
Ludwig-Maximilians-Universität München
Lehrstuhl für Datenbanksysteme und Data Mining

Prof. Dr. Thomas Seidl

Knowledge Discovery and Data Mining 1
(Data Mining Algorithms 1)

Winter Semester 2019/20

Agenda

1. Introduction

2. Basics

3. Supervised Methods
3.1 Introduction: Classification
3.2 Bayesian Classifiers
3.3 Linear Discriminant Functions
3.4 Support Vector Machines
3.5 Kernel Methods
3.6 Decision Tree Classifiers
3.7 Nearest Neighbor Classifiers
3.8 Ensemble Classification

Decision Tree Classifiers

I Approximating discrete-valued target function
I Learned function is represented as a tree:

I A flow-chart-like tree structure
I Internal node denotes a test on an attribute
I Branch represents an outcome of the test
I Leaf nodes represent class labels or class

distribution

I Tree can be transformed into decision rules:
if age > 60 then risk = low
if age ≤ 60 and car type = truck then risk = low
if age ≤ 60 and car type 6= truck then risk = high

Advantages

I Decision trees represent explicit knowledge
I Decision trees are intuitive to most users

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low

3. Supervised Methods 3.6 Decision Tree Classifiers 73

Decision Tree Classifier: Splits

Goal

I Each tree node defines an axis-parallel (d − 1)-dimensional hyperplane, that splits
the data space.

I Find such splits which lead to as homogeneous groups as possible.

3. Supervised Methods 3.6 Decision Tree Classifiers 74

Decision Tree Classifiers: Basics

I Decision tree generation (training phase) consists of two phases
1. Tree construction

I At start, all the training examples are at the root
I Partition examples recursively based on selected attributes

2. Tree pruning
I Identify and remove branches that reflect noise or outliers

I Use of decision tree: Classifying an unknown sample
I Traverse the tree and test the attribute values of the sample against the decision tree
I Assign the class label of the respective leaf to the query object

3. Supervised Methods 3.6 Decision Tree Classifiers 75

Algorithm for Decision Tree Construction

I Basic algorithm (a greedy algorithm)
I Tree is created in a top-down recursive divide-and-conquer manner
I Attributes may be categorical or continuous-valued
I At the start, all the training examples are assigned to the root node
I Recursively partition examples at each node and push them down to the new nodes
I Select test attributes and determine split points or split sets for the respective values

based on a heuristic or statistical measure (split strategy, e.g., information gain)

I Conditions for stopping partitioning
I All samples for a given node belong to the same class
I There are no remaining attributes for further partitioning – majority voting is

employed for classifying the leaf
I There are no samples left

3. Supervised Methods 3.6 Decision Tree Classifiers 76

Algorithm for Decision Tree Construction

I Most algorithms are versions of this basic algorithm (greedy, top-down)
I E.g.: ID3, or its successor C4.5

ID3 Algorithm

procedure ID3(Examples, TargetAttr , Attributes) . specialized to learn boolean-valued functions
Create Root node for the tree
if all Examples are positive then return Root with label = +
else if all Examples are negative then return Root with label = −
else if Attributes = ∅ then return Root with label = most common value of TargetAttr in Examples
else

A = ”best” decision attribute for next node . how to determine the ”best” attribute?
Assign A as decision attribute for Root
for each possible value vi of A do . how to split the possible values?

Generate branch corresponding to test A = vi
Examplesvi = examples that have value vi for A
if Examplesvi = ∅ then

Add leaf node with label = most common value of TargetAttr in Examples
else

Add subtree ID3(Examplesvi , TargetAttr , Attributes \ {A})

3. Supervised Methods 3.6 Decision Tree Classifiers 77

Example: Decision for ”playing tennis”

I Query: How about playing tennis today?

I Training data:

I Build decision tree . . .

3. Supervised Methods 3.6 Decision Tree Classifiers 78

Split Strategies: Quality of Splits

Given

I A set T of training objects
I A (disjoint, complete) partitioning T1, . . .Tm of T
I The relative frequencies pi of class ci in T and in the partitions T1, . . .Tm

Wanted

I A measure for the heterogeneity of a set S of training objects with respect to the class membership
I A split of T into partitions {T1, . . . ,Tm} such that the heterogeneity is minimized

 Proposals: Information gain, Gini index, Misclassification error

3. Supervised Methods 3.6 Decision Tree Classifiers 79

Attribute Selection Measures: Information Gain

I Used in ID3/C4.5

Entropy

I Minimum number of bits to encode a message that
contains the class label of a random training object

I The entropy of a set T of training objects is defined as

entropy(T) = −
k∑

i=1

pi log2 pi

for k classes with frequencies pi
I entropy(T) = 0 if pi = 1 for any class ci
I entropy(T) = 1 if pi = 1

k for all classes ci

k = 2

3. Supervised Methods 3.6 Decision Tree Classifiers 80

Attribute Selection Measures: Information Gain

Information Gain

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The
information gain of attribute A w.r.t. T is defined as

information gain(T ,A) = entropy(T)−
m∑
i=1

|Ti |
|T |

entropy(Ti)

3. Supervised Methods 3.6 Decision Tree Classifiers 81

Attribute Selection: Example (Information Gain)

information gain(T , forecast) = 0.94−
5

14
0.971−

4

14
0−

5

14
0.971 = 0.246

information gain(T , temperature) = 0.94−
4

14
0.811−

6

14
0.981−

4

14
1 = 0.029

information gain(T , humidity) = 0.94−
7

14
0.985−

7

14
0.592 = 0.151

information gain(T ,wind) = 0.94−
8

14
0.811−

6

14
1 = 0.048

Result: ”forecast” yields the highest information gain

3. Supervised Methods 3.6 Decision Tree Classifiers 82

Example: Decision Tree for ”playing tennis”

Final decision tree:

3. Supervised Methods 3.6 Decision Tree Classifiers 83

Attribute Selection Measures: Gini Index
I Used in IBM’s IntelligentMiner

Gini Index

The Gini index for a set T of training objects is defined as

gini(T) = 1−
k∑

i=1

p2
i

I Small value of Gini index ≡ low heterogeneity

I Large value of Gini index ≡ high heterogeneity

Gini Index (of an attribute A)

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The Gini index of
attribute A w.r.t. T is defined as

giniA(T) =
m∑
i=1

|Ti |
|T |

gini(Ti)

3. Supervised Methods 3.6 Decision Tree Classifiers 84

Attribute Selection Measures: Misclassification Error

Misclassification Error

The Misclassification Error for a set T of training objects is defined as

Error(T) = 1−max
ci

pi

I Small value of Error ≡ low heterogeneity

I Large value of Error ≡ high heterogeneity

Misclassification Error (of an attribute A)

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The
Misclassification Error of attribute A w.r.t. T is defined as

ErrorA(T) =
m∑
i=1

|Ti |
|T |

Error(Ti)

3. Supervised Methods 3.6 Decision Tree Classifiers 85

Attribute Selection Measures: Comparison
For two-class problems:

3. Supervised Methods 3.6 Decision Tree Classifiers 86

Split Strategies: Types of Splits

I Categorical attributes
I Split criteria based on equality ”attribute = a”
I Based on subset relationships ”attribute ∈ set”
 many possible choices (subsets)

I Choose the best split according to, e.g., gini index

I Numerical attributes
I Split criteria of the form ”attribute < a”
 many possible choices for the split point

I One approach: Order test samples w.r.t. their
attribute value; consider every mean value between
two adjacent samples as possible split point; choose
best one according to, e.g., gini index

I Partition the attribute value into a discrete set of
intervals (Binning)

3. Supervised Methods 3.6 Decision Tree Classifiers 87

Avoid Overfitting in Classification

I The generated tree may overfit the
training data

I Too many branches, some may
reflect anomalies due to noise or
outliers

I Result has poor accuracy for unseen
samples

I Two approaches to avoid overfitting for decision trees:

1. Post-pruning = pruning of overspecialized branches
2. Pre-pruning = halt tree construction early

3. Supervised Methods 3.6 Decision Tree Classifiers 88

Pruning Techniques for Decision Trees

Post-pruning

Pruning of overspecialized branches:

I Remove branches from a ”fully grown” tree and get a sequence of progressively
pruned trees

I Use a set of data different from the training data to decide which is the “best
pruned tree”

3. Supervised Methods 3.6 Decision Tree Classifiers 89

Pruning Techniques for Decision Trees

Pre-pruning

Halt tree construction early, do not split a node if this would result in the goodness
measure falling below a threshold.
I Choice of an appropriate value for minimum support

I Minimum support: minimum number of data objects a leaf node contains
I In general, minimum support � 1

I Choice of an appropriate value for minimum confidence
I Minimum confidence: minimum fraction of the majority class in a leaf node
I Typically, minimum confidence � 100%
I Leaf nodes can absorb errors or noise in data records

I Discussion
I With Pre-pruning it is difficult to choose appropriate thresholds
I Pre-pruning has less information for the pruning decision than post-pruning can

be expected to produce decision trees with lower classification quality
I Tradeoff: tree construction time vs. classification quality

3. Supervised Methods 3.6 Decision Tree Classifiers 90

Avoid Overfitting with Regularization

General: Regularization

Solve the regularized minimization problem

min
θ

f (·, θ) + λg(θ)

where θ denotes the model’s parameters, f (·, θ) is used as a loss function, g(θ) is a
regularization term and λ is a trade-off hyperparameter.

I Regularization terms are used to fine-tune the model’s complexity
I Prevents overfitting of a model

I The L1-norm and L2-norm, respectively, are commonly used for regularizing the
model’s parameter

3. Supervised Methods 3.6 Decision Tree Classifiers 91

Minimal Cost Complexity Pruning: Notions

I Size |E | of a decision tree E : number of leaf nodes

I Cost-complexity quality measure of E with respect to training set T , classification
error FT and complexity parameter α ≥ 0:

CCT (E , α) = FT (E) + α|E |

I For the smallest minimal subtree E (α) of E w.r.t. α, it is true that:

1. There is no subtree of E with a smaller cost complexity
2. If E (α) and B both fulfill (1), then is E (α) a subtree of B

I α = 0: E (α) = E
I Only error matters

I α→∞: E (α) = root node of E
I Only tree size matters

I 0 < α <∞: E (α) is a proper substructure of E
I The root node or more than the root node

3. Supervised Methods 3.6 Decision Tree Classifiers 92

Decision Tree Classifiers: Summary

Pro

I Relatively fast learning speed (in comparison to other classification methods)

I Fast classification speed

I Convertible to simple and easy to understand classification rules

I Often comparable classification accuracy with other classification methods

Contra

I Not very stable, small changes of the data can lead to large changes of the tree

3. Supervised Methods 3.6 Decision Tree Classifiers 93

Agenda

1. Introduction

2. Basics

3. Supervised Methods
3.1 Introduction: Classification
3.2 Bayesian Classifiers
3.3 Linear Discriminant Functions
3.4 Support Vector Machines
3.5 Kernel Methods
3.6 Decision Tree Classifiers
3.7 Nearest Neighbor Classifiers
3.8 Ensemble Classification

Nearest Neighbor Classifiers

Motivation

I Assume data in a non-vector representation: graphs, forms, XML-files, etc.

I No simple way to use linear classifiers or decision trees

Solutions

I Use appropriate kernel function for kernel machines (e.g. kernel SVM)
 Not always clear how to define a kernel

I Embedding of objects into some vector space (e.g. representation learning)
 Difficult to determine appropriate embedding projection

I Here: Nearest neighbor classifier
 Direct usage of (dis-)similarity functions for objects

3. Supervised Methods 3.7 Nearest Neighbor Classifiers 94

Nearest Neighbor Classifiers

Procedure

Assign query object q to the class cj of the closest training object x ∈ D:

class(q) = class(NN(q)) NN(q) = {x ∈ D | ∀x ′ ∈ D : d(q, x) ≤ d(q, x ′)}

Example

q
dog

dog

dog wolf

wolfcat

cat

cat

cat

Classifier decides that query object q is a dog.

3. Supervised Methods 3.7 Nearest Neighbor Classifiers 95

Instance-Based Learning

Eager Evaluation

I Examples: Decision tree, Bayes classifier, SVM

I Training phase: Learn parameters for chosen model from training data

I Test phase: evaluate parameterized model for arriving query objects

Lazy Evaluation

I Typical Approach: (k-)nearest neighbor classifiers

I Derive labels from individual training objects: instance-based learning

I No training required (= lazy)

I Highly recommended: put data into efficient index structure (e.g., R-Tree)

3. Supervised Methods 3.7 Nearest Neighbor Classifiers 96

Nearest Neighbor Classifiers: Notions

Notions

I Distance Function: Defines the (dis-)similarity for pairs of objects

I Decision Set: The set of k nearest neighboring objects used in the decision rule

Decision Rule

Given the class labels of the objects from the decision set, how to derive the class label
for the query object?

3. Supervised Methods 3.7 Nearest Neighbor Classifiers 97

(Plain) Decision Rules
Given a query instance xq and its k nearest neighboring training objects, (xi)

k
i=1. Let

δ(·, ·) denote the Kronecker delta and Ci = C (xi) be the class label of xi :

Nearest Neighbor Rule (k = 1)

Just inherit the class label of the nearest training object:

K (xq) = C (x1)

Majority Vote (k ≥ 1)

Choose majority class, i.e. the class with the most representatives in the decision set:

K (xq) = argmax
cj∈C

k∑
i=1

δ(Ci , cj)

3. Supervised Methods 3.7 Nearest Neighbor Classifiers 98

Weighted Decision Rules

Distance-weighted majority vote

Give more emphasis to closer objects within decision set, e.g.:

K (xq) = argmax
cj∈C

k∑
i=1

δ(Ci , cj)

dist(xi , xq)2

Class-weighted majority vote

Use inverse frequency of classes in the training set (a-priori probabilities):

K (xq) = argmax
cj∈C

∑k
i=1 δ(Ci , cj)∑

x∈OTR
δ(C (x), cj)

3. Supervised Methods 3.7 Nearest Neighbor Classifiers 99

Example: Influence of Weighting (here: k = 5)

(Plain) Majority Vote

4.5 5.0 5.5 6.0 6.5 7.0 7.5
sepal length (cm)

2.0

2.5

3.0

3.5

4.0

se
pa

l w
id

th
 (c

m
)

Reciprocal Squared Distance

4.5 5.0 5.5 6.0 6.5 7.0 7.5
sepal length (cm)

2.0

2.5

3.0

3.5

4.0

se
pa

l w
id

th
 (c

m
)

3. Supervised Methods 3.7 Nearest Neighbor Classifiers 100

NN Classifier: Parameter k

Choosing an appropriate k : Tradeoff between overfitting and generalization:

Influence of k

I k too small: High sensitivity against outliers

I k too large: Decision set contains many objects from other classes

Rules of Thumb

I Based on theoretical considerations: Choose k , such that it grows slowly with n,
e.g. k ≈

√
n, or k ≈ log n

I Empirically, 1� k < 10 yields a high classification accuracy in many cases

3. Supervised Methods 3.7 Nearest Neighbor Classifiers 101

Example: Majority Vote – Influence of k

k = 1

4.5 5.0 5.5 6.0 6.5 7.0 7.5
sepal length (cm)

2.0

2.5

3.0

3.5

4.0

se
pa

l w
id

th
 (c

m
)

k = 5

4.5 5.0 5.5 6.0 6.5 7.0 7.5
sepal length (cm)

2.0

2.5

3.0

3.5

4.0

se
pa

l w
id

th
 (c

m
)

3. Supervised Methods 3.7 Nearest Neighbor Classifiers 102

NN Classifier: Variants

I k-NN Classifier: Consider the k nearest neighbors for the class assignment decision

I Weighted k-NN Classifier: Use weights for the classes of the k nearest neighbors

I Mean-based NN Classifier: Determine mean vector mi for each class cj (in
training phase); Assign query object to the class cj of the nearest mean vector mi

I Generalization: Representative-based NN mean classifier; use more than one
representative per class (cf. mixture models) – no longer just instance-based

3. Supervised Methods 3.7 Nearest Neighbor Classifiers 103

NN Classifier: Discussion

Pro
I Applicability: Training data and distance function required only

I High classification accuracy in many applications

I Easy incremental adaptation to new training objects useful also for prediction

I Robust to noisy data by averaging k-nearest neighbors

Contra
I Näıve implementation is inefficient: Requires k-nearest neighbor query processing

support by database techniques may help to reduce from O(n) to O(log n)

I Does not produce explicit knowledge about classes, but provides explanations

I Curse of dimensionality: Distance between neighbors could be dominated by irrelevant
attributes apply dimensionality reduction first

3. Supervised Methods 3.7 Nearest Neighbor Classifiers 104

Agenda

1. Introduction

2. Basics

3. Supervised Methods
3.1 Introduction: Classification
3.2 Bayesian Classifiers
3.3 Linear Discriminant Functions
3.4 Support Vector Machines
3.5 Kernel Methods
3.6 Decision Tree Classifiers
3.7 Nearest Neighbor Classifiers
3.8 Ensemble Classification

Ensemble Classification

Problem

I No single classifier performs good on every problem
(cf. theorem ”There is no free lunch”)

I For some techniques, small changes in the training set lead to very different
classifiers

Idea

Improve performance by combining different classifiers ensemble classification.
Different possibilities exist. Discussed here:

I Bagging (Bootstrap aggregation)

I Boosting

3. Supervised Methods 3.8 Ensemble Classification 105

Bagging

How to obtain different classifiers?

Easiest way: Train the same classifier K on different datasets

Bagging (or Bootstrap Aggregation)

I Randomly select m different subsets from the training set

I On each subset, independently train a classifier Ki (i = 1, . . . ,m)

I Overall decision:

K (x) = sign

(
1

m

m∑
i=1

Ki (x)

)

3. Supervised Methods 3.8 Ensemble Classification 106

Boosting

Boosting

I Linear combination of several weak learners (different classifiers)

I Given m weak learners Ki and weights αi for i = 1, . . . ,m

I Overall decision

K (x) = sign

(
m∑
i=1

αiKi (x)

)
I Important difference: classifiers are trained in sequence!

I Repeatedly misclassified points are weighted stronger

I Example: meta-algorithm AdaBoost iteratively generates a chain of weak learners

3. Supervised Methods 3.8 Ensemble Classification 107

Classification: Summary

Linear Model SVM Decision Tree kNN Bayes

Model hyperplane hyperplane/
non-linear
(kernel)

hierarchy of
iso-oriented
hyperplanes

no model probability dis-
tribution func’s

Data Types vectors/kernels vectors/kernels categorical &
vector

metric, kernels arbitrary

Compactness good (#dims) good (#SV) good (pruned) no model depends/model
Interpretability
of Model

medium/low medium/low good no model depends/model

Interpretability
of Decision

low low good (rules) medium/good
(examples)

medium/good
(probabilities)

Training Time high medium low/medium no training depends/model
Test Time low / high (if

high-dim)
low/medium low low w/ index,

high w/o index
depends/model,
often low

Robustness low high low high high

3. Supervised Methods 3.8 Ensemble Classification 108

Classification: Conclusion

I Classification is an extensively studied problem (mainly in statistics and machine
learning)

I Classification is probably one of the most widely used data mining techniques with
a lot of extensions

I Scalability is an important issue for database applications: thus combining
classification with database techniques should be a promising topic

I Research directions: classification of complex data, e.g., text, spatial, multimedia,
etc.;
Example: kNN-classifiers rely on distances but do not require vector
representations of data

I Results can be improved by ensemble classification

3. Supervised Methods 3.8 Ensemble Classification 109

	Introduction
	Basics
	Supervised Methods
	Introduction: Classification
	Bayesian Classifiers
	Linear Discriminant Functions
	Support Vector Machines
	Kernel Methods
	Decision Tree Classifiers
	Nearest Neighbor Classifiers
	Ensemble Classification

