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Introduction: Toy Example Car Insurance

I Training data

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low

I Simple classifier

if age > 50 then risk = low
if age ≤ 50 and car type = truck then risk = low
if age ≤ 50 and car type 6= truck then risk = high
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Classification: Training Phase (Model Construction)
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Classification: Prediction Phase (Application)
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Classification

The systematic assignment of new observations to known categories
according to criteria learned from a training set.

Formal Setup

I A classifier K for a model M(θ) is a function KM(θ) : D → Y , where
I D: data space

I Often d-dim. space with attributes a1, . . . , ad (not necessarily a vector space)
I Some other space, e.g. metric space

I Y = {y1, . . . , yk}: set of k distinct class labels
I O ⊆ D: set of training objects o with known class labels y ∈ Y

I Classification: Application of classifier K on objects from D \ O
I Model M(θ) is the ”type” of the classifier, and θ are the model parameters

I Supervised learning: find/learn optimal parameters θ for M(θ) given O
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Numerical Prediction

I Related problem to classification: numerical prediction
I Determine the numerical value of an object
I Method: e.g., regression analysis
I Example: Prediction of flight delays

I Numerical prediction is different from classification
I Classification refers to predict categorical class label
I Numerical prediction models continuous-valued functions

I Numerical prediction is similar to classification
I First, construct a model
I Second, use model to predict unknown value
I Major method for numerical prediction is regression:

I Linear and multiple regression
I Non-linear regression
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Goals for this Section

1. Introduction of different classification models

2. Learning techniques for these models

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low
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Quality Measures for Classifiers

I Classification accuracy or classification error (complementary)
I Compactness of the model

I Decision tree size, number of decision rules, . . .

I Interpretability of the model
I Insights and understanding of the data provided by the model

I Efficiency
I Time to generate the model (training time)
I Time to apply the model (prediction time)

I Scalability for large databases
I Efficiency in disk-resident databases

I Robustness
I Robust against noise or missing values
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Quality Measures: Accuracy and Error

I Let K be a classifier

I Let C (o) denote the correct class label of an object o
I Measure the quality of K :

I Predict the class label for each object o from a data set T ⊆ O
I Determine the fraction of correctly predicted class labels

Classification Accuracy of K

GT (K ) =
|{o ∈ T | K (o) = C (o)}|

|T |

Classification Error of K

FT (K ) =
|{o ∈ T | K (o) 6= C (o)}|

|T |
= 1− GT (K )

I For a data set with classes of different size accuracy is misleading.
I Therefore also other quality measures as accuracy and error are needed.
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Task: Retrieve all Objects of a Single Class

Define

I True Positives (TP)
It is true that the object is in the predicted
class A

I False Positives (FP)
It is false that the object is in the predicted
class A

I True Negatives (TN)
It is true that the object is in the predicted
class A (= it is in another class than A)

I False Negatives (FN)
It is false that the object is in the predicted
class A / Classifier predicts a class other than
A, but this is false

Apred Apred

Atrue

Atrue

TP FN

FP TN
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External Measures for a Single Classes

I Recall (0 ≤ rec ≤ 1, larger is better)

rec =
TP

TP + FN

I Precision (0 ≤ prec ≤ 1, larger is better)

prec =
TP

TP + FP

I F1-Measure (0 ≤ F1 ≤ 1, larger is better)

F1 =
2 · rec · prec
rec + prec

=
2TP

2TP + FN + FP

Apred Apred

Atrue

Atrue

TP FN

FP TN
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Quality Measures: Confusion Matrix

I Results on the test set: Confusion matrix
classified as . . .

class 1 class 2 class 3 class 4 class 5

co
rr

ec
t

la
b

el

class 1 35 1 1 1 4
class 2 0 31 1 1 5
class 3 3 1 50 1 2
class 4 1 0 1 10 2
class 5 3 1 9 16 13

(correctly classified in green)

I Based on the confusion matrix, we can compute several accuracy measures,
including:

I Classification Accuracy/Error
I Precision and Recall
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Quality Measures: Computation

Recall

Fraction of test objects of class i , which have been identified
correctly.

RecallTE (K , i) =
|{o ∈ Ci | K (o) = C (o)}|

|Ci |

Precision

Fraction of test objects assigned to class i , which have been
identified correctly.

PrecisionTE (K , i) =
|{o ∈ Ci | Ki (o) = C (o)}|

|Ki |
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Ci = {o ∈ TE | C (o) = i}
Ki = {o ∈ TE | K (o) = i}
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Quality Measures for Data Sets

I So far recall, precision and F1-Measure are just defined for a single class.

I To define these measures for the whole data set is not trivial.

I There are different approaches to define them with different meanings.
I You can determine the measures via

I a micro approach, or
I a macro approach.
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Evaluation of Classifiers: Notions

I Using training data to build a classifier and to estimate the model’s accuracy may
result in misleading and overoptimistic estimates

I  Overspecialization of the learning model to the training data

I Train-and-Test: Decomposition of labeled data set O into two partitions
I Training data is used to train the classifier

I Construction of the model by using information about the class labels

I Test data is used to evaluate the classifier
I Temporarily hide class labels, predict them anew and compare with original class labels

I Train-and-Test is not applicable if the set of objects for which the class label is
known is very small
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Evaluation of Classifiers: Cross Validation

m-fold Cross Validation

I Decompose data set evenly into m subsets of (nearly) equal size

I Iteratively use (m − 1) partitions for training data and the remaining single
partition as test data

I Combine the m classification accuracy values to an overall classification accuracy

Leave-one-out: Special case of cross validation (m = n)

I For each of the objects o in the data set O:
I Use set O \ {o} as training set
I Use the singleton set {o} as test set
I Compute classification accuracy by dividing the number of correct predictions

through the database size |O|
I Particularly well applicable to nearest-neighbor classifiers
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Quality Measures: Accuracy and Error

I Let K be a classifier

I Let TRAIN ⊆ D be the training set: Used to build the classifier

I Let TEST ⊆ D be the test set: Used to test the classifier

Resubstitution Error of K

FTRAIN(K ) = |{d∈TRAIN|K(d) 6=C(d)}|
|TRAIN|

(True) Classification Error of K

FTEST (K ) = |{d∈TEST |K(d)6=C(d)}|
|TEST |
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Overfitting

Characterization of Overfitting

The classifier adapts too closely to the training dataset and may therefore fail to
accurately predict class labels for test objects unseen during training.

Example: Decision Tree
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Overfitting

Overfitting

I Occurs when the classifier is too optimized to the (noisy) training data
I As a result, the classifier yields worse results on the test data set
I Potential reasons:

I Bad quality of training data (noise, missing values, wrong values)
I Different statistical characteristics of training data and test data

Overfitting Avoidance

I Removal of noisy/erroneous/contradicting training data
I Choice of an appropriate size of the training set

I Not too small, not too large

I Choice of appropriate sample
I Sample should describe all aspects of the domain and not only parts of it
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Underfitting

Underfitting

I Occurs when the classifiers model is too simple, e.g. trying to
separate classes linearly that can only be separated by a
quadratic surface

 Trade-off: Usually one has to find a good balance between over- and underfitting.
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Bayes Classification

I Basic idea
I Probability based classification: given a query object q, assign the class with the

highest probability to q:
K (q) = argmax

cj∈C
(P(cj | q))

I The conditional probabilities P(cj | q) are hard to estimate, so turn the rule by
applying Bayes’ theorem to a formula based on P(q | cj).

I Estimate the required probability density functions by using distribution models
learned from the training data.

I Good classification results in many applications
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Bayes’ Theorem

I Conditional probabilities P(A | B) (”probability of A given B”) may be expressed
in terms of joint probabilites P(A ∧ B):

P(A | B) =
P(A ∧ B)

P(B)

I This directly translates to the product rule P(A ∧ B) = P(A | B) · P(B)

I By exploiting the symmetry A ∧ B = B ∧ A, we obtain:

P(A | B) · P(B) = P(A ∧ B) = P(B ∧ A) = P(B | A) · P(A)

I which leads us to the key theorem

P(A | B) =
P(B | A) · P(A)

P(B)
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Bayes Classifier

I Bayes’ rule: P(cj | x) =
P(x |cj )·P(cj )

P(x) for object x and class cj ∈ C.

I We are interested in maximizing this, i.e.

argmax
cj∈C

P(cj | x) = argmax
cj∈C

(
P(x | cj) · P(cj)

p(x)

)
(∗)
= argmax

cj∈C
(P(x | cj) · P(cj))

where (∗) assumes the value of p(x) is constant and does not change the result.

I Final decision rule:

K (x) = cmax = argmax
cj∈C

(P(x | cj) · P(cj))

I Question: how to estimate the apriori probabilities P(cj) and the conditional
probabilities P(x | cj)?
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Bayes Classifier: Density Estimation

A-Priori Class Probabilities, P(cj)

Estimate the a-priori probabilities P(cj) of classes cj ∈ C by using the observed relative
frequency of the individual class labels cj in the training set, i.e.,

P(cj) =
Ncj

N

Conditional Probabilities, P(x | cj)

I Non-parametric methods: Kernel methods Parzen’s window, Gaussian kernels, etc.
I Parametric methods, e.g.

I Single Gaussian distribution: Computed by maximum likelihood estimators (MLE)
I Mixture models: e.g. Gaussian Mixture Model computed by EM algorithm
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Bayes Classifier: Density Estimation

Multivariate objects

I If objects are represented by d components, x = (x1, . . . , xd), we need to estimate
P(x | cj) = P(x1, . . . , xd | cj)

Problem

I Correlations of attributes are hardly available if training sets are small

I Curse of dimensionality may cause problems in high-dimensional data

Solutions

I Dimensionality reduction

I Assume statistical independence of single attributes → näıve Bayes classifiers
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Näıve Bayes Classifier

Independence Assumption

For any given class cj the attribute values xi are distributed independently, i.e.

P(x1, . . . , xd | cj) =
d∏

i=1

P(xi | cj) = P(x1 | cj) · . . . · P(xd | cj)

Decision Rule

Knäıve(x) = argmax
cj∈C

(
P(cj) ·

d∏
i=1

P(xi | cj)

)
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Näıve Bayes Classifier

Categorical Attribute xi

P(xi | cj) can be estimated as the relative frequency of samples having value vi as the
ith attribute in class cj in the training set.

Continuous Attribute xi

P(xi | cj) can, for example, be estimated through a Gaussian distribution determined
by µij , σij .

 Computationally easy in both cases.
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Näıve Bayes Classifier: Example

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low

Model Setup

I age ∼ N(µ, σ2) (normal distribution)

I car type ∼ relative frequencies

I max speed ∼ N(µ, σ2) (normal distribution)
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Näıve Bayes Classifier: Example (cont’d)

Query

q = (age = 60; car type = family ;max speed = 190)

Example

We have:

I P(high) = 3
5

I µage,high = 83
3
, σ2

age,high = 1112
3

=⇒ P (age = 60 | high) ≈ 0.00506

I P(car type = family | high) = 1
3

I µmax speed,high = 222, σ2
max speed,high = 2664 =⇒ P (max speed = 190 | high) ≈ 0.00638

and hence

P(high)P(q | high) = P(high)P(age = 60 | high)P(car type = family | high)P(max speed = 190 | high)

≈ 6.45166 · 10−6

Analogously, we obtain P(low)P(q | low) = 15.72290 · 10−6 =⇒ Knäıve(q) = low .
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Bayesian Classifier

I Assuming dimensions of x = (x1, . . . , xd) are not independent

I Assume multivariate normal distribution (i.e. Gaussian)

P(x | Cj) =
1√

(2π)d det(Σj)
exp

(
−1

2
(x − µj)Σ−1

j (x − µj)T
)

with

I µj : mean vector of class Cj

I Σj is the d × d covariance matrix

I det(Σj) is the determinant of Σj , and Σ−1
j its

inverse
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Example: Interpretation of Raster Images

I Scenario: Automated interpretation of raster images
I Take an image from a certain region (in d different frequency bands, e.g., infrared,

etc.)
I Represent each pixel by d values: (x1, . . . , xd)

I Basic assumption: different surface properties of the earth (”landuse”) follow a
characteristic reflection and emission pattern
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Example: Interpretation of Raster Images

Application of the Bayes classifier:

I Estimation of the P(x | c) without
assumption of conditional
independence

I Assumption of d-dimensional normal
(= Gaussian) distributions for the
value vectors of a class

Probability of class membership

Water

Farmland

Town
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Example: Interpretation of Raster Images

Method

Estimate the following measures from training data

I µj : d-dimensional mean vector of all feature vectors of class Cj

I Σj : d × d covariance matrix of class Cj

Problems

I if likelihood of respective class is very low

I if several classes share the same likelihood

 Mitigate e.g. by applying some minimum likelihood threshold; do not classify
regions below.
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Bayesian Classifiers: Discussion

Pro

I High classification accuracy for many applications if density function defined
properly

I Incremental computation: many models can be adopted to new training objects
by updating densities

I For Gaussian: store count, sum, squared sum to derive mean, variance
I For histogram: store count to derive relative frequencies

I Incorporation of expert knowledge about the application in the prior P(Ci )

Contra

I Limited applicability: often, required conditional probabilities are not available

I Lack of efficient computation: in case of a high number of attributes (particularly
for Bayesian belief networks)
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The Independence Hypothesis

The Independence Hypothesis . . .

I . . . makes efficient computation possible

I . . . yields optimal classifiers when satisfied

I . . . but is seldom satisfied in practice, as attributes (variables) are often correlated.

Attempts to overcome this limitation

I Bayesian networks, that combine Bayesian reasoning with causal relationships
between attributes

I Decision trees, that reason on one attribute at the time, considering most
important attributes first
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Linear Discriminant Function Classifier

Idea

Separate points of two classes by a hyperplane

I I.e., classification model is a hyperplane

I Points of one class in one half space, points of second
class in the other half space

Questions

I How to formalize the classifier?

I How to find optimal parameters of the model?

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low
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Basic Notions

Recall some general algebraic notions for a vector space V :
I 〈x , y〉denotes an inner product of two vectors x , y ∈ V

I E.g., the scalar product 〈x , y〉 = xT y =
∑d

i=1 xiyi

I H(w ,w0) denotes a hyperplane with normal vector w and constant term w0:

x ∈ H ⇔ 〈x ,w〉+ w0 = 0

I The normal vector w may be normalized to w ′:

w ′ =
1√
〈w ,w〉

w =⇒ 〈w ′,w ′〉 = 1

I Distance of a point x to the hyperplane H(w ′,w0):

dist(x ,H(w ′,w0)) = |〈w ′, x〉+ w0|
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Formalization

I Consider a two-class example (generalizations later on):
I D: d-dimensional vector space with attributes a1, . . . , ad
I Y = {−1, 1} set of 2 distinct class labels yj
I O ⊆ D: Set of objects o = (o1, . . . , od) with known class labels y ∈ Y and

cardinality |O| = N

I A hyperplane H(w ,w0) with normal vector w and constant term w0

x ∈ H ⇔ wT x + w0 = 0

Classification Rule

KH(w ,w0)(x) = sign(wT x + w0)
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Optimal Parameter Estimation

How to estimate optimal parameters w ,w0?

1. Define an objective/loss function L(·) that assigns a value (e.g. the error on the
training set) to each parameter-configuration

2. Optimal parameters minimize/maximize the objective function

How does an objective function look like?

I Different choices possible

I Most intuitive: Each misclassified object contributes a constant (loss) value
 0-1 loss
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Optimal Parameter Estimation

0-1 Loss Objective for Linear Classifier

I L(w ,w0) =
∑N

i=1 I (yi 6= KH(w ,w0)(xi ))

I minw ,w0 L(w ,w0)

where I (condition) = 1 if condition holds, 0 otherwise

I Minimize the overall number of training errors, but . . .
I NP-hard to optimize in general (non-smooth, non-convex)
I Small changes of w ,w0 can lead to large changes of the loss
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Extension to Multiple Classes
Assume we have more than two (k > 2) classes. What to do?
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Extension to Multiple Classes

Idea of Multiclass Linear Classifier

I Take k linear functions of the form Hwj ,wj,0(x) = wT
j x + wj ,0

I Decide for class yj :
yj = argmax

j=1,...,k
Hwj ,wj,0(x)

I Advantage: No ambiguous regions except for points on decision hyperplanes

I The optimal parameter estimation is also extendable to k classes y1, . . . , yk
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Discussion (Linear Discriminant Function)

Advantages

I Simple approach
I Closed form solution for parameters
I Easily extendable to non-linear spaces (later on)

Disadvantages

I Sensitive to outliers – depending on the loss function  not a stable classifier
I How to define and efficiently determine the maximum stable hyperplane?

I Only good results for linearly separable data
I Expensive computation of selected hyperplanes

 Approach to solve problems: Support Vector Machines (SVMs) [Vapnik 1979, 1995]
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Maximum Margin Hyperplane

Question

How to define the notion of the ”best”
hyperplane differently?

Criteria

I Stability at insertion

I Distance to the objects of both classes

?

?
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Support Vector Machines: Principle

Basic Idea

Linear separation with the Maximum
Margin Hyperplane (MMH):

I Distance to points from any of the
two sets is maximal, i.e., at least ξ

I Minimal probability that the
separating hyperplane has to be
moved due to an insertion
 Best generalization behavior; MMH
is “maximally stable”

MMH

margin
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Support Vector Machines: Principle

Support Vectors

MMH only depends on points pi whose
distance to the hyperplane is exactly ξ.
These pi are called support vectors (SV). SV
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Formalisation

I Let xi ∈ Rd denote the data points, and yi = +1, if first class, else yi = −1.

I A hyperplane in Hesse normal form is represented by a normal vector w ∈ Rd of
unit length (i.e., ‖w‖2 = 1), and a (signed) distance from the origin b ∈ R.

I In the following slides, we will define the requirements which the MMH shall fulfil.
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Requirements of the MMH

The parameters (w, b) of the MMH shall fulfil the following two requirements:

No Error

The classification is accurate for all points, i.e.

yi · (〈w, xi〉+ b) > 0 ⇐⇒

{
yi = −1 〈w, xi〉+ b < 0

yi = +1 〈w, xi〉+ b > 0

Requirement: Maximal Margin

Let ξ = min
xi∈TR

|〈w, xi〉+ b| denote the minimum distance of any training object xi to

the hyperplane H(w, b). The margin ξ should be as large as possible.
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Computation of the MMH

I Task: Maximise ξ subject to yi · (〈w, xi〉+ b) > ξ for all i ∈ {1, . . . , n}.
I Scaling the constraints by ξ−1 yields yi · (

〈
ξ−1w, xi

〉
+ ξ−1b) > 1 for all

i ∈ {1, . . . , n}.
I Define w′ = ξ−1w, and b′ = ξ−1b.

I Maximizing ξ corresponds to minimizing 〈w′,w′〉 = 〈w,w〉
ξ2 .

Primary Optimization Problem

min ‖w′‖2
2

s.t. yi · (
〈
w′, xi

〉
+ b′) > 1 i ∈ {1, . . . , n}
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Computation of the MMH

Primary Optimization Problem

min ‖w′‖2
2

s.t. yi · (
〈
w′, xi

〉
+ b′) > 1 i ∈ {1, . . . , n}

I Convex optimization problem: Quadratic programming problem with linear
constraints
=⇒ Solution can be obtained by Lagrangian Theory.
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Soft Margin Optimization

I Problem of MMH optimization: How to treat non-(linearly separable) data?

I Two typical problems:

data points not linearly separable
complete separation not optimal

(overfitting)

I Trade-off between training error and size of margin
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Soft Margin Optimization

I Additionally regard the number of
training errors when optimizing:

I ξi is the distance from xi to the
margin (often called slack variable):

I ξi = 0 =⇒ xi on correct side
I ξi > 0 =⇒ xi on wrong side

I Introduce parameter C to weight the
misclassification against the size of the
margin.

ξi1

ξi2
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Soft Margin Optimization

Primary Optimization Problem With Soft Margin

min
1

2
‖w′‖2

2 + C
n∑

i=1

ξi

s.t. yi · (
〈
w′, xi

〉
+ b′) > 1− ξi i ∈ {1, . . . , n}

ξi ≥ 0 i ∈ {1, . . . , n}
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Soft Margin Optimization

Wolfe-Dual with Lagrange Multipliers

max
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj 〈xi, xj〉

s.t.
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C i ∈ {1, . . . , n}

I αi = 0: xi is not a support vector

I αi = C : xi is support vector with ξi > 0

I 0 < αi < C : xi is support vector with ξi = 0
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Soft Margin SVM

Decision Rule

H(x) = sign

∑
xi∈SV

αiyi 〈xi, x〉+ b


where SV denotes the set of support vectors.
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SVM: Discussion

Pro

I generate classifiers with a high classification accuracy

I relatively weak tendency to overfitting (generalization theory)

I efficient classification of new objects due to often small number of support vectors

I compact models

Contra

I training times may be long (appropriate feature space may be very
high-dimensional)

I expensive implementation
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Non-Linearly Separable Data Sets

Problem

In many real scenarios, a linear separation causes a
very poor classification quality.

Core idea

I Map the data by a non-linear transformation
into an (extended) space

I Separate the data in the new space by linear
methods

Example for quadratically
separable data set

1 0 1
x1

0.0

0.5

1.0

1.5

2.0

x
2

1 0 1
x1

0.0

0.5

1.0

1.5

2.0

x
2
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Extension of the Hypotheses Space

Principle

I Mapping φ: original space → extended feature space

I Separate data in the new space by linear techniques

Example

I Polynomial mapping of x = (x1, x2) ∈ R2:

φ(x) = φ ((x1, x2)) =
(
1, x1, x2, x

2
1 , x1x2, x

2
2

)
I A (linear) hyperplane in the extended feature space is equivalent to a (non-linear)

polynomial of degree 2 in the original space (see below).
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Extension of the Hypotheses Space: Parabola Example

Original space: x = (x1, x2) ∈ R2

1 0 1
x1

0.0

0.5

1.0

1.5

2.0

x
2

separation by x2 = (x1)2 + 0.5

Extended space:
φ(x) =

(
1, x1, x2, x

2
1 , x1x2, x

2
2

)
∈ R6

0 1

x21

0.0

0.5

1.0

1.5

2.0

x
2

separation by x2 = (x2
1 ) + 0.5
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Extension of the Hypotheses Space: Circular Example

Original space: x = (x1, x2) ∈ R2

1 0 1
x1

1.0

0.5

0.0

0.5

1.0

x
2

separation by (x1)2 + (x2)2 = 0.25

Extended space:
φ(x) =

(
x2

1 , x
2
2 , x1x2

)
∈ R3

0.0 0.5 1.0

x21

0.00

0.25

0.50

0.75

1.00

x
2 2

separation by (x2
2 ) + (x2

1 ) = 0.25
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Extension of Linear Discriminant Function Classifier

I Linear classifier can be easily extended to non-linear spaces

I Recap: linear classifier KH(w ,w0)(x) = sign(wT x + w0)
I Extend to non-linear case:

I Transform all data points x to new feature space φ(x)
I Data Matrix X becomes a matrix Φ
I The optimal hyperplane vector becomes . . .

w̃opt,φ = (ΦTΦ)−1ΦTY

I . . . and that’s all!

I New classification rule: KH(wφ,w0,φ)(x) = sign(wT
φ φ(x) + w0,φ)

I SVM can be extended in a similar way
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Non-linear Classification: Discussion

Pro

I Explicit feature transformation yields a richer hypotheses space

I Simple extension of existing techniques

I Efficient evaluation, if transformed feature space not too high-dimensional

Contra

I Explicit mapping may run into problems (efficiency, high dimensions)

I Meaningful transformation is usually not known a-priori

I Complex data distributions may require very high-dimensional features spaces  
high memory consumption, high computational costs
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Implicit Mappings: Kernel Trick

I We often need the scalar product of mapped objects only, Kφ(x , y) = 〈φ(x), φ(y)〉
I If Kφ(x , y) is represented in the original domain, the mapping φ remains implicit

only, and the problems of mapping explicitly are avoided

Original space

x

y φ

Kernel space

φ(x)

φ(y)
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Kernel: Example

I Let φ : R2 → R3 represent the mapping φ ((x1, x2)) =
(
x2

1 , x
2
2 ,
√

2x1x2

)
I The scalar product of mapped objects x , y is calculated as follows:

〈φ(x), φ(y)〉 =
〈(

x2
1 , x

2
2 ,
√

2 · x1x2

)
,
(
y2

1 , y
2
2 ,
√

2 · y1y2

)〉
= x2

1y
2
1 + x2

2y
2
2 + 2x1x2y1y2

= (x1y1 + x2y2)2

= 〈(x1, x2), (y1, y2)〉2

= 〈x , y〉2

I This K (x , y) = 〈x , y〉2 is simply calculated in the original space and does not
require to map φ(x), φ(y) explicitly

I The kernel trick even allows for mappings φ to spaces with infinite dimensions

I Example: Radial basis function kernels, KRBF (x , y) = exp
(
−γ · ‖x − y‖2

)
, γ > 0
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Why are scalar products useful?

I Kernels correspond to scalar products in the corresponding feature space

I Scalar products and, thus, Kernels are used in various definitions:

I L2 Norm of a vector, ‖x‖2 =
√
〈x , x〉

Norm induced by kernel K, ‖x‖K =
√
K (x , x)

I Distances of points, ‖x − y‖2 =
√
〈x − y , x − y〉 =

√
〈x , x〉+ 〈y , y〉 − 2 〈x , y〉

Kernel distances, dK (x , y) =
√
K (x , x) + K (y , y)− 2 · K (x , y)

I Angle between two vectors, ∠(x , y) = arccos 〈x,y〉
‖x‖·‖y‖

Kernel-based angles of vectors: ∠K (x , y) = arccos K(x,y)
‖x‖K ·‖y‖K
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Formal Definitions

Definition: Kernel Function

A kernel function K : X × X → R on an input space X is a symmetric function which
maps pairs of objects x , y ∈ X to real numbers.

Definition: Mercer Kernel

A kernel function K is called Mercer kernel, valid kernel, admissible kernel, or positive
semi-definite kernel, if for all finite subsets X = {x1, . . . , xn} ⊆ X , the n × n matrix
MK (X ) with MK (X )i ,j = K (xi , xj) is positive semi-definite, i.e. for all c ∈ Rn, it holds

cT ·MK (X ) · c ≥ 0
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Formal Definitions (cont’d)

Definition: Scalar Product

A scalar product in a vector space H is a function 〈·, ·〉 : H×H → R satisfying:

I 〈x , x〉 = 0 for x = 0

I 〈x , x〉 > 0 for x 6= 0

I 〈x , y〉 = 〈y , x〉 (symmetry)

I 〈αx + βy , z〉 = α 〈x , z〉+ β 〈y , z〉 (bi-linearity)

Definition: Hilbert Space

A vector space H endowed with a scalar product 〈·, ·〉 : H×H → R for which the
induced norm gives a complete metric space, is called Hilbert Space.
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Interpretation of Kernel Functions

Theorem

Let K : X ×X → R be a valid kernel on X . There exists a possibly infinite-dimensional
Hilbert space H and a mapping φ : X → H such that K (x , y) = 〈φ(x), φ(y)〉H for all
x , y ∈ X where 〈·, ·〉H denotes the scalar product in the Hilbert space H.

 every kernel K can be seen as a scalar product in some feature space H.

Advantages

I Feature space H can be infinite-dimensional

I Not really necessary to know which feature space H we have

I Computation of kernel is done in original domain X
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Kernel SVM

Wolfe-Dual Optimization Problem with Lagrange Multipliers

max
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi , xj〉 → max
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK (xi , xj)

s.t.
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C , i ∈ {1, . . . , n}

Decision Rule for Kernel Machines

H(x) = sign

 ∑
xi∈SV

αiyi 〈xi , x〉+ b

 → sign

 ∑
xi∈SV

αiyi · K (xi , x) + b


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Examples for (Mercer) Kernels

Radial Basis Function Kernel
K (x , y) = exp

(
−γ · ‖x − y‖2

)
, γ > 0

Polynomial Kernel of degree d
K (x , y) = (〈x , y〉+ 1)d , d ∈ N
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Non-numeric Kernels

General Kernels

I The kernel trick may be applied to non-numerical, structured objects as well.

I Kernels K (x , y) are defined in terms of object properties

I K (x , y) = 〈φ(x), φ(y)〉 remains a scalar product in Rd but φ : X → Rd is not
needed explicitly

Examples

I Graph kernels: geometric tree kernels; random walk kernels; Wasserstein
Weisfeiler-Lehman Graph Kernels for attributed graphs

I Fisher kernels: digest complex objects by pooling features and represent them by
Gaussian mixture models
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Discussion

Pro

I Kernel methods provide a great method for dealing with non-linearity

I Implicit mapping allows for spaces of arbitrary dimensions (even infinite)

I Computational effort of training Kernel machines depends on the number of
training examples, but not on the feature space dimension

Contra

I Resulting models may be hard to explain intuitively

I Choice of kernel can be difficult
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Decision Tree Classifiers

I Approximating discrete-valued target function
I Learned function is represented as a tree:

I A flow-chart-like tree structure
I Internal node denotes a test on an attribute
I Branch represents an outcome of the test
I Leaf nodes represent class labels or class

distribution

I Tree can be transformed into decision rules:
if age > 60 then risk = low
if age ≤ 60 and car type = truck then risk = low
if age ≤ 60 and car type 6= truck then risk = high

Advantages

I Decision trees represent explicit knowledge
I Decision trees are intuitive to most users

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low
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Decision Tree Classifier: Splits

Goal

I Each tree node defines an axis-parallel (d − 1)-dimensional hyperplane, that splits
the data space.

I Find such splits which lead to as homogeneous groups as possible.
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Decision Tree Classifiers: Basics

I Decision tree generation (training phase) consists of two phases
1. Tree construction

I At start, all the training examples are at the root
I Partition examples recursively based on selected attributes

2. Tree pruning
I Identify and remove branches that reflect noise or outliers

I Use of decision tree: Classifying an unknown sample
I Traverse the tree and test the attribute values of the sample against the decision tree
I Assign the class label of the respective leaf to the query object
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Algorithm for Decision Tree Construction

I Basic algorithm (a greedy algorithm)
I Tree is created in a top-down recursive divide-and-conquer manner
I Attributes may be categorical or continuous-valued
I At the start, all the training examples are assigned to the root node
I Recursively partition examples at each node and push them down to the new nodes
I Select test attributes and determine split points or split sets for the respective values

based on a heuristic or statistical measure (split strategy, e.g., information gain)

I Conditions for stopping partitioning
I All samples for a given node belong to the same class
I There are no remaining attributes for further partitioning – majority voting is

employed for classifying the leaf
I There are no samples left
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Algorithm for Decision Tree Construction

I Most algorithms are versions of this basic algorithm (greedy, top-down)
I E.g.: ID3, or its successor C4.5

ID3 Algorithm

procedure ID3(Examples, TargetAttr , Attributes) . specialized to learn boolean-valued functions
Create Root node for the tree
if all Examples are positive then return Root with label = +
else if all Examples are negative then return Root with label = −
else if Attributes = ∅ then return Root with label = most common value of TargetAttr in Examples
else

A = ”best” decision attribute for next node . how to determine the ”best” attribute?
Assign A as decision attribute for Root
for each possible value vi of A do . how to split the possible values?

Generate branch corresponding to test A = vi
Examplesvi = examples that have value vi for A
if Examplesvi = ∅ then

Add leaf node with label = most common value of TargetAttr in Examples
else

Add subtree ID3(Examplesvi , TargetAttr , Attributes \ {A})
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Example: Decision for ”playing tennis”

I Query: How about playing tennis today?

I Training data:

I Build decision tree . . .

3. Supervised Methods 3.6 Decision Tree Classifiers 78



Split Strategies: Quality of Splits

Given

I A set T of training objects
I A (disjoint, complete) partitioning T1, . . .Tm of T
I The relative frequencies pi of class ci in T and in the partitions T1, . . .Tm

Wanted

I A measure for the heterogeneity of a set S of training objects with respect to the class membership
I A split of T into partitions {T1, . . . ,Tm} such that the heterogeneity is minimized

 Proposals: Information gain, Gini index, Misclassification error
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Attribute Selection Measures: Information Gain

I Used in ID3/C4.5

Entropy

I Minimum number of bits to encode a message that
contains the class label of a random training object

I The entropy of a set T of training objects is defined as

entropy(T ) = −
k∑

i=1

pi log2 pi

for k classes with frequencies pi
I entropy(T ) = 0 if pi = 1 for any class ci
I entropy(T ) = 1 if pi = 1

k for all classes ci

k = 2
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Attribute Selection Measures: Information Gain

Information Gain

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The
information gain of attribute A w.r.t. T is defined as

information gain(T ,A) = entropy(T )−
m∑
i=1

|Ti |
|T |

entropy(Ti )
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Attribute Selection: Example (Information Gain)

information gain(T , forecast) = 0.94−
5

14
0.971−

4

14
0−

5

14
0.971 = 0.246

information gain(T , temperature) = 0.94−
4

14
0.811−

6

14
0.981−

4

14
1 = 0.029

information gain(T , humidity) = 0.94−
7

14
0.985−

7

14
0.592 = 0.151

information gain(T ,wind) = 0.94−
8

14
0.811−

6

14
1 = 0.048

Result: ”forecast” yields the highest information gain
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Example: Decision Tree for ”playing tennis”

Final decision tree:
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Attribute Selection Measures: Gini Index
I Used in IBM’s IntelligentMiner

Gini Index

The Gini index for a set T of training objects is defined as

gini(T ) = 1−
k∑

i=1

p2
i

I Small value of Gini index ≡ low heterogeneity

I Large value of Gini index ≡ high heterogeneity

Gini Index (of an attribute A)

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The Gini index of
attribute A w.r.t. T is defined as

giniA(T ) =
m∑
i=1

|Ti |
|T |

gini(Ti )
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Attribute Selection Measures: Misclassification Error

Misclassification Error

The Misclassification Error for a set T of training objects is defined as

Error(T ) = 1−max
ci

pi

I Small value of Error ≡ low heterogeneity

I Large value of Error ≡ high heterogeneity

Misclassification Error (of an attribute A)

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The
Misclassification Error of attribute A w.r.t. T is defined as

ErrorA(T ) =
m∑
i=1

|Ti |
|T |

Error(Ti )
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Attribute Selection Measures: Comparison
For two-class problems:
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Split Strategies: Types of Splits

I Categorical attributes
I Split criteria based on equality ”attribute = a”
I Based on subset relationships ”attribute ∈ set”
 many possible choices (subsets)

I Choose the best split according to, e.g., gini index

I Numerical attributes
I Split criteria of the form ”attribute < a”
 many possible choices for the split point

I One approach: Order test samples w.r.t. their
attribute value; consider every mean value between
two adjacent samples as possible split point; choose
best one according to, e.g., gini index

I Partition the attribute value into a discrete set of
intervals (Binning)
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Avoid Overfitting in Classification

I The generated tree may overfit the
training data

I Too many branches, some may
reflect anomalies due to noise or
outliers

I Result has poor accuracy for unseen
samples

I Two approaches to avoid overfitting for decision trees:

1. Post-pruning = pruning of overspecialized branches
2. Pre-pruning = halt tree construction early

3. Supervised Methods 3.6 Decision Tree Classifiers 88



Pruning Techniques for Decision Trees

Post-pruning

Pruning of overspecialized branches:

I Remove branches from a ”fully grown” tree and get a sequence of progressively
pruned trees

I Use a set of data different from the training data to decide which is the “best
pruned tree”
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Pruning Techniques for Decision Trees

Pre-pruning

Halt tree construction early, do not split a node if this would result in the goodness
measure falling below a threshold.
I Choice of an appropriate value for minimum support

I Minimum support: minimum number of data objects a leaf node contains
I In general, minimum support � 1

I Choice of an appropriate value for minimum confidence
I Minimum confidence: minimum fraction of the majority class in a leaf node
I Typically, minimum confidence � 100%
I Leaf nodes can absorb errors or noise in data records

I Discussion
I With Pre-pruning it is difficult to choose appropriate thresholds
I Pre-pruning has less information for the pruning decision than post-pruning  can

be expected to produce decision trees with lower classification quality
I Tradeoff: tree construction time vs. classification quality
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Avoid Overfitting with Regularization

General: Regularization

Solve the regularized minimization problem

min
θ

f (·, θ) + λg(θ)

where θ denotes the model’s parameters, f (·, θ) is used as a loss function, g(θ) is a
regularization term and λ is a trade-off hyperparameter.

I Regularization terms are used to fine-tune the model’s complexity
I Prevents overfitting of a model

I The L1-norm and L2-norm, respectively, are commonly used for regularizing the
model’s parameter
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Minimal Cost Complexity Pruning: Notions

I Size |E | of a decision tree E : number of leaf nodes

I Cost-complexity quality measure of E with respect to training set T , classification
error FT and complexity parameter α ≥ 0:

CCT (E , α) = FT (E ) + α|E |

I For the smallest minimal subtree E (α) of E w.r.t. α, it is true that:

1. There is no subtree of E with a smaller cost complexity
2. If E (α) and B both fulfill (1), then is E (α) a subtree of B

I α = 0: E (α) = E
I Only error matters

I α→∞: E (α) = root node of E
I Only tree size matters

I 0 < α <∞: E (α) is a proper substructure of E
I The root node or more than the root node

3. Supervised Methods 3.6 Decision Tree Classifiers 92



Decision Tree Classifiers: Summary

Pro

I Relatively fast learning speed (in comparison to other classification methods)

I Fast classification speed

I Convertible to simple and easy to understand classification rules

I Often comparable classification accuracy with other classification methods

Contra

I Not very stable, small changes of the data can lead to large changes of the tree
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Nearest Neighbor Classifiers

Motivation

I Assume data in a non-vector representation: graphs, forms, XML-files, etc.

I No simple way to use linear classifiers or decision trees

Solutions

I Use appropriate kernel function for kernel machines (e.g. kernel SVM)
 Not always clear how to define a kernel

I Embedding of objects into some vector space (e.g. representation learning)
 Difficult to determine appropriate embedding projection

I Here: Nearest neighbor classifier
 Direct usage of (dis-)similarity functions for objects
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Nearest Neighbor Classifiers

Procedure

Assign query object q to the class cj of the closest training object x ∈ D:

class(q) = class(NN(q)) NN(q) = {x ∈ D | ∀x ′ ∈ D : d(q, x) ≤ d(q, x ′)}

Example

q
dog

dog

dog wolf

wolfcat

cat

cat

cat

Classifier decides that query object q is a dog.
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Instance-Based Learning

Eager Evaluation

I Examples: Decision tree, Bayes classifier, SVM

I Training phase: Learn parameters for chosen model from training data

I Test phase: evaluate parameterized model for arriving query objects

Lazy Evaluation

I Typical Approach: (k-)nearest neighbor classifiers

I Derive labels from individual training objects: instance-based learning

I No training required (= lazy)

I Highly recommended: put data into efficient index structure (e.g., R-Tree)
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Nearest Neighbor Classifiers: Notions

Notions

I Distance Function: Defines the (dis-)similarity for pairs of objects

I Decision Set: The set of k nearest neighboring objects used in the decision rule

Decision Rule

Given the class labels of the objects from the decision set, how to derive the class label
for the query object?
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(Plain) Decision Rules
Given a query instance xq and its k nearest neighboring training objects, (xi )

k
i=1. Let

δ(·, ·) denote the Kronecker delta and Ci = C (xi ) be the class label of xi :

Nearest Neighbor Rule (k = 1)

Just inherit the class label of the nearest training object:

K (xq) = C (x1)

Majority Vote (k ≥ 1)

Choose majority class, i.e. the class with the most representatives in the decision set:

K (xq) = argmax
cj∈C

k∑
i=1

δ(Ci , cj)
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Weighted Decision Rules

Distance-weighted majority vote

Give more emphasis to closer objects within decision set, e.g.:

K (xq) = argmax
cj∈C

k∑
i=1

δ(Ci , cj)

dist(xi , xq)2

Class-weighted majority vote

Use inverse frequency of classes in the training set (a-priori probabilities):

K (xq) = argmax
cj∈C

∑k
i=1 δ(Ci , cj)∑

x∈OTR
δ(C (x), cj)
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Example: Influence of Weighting (here: k = 5)

(Plain) Majority Vote
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NN Classifier: Parameter k

Choosing an appropriate k : Tradeoff between overfitting and generalization:

Influence of k

I k too small: High sensitivity against outliers

I k too large: Decision set contains many objects from other classes

Rules of Thumb

I Based on theoretical considerations: Choose k , such that it grows slowly with n,
e.g. k ≈

√
n, or k ≈ log n

I Empirically, 1� k < 10 yields a high classification accuracy in many cases
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Example: Majority Vote – Influence of k

k = 1
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k = 5
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NN Classifier: Variants

I k-NN Classifier: Consider the k nearest neighbors for the class assignment decision

I Weighted k-NN Classifier: Use weights for the classes of the k nearest neighbors

I Mean-based NN Classifier: Determine mean vector mi for each class cj (in
training phase); Assign query object to the class cj of the nearest mean vector mi

I Generalization: Representative-based NN mean classifier; use more than one
representative per class (cf. mixture models) – no longer just instance-based
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NN Classifier: Discussion

Pro
I Applicability: Training data and distance function required only

I High classification accuracy in many applications

I Easy incremental adaptation to new training objects useful also for prediction

I Robust to noisy data by averaging k-nearest neighbors

Contra
I Näıve implementation is inefficient: Requires k-nearest neighbor query processing  

support by database techniques may help to reduce from O(n) to O(log n)

I Does not produce explicit knowledge about classes, but provides explanations

I Curse of dimensionality: Distance between neighbors could be dominated by irrelevant
attributes  apply dimensionality reduction first
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Ensemble Classification

Problem

I No single classifier performs good on every problem
(cf. theorem ”There is no free lunch”)

I For some techniques, small changes in the training set lead to very different
classifiers

Idea

Improve performance by combining different classifiers  ensemble classification.
Different possibilities exist. Discussed here:

I Bagging (Bootstrap aggregation)

I Boosting

3. Supervised Methods 3.8 Ensemble Classification 105



Bagging

How to obtain different classifiers?

Easiest way: Train the same classifier K on different datasets

Bagging (or Bootstrap Aggregation)

I Randomly select m different subsets from the training set

I On each subset, independently train a classifier Ki (i = 1, . . . ,m)

I Overall decision:

K (x) = sign

(
1

m

m∑
i=1

Ki (x)

)
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Boosting

Boosting

I Linear combination of several weak learners (different classifiers)

I Given m weak learners Ki and weights αi for i = 1, . . . ,m

I Overall decision

K (x) = sign

(
m∑
i=1

αiKi (x)

)
I Important difference: classifiers are trained in sequence!

I Repeatedly misclassified points are weighted stronger

I Example: meta-algorithm AdaBoost iteratively generates a chain of weak learners
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Classification: Summary

Linear Model SVM Decision Tree kNN Bayes

Model hyperplane hyperplane/
non-linear
(kernel)

hierarchy of
iso-oriented
hyperplanes

no model probability dis-
tribution func’s

Data Types vectors/kernels vectors/kernels categorical &
vector

metric, kernels arbitrary

Compactness good (#dims) good (#SV) good (pruned) no model depends/model
Interpretability
of Model

medium/low medium/low good no model depends/model

Interpretability
of Decision

low low good (rules) medium/good
(examples)

medium/good
(probabilities)

Training Time high medium low/medium no training depends/model
Test Time low / high (if

high-dim)
low/medium low low w/ index,

high w/o index
depends/model,
often low

Robustness low high low high high
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Classification: Conclusion

I Classification is an extensively studied problem (mainly in statistics and machine
learning)

I Classification is probably one of the most widely used data mining techniques with
a lot of extensions

I Scalability is an important issue for database applications: thus combining
classification with database techniques should be a promising topic

I Research directions: classification of complex data, e.g., text, spatial, multimedia,
etc.;
Example: kNN-classifiers rely on distances but do not require vector
representations of data

I Results can be improved by ensemble classification

3. Supervised Methods 3.8 Ensemble Classification 109


	Introduction
	Basics
	Supervised Methods
	Introduction: Classification
	Bayesian Classifiers
	Linear Discriminant Functions
	Support Vector Machines
	Kernel Methods
	Decision Tree Classifiers
	Nearest Neighbor Classifiers
	Ensemble Classification


