pattern Mining 185



R-Interestingness: Expected Confidence

Given the rule for X ⇒ Y and its ancestor rule X ′ ⇒ Y ′, then the expected confidence
of X ⇒ Y is defined as:

EX ′⇒Y ′ [P(Y |X )] = P(Y ′ | X ′) ·
j∏

i=1

P(yi )

P(yi )′

where Y = {y1, . . . , yn} and Y ′ = {y ′1, . . . , y ′j , yj+1, . . . , yn} and each y ′i ∈ Y ′ is an
ancestor of yi ∈ Y .

R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.
4. Unsupervised Methods 4.3 Frequent Pattern Mining 186



Summary Frequent Itemset & Association Rule Mining

I Frequent Itemsets
I Mining: Apriori algorithm, hash trees, FP-tree
I support, confidence

I Simple Association Rules
I Mining: (Apriori)
I Interestingness measures: support, confidence, correlation

I Hierarchical Association Rules
I Mining: Top-Down Progressive Deepening
I Multilevel support thresholds, redundancy, R-interestingness

I Further Topics (not covered)
I Quantitative Association Rules (for numerical attributes)
I Multi-dimensional association rule mining

4. Unsupervised Methods 4.3 Frequent Pattern Mining 187



Agenda

1. Introduction

2. Basics

3. Supervised Methods

4. Unsupervised Methods
4.1 Clustering
4.2 Outlier Detection
4.3 Frequent Pattern Mining

Introduction
Frequent Itemset Mining
Association Rule Mining
Sequential Pattern Mining



Motivation

Motivation

I So far we only considered sets of items. In many applications the order of the
items is the crucial information.

I The ordering encodes e.g. temporal aspects, patterns in natural language.

I In an ordered sequence, items are allowed to occur more than one time.

Applications

Bioinformatics (DNA/protein sequences), Web mining, text mining (NLP), sensor data
mining, process mining, . . .

4. Unsupervised Methods 4.3 Frequent Pattern Mining 188



Sequential Pattern Mining: Basic Notions I

We now consider transactions having an order of the items. Define:

I Alphabet Σ is a set of symbols or characters (denoting items)
e.g. Σ = {A,B,C ,D,E}

I Sequence S = s1s2 . . . sk is an ordered list of a length |S | = k items where
si ∈ Σ is an item at position i also denoted as S [i ].

e.g. S = CAB, s3 = B

I A k-sequence is a sequence of length k
e.g. S = CAB is a 3-sequence

I Consecutive subsequence R = r1r2 . . . rm of S = s1s2 . . . sn is also a
sequence in Σ s.t. r1r2 . . . rm = sj sj+1 . . . sj+m−1, with 1 ≤ j ≤ n −m + 1.
We say S contains R and denote this by R ⊆ S

e.g. R1 = AB ⊆ S = CAB

4. Unsupervised Methods 4.3 Frequent Pattern Mining 189



Sequential Pattern Mining: Basic Notions II

I In a more general subsequence R of S we allow for gaps between the items of R,
i.e. the items of the subsequence R ⊆ S must have the same order of the ones in
S but there can be some other items between them

e.g. R2 = CB is a subsequence of S = CAB

I A prefix of a sequence S is any consecutive subsequence of the form
S [1 : i ] = s1s2 . . . si with 0 ≤ i ≤ n, S [1 : 0] is the empty prefix

e.g. R3 = C ,R4 = CA,R5 = CAB are prefixes of S = CAB

I A suffix of a sequence S is any consecutive subsequence of the form
S [i : n] = si si+1 . . . sn with 1 ≤ i ≤ n + 1, S [n + 1 : n] is the empty suffix.

e.g. R4 = AB is a suffix of S = CAB

I (Relative) support of a sequence R in D: supp(R) = |{S ∈ D | R ⊆ S}|/|D|

4. Unsupervised Methods 4.3 Frequent Pattern Mining 190



Sequential Pattern Mining: Basic Notions III

I S is frequent (or sequential) if supp(S) ≥ minSup for threshold minSup.

I A frequent sequence is maximal if it is not a subsequence of any other frequent
sequence

I A frequent sequence is closed if it is not a subsequence of any other frequent
sequence with the same support

4. Unsupervised Methods 4.3 Frequent Pattern Mining 191



Sequential Pattern Mining

Task

Find all frequent subsequences occuring in many transactions.

Difficulty

The number of possible patterns is even larger than for frequent itemset mining!

Example

There are |Σ|k different k-sequences, where k > |Σ| is possible and often encountered,
e.g. when dealing with DNA sequences where the alphabet only comprises four
symbols.

4. Unsupervised Methods 4.3 Frequent Pattern Mining 192



Sequential Pattern Mining Algorithms

Breadth-First Search Based

I GSP (Generalized Sequential Pattern) algorithm6

I SPADE7

I . . .

Depth-First Search Based

I PrefixSpan8

I SPAM9

I . . .

6
Sirkant & Aggarwal: Mining sequential patterns: Generalizations and performance improvements. EDBT 1996

7
Zaki M J. SPADE: An efficient algorithm for mining frequent sequences. Machine learning, 2001, 42(1-2): 31-60.

8
Pei at. al.: Mining sequential patterns by pattern-growth: PrefixSpan approach. TKDE 2004

9
Ayres, Jay, et al: Sequential pattern mining using a bitmap representation. SIGKDD 2002.

4. Unsupervised Methods 4.3 Frequent Pattern Mining 193



GSP (Generalized Sequential Pattern) algorithm

I Breadth-first search: Generate frequent sequences ascending by length

I Given the set of frequent sequences at level k , generate all possible sequence
extensions or candidates at level k + 1

I Uses the Apriori principle (anti-monotonicity)

I Next compute the support of each candidate and prune the ones with
supp(c) < minSup

I Stop the search when no more frequent extensions are possible

4. Unsupervised Methods 4.3 Frequent Pattern Mining 194



Projection-Based Sequence Mining: PrefixSpan: Representation

I The sequence search space can be organized in a prefix search tree

I The root (level 0) contains the empty sequence with each item x ∈ Σ as one of its
children

I A node labelled with sequence: S = s1s2 . . . sk at level k has children of the form
S ′ = s1s2 . . . sk sk+1 at level k + 1 (i.e. S is a prefix of S ′ or S ′ is an extension of
S)

4. Unsupervised Methods 4.3 Frequent Pattern Mining 195



Prefix Search Tree: Example

ID Sequence

S1 CAGAAGT
S2 TGACAG
S3 GAG
S4 AGTT
S5 ATAG

minSup = .8

∅ (5)

A(5)

C(2)

G(4)

T(5)

AA(3)

AC(-)

AG(5)

AT(3)

GA(3)

GC(-)

GG(3)

GT(2)

TA(1)

TC(-)

TG(2)

TT(1)

AGA(-)

AGC(-)

AGG(-)

AGT(-)

seq (count) frequent

seq ( - ) infrequent (pruned)

seq (count) infrequent

prunes

generates

4. Unsupervised Methods 4.3 Frequent Pattern Mining 196



Projected Database

I For a database D and an item s ∈ Σ, the projected database w.r.t. s is denoted
Ds and is found as follows: For each sequence Si ∈ D do

I Find the first occurrence of s in Si , say at position p
I suffSi ,s ← suffix(Si ) starting at position p + 1
I Remove infrequent items from suffSi ,s

I Ds = Ds ∪ suffSi ,s

Example

minSup = .8 (i.e. 4 transactions)
ID Sequence DA DG DT

S1 CAGAAGT GAAGT AAGT ∅
S2 TGACAG AG AAG GAAG
S3 GAG G AG -
S4 AGTT GTT TT T
S5 ATAG TAG ∅ AG

4. Unsupervised Methods 4.3 Frequent Pattern Mining 197



Projection-Based Sequence Mining: PrefixSpan Algorithm

I The PrefixSpan algorithm computes the support for only the individual items in
the projected databased Ds

I Then performs recursive projections on the frequent items in a depth-first manner

1: Initialization: DR ← D,R ← ∅,F ← ∅
2: procedure PrefixSpan(DR ,R,minSup,F)
3: for all s ∈ Σ such that supp(s,DR ) ≥ minSup do
4: Rs ← R + s . append s to the end of R
5: F ← F ∪ {(Rs , sup(s,DR ))} . calculate support of s for each Rs within DR

6: Ds ← ∅
7: for all Si ∈ DR do
8: S ′i ← projection of Si w.r.t. item s
9: Remove all infrequent symbols from S ′i

10: if S ′ 6= ∅ then
11: Ds ← Ds ∪ S ′i
12: if Ds 6= ∅ then
13: PrefixSpan(Ds ,Rs ,minSup,F)

4. Unsupervised Methods 4.3 Frequent Pattern Mining 198



PrefixSpan: Example

minSup = 0.8 (i.e. 4 transactions)

D∅

ID Sequence

S1 CAGAAGT
S2 TGACAG
S3 GAG
S4 AGTT
S5 ATAG

A(5)C(2)G(5)T(4)

DG

ID Sequence

S1 AAGT
S2 AAG
S3 AG
S4 TT
S5 ∅
A(3)G(3)T(2)

DT

ID Sequence

S1 ∅
S2 GAAG
- -

S4 T
S5 AG

A(2)G(2)T(1)

DA

ID Sequence

S1 GAAGT
S2 AG
S3 G
S4 GTT
S5 TAG

A(3)G(5)T(3)

DAG

ID Sequence

S1 G
S2 ∅
S3 ∅
S4 ∅
S5 ∅

G(1)

Hence, the frequent sequences are: ∅, A, G, T, AG

4. Unsupervised Methods 4.3 Frequent Pattern Mining 199



Interval-based Sequential Pattern Mining

Interval-Based Representation

I Deals with the more common interval-based items s (or events).

I Each event has a starting t+
s and an ending time point t−s , where t+

s < t−s

Application

Health data analysis, Stock market data analysis, etc.

Relationships

Predefined relationships between items are more complex.

I Point-based relationships: before, after, same time.

I Interval-based relationships: Allen’s relations10, End point representation11, etc.

10
Allen: Maintaining knowledge about temporal intervals. In Communications of the ACM 1983

11
Wu, Shin-Yi, and Yen-Liang Chen: Mining nonambiguous temporal patterns for interval-based events. TKDE 2007

4. Unsupervised Methods 4.3 Frequent Pattern Mining 200



Allen’s Relations
Before Overlaps Contains Starts Finished-By Meets Equal
After Overlapped-By During Started-By Finishes Met-by Equal

Problem

I Allen’s relationships only describe the relation between two intervals.

I Describing the relationship between k intervals unambiguously requires O(k2)
comparisons.

A B

C

A B

C

4. Unsupervised Methods 4.3 Frequent Pattern Mining 201



Interval-based Sequential Pattern Mining

I TPrefixSpan12 converts interval-based sequences into point-based sequences:

A

B
{A+}, {A−}, {B+}, {B−}

A

B
{A+}, {B+}, {A−}, {B−}

A

B
{A+}, {A−,B+}, {B−}

I Similar prefix projection mining approach as PrefixSpan algorithm.

I Validation checking is necessary in each expanding iteration to make sure that the
appended time point can form an interval with a time point in the prefix.

12
Wu, Shin-Yi, and Yen-Liang Chen: Mining nonambiguous temporal patterns for interval-based events. TKDE 2007

4. Unsupervised Methods 4.3 Frequent Pattern Mining 202



Allen’s Relations with Point Transformation: Example

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

A is the interval starting at time 3 and
ending at time 6.
→ Point Transformation maps it in the

2-dim space with A = (3, 6).

A is the reference point in this example!

4. Unsupervised Methods 4.3 Frequent Pattern Mining 203



Allen’s Relations with Point Transformation: Example

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

Before: BA
After: CA
Overlaps: DA
Overlapped-By: EA
During: FA
Contains: GA

Started-By: HA
Starts: IA
Finished-By: JA
Finishes: AJ
Met-By: KA
Meets: LA
Equal: AA

4. Unsupervised Methods 4.3 Frequent Pattern Mining 204



Allen’s Relations with Point Transformation: Example

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

Before: BA
After: CA
Overlaps: DA
Overlapped-By: EA
During: FA
Contains: GA

Started-By: HA
Starts: IA
Finished-By: JA
Finishes: AJ
Met-By: KA
Meets: LA
Equal: AA

4. Unsupervised Methods 4.3 Frequent Pattern Mining 205



Allen’s Relations with Point Transformation: Example

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

Before: BA
After: CA
Overlaps: DA
Overlapped-By: EA
During: FA
Contains: GA

Started-By: HA
Starts: IA
Finished-By: JA
Finishes: AJ
Met-By: KA
Meets: LA
Equal: AA

4. Unsupervised Methods 4.3 Frequent Pattern Mining 206



Allen’s Relations with Point Transformation: Example

4. Unsupervised Methods 4.3 Frequent Pattern Mining 207



An Open Issue: Considering Timing Information
Idea
Learn pattern from data by clustering, e.g. QTempIntMiner13, Event Space Miner14, PIVOTMiner15

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

0
0

2

2

4

4

6

6

8

8

start

end

I

II

III

IV

V VI

13
Guyet, T., & Quiniou, R.: Mining temporal patterns with quantitative intervals. ICDMW 2008

14
Ruan, G., Zhang, H., & Plale, B.: Parallel and quantitative sequential pattern mining for large-scale interval-based temporal data. IEEE Big

Data 2014
15

Hassani M., Lu Y. & Seidl T.: A Geometric Approach for Mining Sequential Patterns in Interval-Based Data Streams. FUZZ-IEEE 2016
4. Unsupervised Methods 4.3 Frequent Pattern Mining 208


	Introduction
	Basics
	Supervised Methods
	Unsupervised Methods
	Clustering
	Introduction
	Partitioning Methods
	Probabilistic Model-Based Methods
	Density-Based Methods
	Mean-Shift
	Spectral Clustering
	Hierarchical Methods
	Evaluation

	Outlier Detection
	Introduction
	Density-based Outliers
	Angle-based Outliers
	Tree-based Outliers

	Frequent Pattern Mining
	Introduction
	Frequent Itemset Mining
	Association Rule Mining
	Sequential Pattern Mining



