
Ludwig-Maximilians-Universität München
Institut für Informatik
Prof. Dr. Thomas Seidl
Max Berrendorf, Julian Busch

Knowledge Discovery and Data Mining I
WS 2018/19

Exercise 12: Decision Trees, Nearest Neighbor Classifier, Regression Trees

QA Session

The latter part of the last lecture slot on February 5th will be dedicated to a QA-session which is intended to give
you an opportunity to ask questions about the lecture and exercise contents and also benefit from the discussions
of other students’ questions. Note that we cannot answer any specific questions regarding exam contents. During
the session, we will discuss the questions, which you send to us via e-mail in advance (berrendorf@dbs.
ifi.lmu.de). Please hand in your questions before February 4th, 12:00, so we have some time to prepare
them. Note that in contrast to the lecture, the QA session will not be recorded.

Exercise 12-1 Decision Trees

Predict the risk class of a car driver based on the following attributes:

Attribute Description Values

time time since obtaining a drivers license in years {1-2, 2-7, >7}
gender gender {male, female}
area residential area {urban, rural}

risk the risk class {low, high}

For your analysis you have the following manually classified training examples:

ID time gender area risk

1 1-2 m urban low
2 2-7 m rural high
3 >7 f rural low
4 1-2 f rural high
5 >7 m rural high
6 1-2 m rural high
7 2-7 f urban low
8 2-7 m urban low

(a) Construct a decision tree based on this training data. For splitting, use information gain as measure for
impurity. Build a separate branch for each attribute. The decision tree shall stop when all instances in the
branch have the same class, you do not need to apply a pruning algorithm.

1

berrendorf@dbs.ifi.lmu.de
berrendorf@dbs.ifi.lmu.de

Reminder: When splitting T by attribute A into partitions T1, . . . , Tm, we have

entropy(T) = −
k∑

i=1

pi · log pi

IG(T,A) = entropy(T)−
m∑
i=1

|Ti|
|T |

entropy(Ti)

As entropy(T) is fixed for a given T , independent of the splitting attribute A, maximising IG(T,A) is
equivalent to minimising

S =
m∑
i=1

|Ti|
|T |

entropy(Ti)

Splits

ID time risk gender risk area risk

1 1-2 low m low urban low
2 2-7 high m high rural high
3 >7 low f low rural low
4 1-2 high f high rural high
5 >7 high m high rural high
6 1-2 high m high rural high
7 2-7 low f low urban low
8 2-7 low m low urban low

Time

time |Ti| risk pi ≈ entropy(Ti)

1-2 3
low 1/3

0.918
high 2/3

2-7 3
low 2/3

0.918
high 1/3

>7 2
low 1/2

1
high 1/2

S ≈ 3

8
· 0.918 +

3

8
· 0.918 +

2

8
· 1 ≈ 0.94

Gender

gender |Ti| risk pi ≈ entropy(Ti)

m 5
low 2/5

0.971
high 3/5

f 3
low 2/3

0.918
high 1/3

S ≈ 5

8
· 0.971 +

3

8
· 0.918 ≈ 0.95

2

Area

area |Ti| risk pi ≈ entropy(Ti)

rural 5
low 1/5

0.722
high 4/5

urban 3
low 3/3

0
high 0/3

S ≈ 5

8
· 0.722 +

3

8
· 0 ≈ 0.45

Decision As area yields the lowest S and hence, the highest information gain, it is chosen for split. The
branch for area = urban is already pure, and hence not further processed.

Splits The second branch contains the following data

ID time risk gender risk

2 2-7 high m high
3 >7 low f low
4 1-2 high f high
5 >7 high m high
6 1-2 high m high

Time

time |Ti| risk pi ≈ entropy(Ti)

1-2 2
low 0/2

0
high 2/2

2-7 1
low 0/1

0
high 1/1

>7 2
low 1/2

1
high 1/2

S ≈ 2

5
· 0 +

1

5
· 0 +

2

5
· 1 = 0.4

Gender

gender |Ti| risk pi ≈ entropy(Ti)

m 3
low 0/3

0
high 3/3

f 2
low 1/2

1
high 1/2

S ≈ 3

5
· 0 +

2

5
· 1 = 0.4

3

Decision Choose arbitrary, here gender. There remains only a single non-pure branch, female, which
can be split using time. The final tree is given by

area

low

urban

gender

high

male

time

high

1-2

low

>7

female

rural

(b) Apply the decision tree to the following drivers:

ID time gender area

A 1-2 f rural
B 2-7 m urban
C 1-2 f urban

The following table shows the classification, and highlights attributes that contributed to the decision.

ID time gender area risk

A 1-2 f rural high
B 2-7 m urban low
C 1-2 f urban low

Exercise 12-2 Information gain

In this exercise, we want to look more closely at the information gain measure.

Let T be a set of n training objects with the attributes A1, . . . , Aa and the k classes c1 to ck.

Let {TA
i | i ∈ {1, . . . ,mA}} be the disjoint, complete partitioning of T produced by a split on attribute A

(where mA is the number of disjoint values of A).

(a) Uniform distribution
Compute entropy(T), entropy(TA

i) for i ∈ {1 . . .mA} as well as information-gain(T,A) given the as-
sumption that the class membership of T is uniformly distributed and independent of the values of A.
Interpret your result!

4

independent uniform distribution:

pi =
1

k
∀1 ≤ i ≤ k

|TA
i | =

1

mA
· |T |

entropy(T) = −
k∑

i=1

pi log pi

= −k · 1

k
· log ·1

k

= − log
1

k
= log k

entropy(TA
i) = log k (analogously)

information-gain(T,A) = entropy(T)−
mA∑
i=1

|TA
i |
|T |
· entropy(TA

i)

= log k −mA ·
1

mA
· log k

= 0

Interpretation: The split leads to no gain of information. This result is intuitive, a split on such an attribute
provides no benefit.

(b) Attributes with many values
Let A be an attribute with random values, not correlated to the class of the objects. Furthermore, let
A have enough values, such than no two instances of the training set share the same value of A. What
happens in this situation when building the decision tree? What is problematic with this situation?

In this case, a split on A leads to maximally pure child nodes (i.e., pi = 1 for a single i andpj = 0 for all
j 6= i), since each node contains only a single sample. As a result, each node will have zero entropy such
that

information-gain(T,A) = entropy(T)− 0

is maximal. Thus, A will be chosen as split attribute at the root and the tree is completed.

Problem: The tree achieves (optimal) zero training error but grotesquely overfits. In fact, it is useless
since no generalization occurred and the tree simply memorized the training data. A large error can be
expected if the tree is applied to new test data unseen during training.

Such a situation might occur if the sample size considered for a split is very small, for instance when
dealing with a very small training dataset or when splitting a node deep within a tree. A possible solution
for the latter case might be to perform pre-pruning, e.g. by requiring a minimum number of samples for
a split.

Exercise 12-3 Nearest neighbor classification

The 2D feature vectors in the figure below belong to two different classes (circles and rectangles). Classify
the object at (6, 6) — in the image represented using a triangle — using k nearest neighbor classification. Use
Manhattan distance (L1 norm) as distance function, and use the non-weighted class counts in the k-nearest-
neighbor set, i.e. the object is assigned to the majority class within the k nearest neighbors. Perform kNN
classification for the following values of k and compare the results with your own “intuitive” result.

(a) k = 4

5

The 4 nearest neighbors are all circles, such that the object would also be classified as a circle. This seems
intuitive, since the object is located within the circle cluster.

(b) k = 7

The 7 nearest neighbors additionally contain 3 rectangles in addition to the 4 circles. Since the circles are
still in the majority, the object would still be classified as a circle. However, the decision is less confident
than before.

(c) k = 10

The 10 nearest neighbors consist of 4 circles and 6 rectangles. Now the majority vote decides for the
rectangle class. The reason is that the algorithm observes a larger neighborhood and that the rectangle
class within that neighborhood is larger. In some applications it makes sense to search for patterns on a
larger scale, since smaller classes might also be regarded as noise.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Exercise 12-4 Regression Trees

Consider the following data samples of the form (x, y), where the input value is x ∈ R and the output value is
y ∈ R:

p1 = (−3,−1), p2 = (−2, 0), p3 = (−1, 1), p4 = (1, 1), p5 = (2, 0), p6 = (3,−1)

Search for the first best split. If the decision is obvious, you don’t have to compute all possible splits. Then
decide whether the split is significant or not by using the impurity ratio with τ0 = 0.5.

Initially, the root of the regression tree contains all points in the dataset, i.e., T = {p1, . . . , p6}. In order to
determine whether a split is significant, we need to compute the impurity of T . For the second sub-taks, we
need to fit an optimal regression line which minimizes the SSE loss. The closed form solution of this line is
given as

β1 =
Cov(x, y)

V ar(x)
, β0 = ȳ − β1x̄.

From the plot it is directly obvious that x̄ = ȳ = 0 and thus

Cov(x, y) =
∑

(x,y)∈T

(x− x̄)(y − ȳ)

=
∑

(x,y)∈T

xy

= 3 + 0− 1 + 1 + 0− 3

= 0

6

The optimal regression line coefficients can then be
computed as β1 = β0 = 0. Since the optimal regres-
sion line is constant, we get the same impurity for the
optimal constant regression line in the first sub-task:

imp(T) =
1

6
(1 + 0 + 1 + 1 + 0 + 1) =

2

3

(a) Fit constant functions and use the variance of the residuals as impurity measure. Note that an optimal
constant regression function always predicts the mean output value over all training samples, such that in
this case, the variance of the residuals corresponds to the variance of the outputs.

While trying all possible splits and determining the split with the smallest summed impurity, we will rely
on symmetry. In total, three different cases need to be considered based on how many points are split
from the rest of the dataset:

Split in half. We get ¯yT1 = ¯yT2 = 0 and thus

imp(T1) = imp(T2) =
1

3

(
(1− 0)2 + (0− 0)2 + (1− 0)2

)
=

2

3

=⇒ imp(T1) + imp(T2) =
4

3

Split two points. For the left hand side, we get
¯yT1 = 1

2(−1 + 0) = −1
2 and

imp(T1) =
1

2

((
−1 +

1

2

)2

+

(
0 +

1

2

)2
)

=
1

4

For the right hand side, we get ¯yT2 = 1
4(1+1+0−

1) = 1
4 and

7

imp(T2) =
1

4

((
1− 1

4

)2

+

(
1− 1

4

)2

+

(
0− 1

4

)2

+

(
−1− 1

4

)2
)

=
11

16

Since imp(T1) + imp(T2) = 15
16 <

4
3 , this split is better than the previous one.

Split one point. Since the left child node consists
of only a single point, it can be fit perfectly such
that imp(T1) = 0. For the right hand side, we get
¯yT2 = 1

5(0 + 1 + 1 + 0− 1) = 1
5 and

imp(T2) =
1

5

((
0− 1

5

)2

+

(
1− 1

5

)2

+

(
1− 1

5

)2

+

(
0− 1

5

)2

+

(
−1− 1

5

)2
)

=
14

25

Since imp(T1) + imp(T2) = 14
25 <

15
16 , this split is even better than the previous one. However, it is not

significant since
imp(T1) + imp(T2)

imp(T)
=

14

25
· 3

2
=

21

25
> τ0 =

1

2

In order to avoid overfitting, the split would not be performed, since the accuracy gain is deemed to small
to justify the additional specialization of the model.

(b) Fit linear functions and use the variance of the residuals as impurity measure.

If we simply split the dataset in half, the points in
both, T1 and T2, are collinear such that we can fit
regression lines with no error, i.e.,

imp(T1) + imp(T2) = 0 + 0 = 0

Since the impurity is always non-negative, there
cannot exist a better split. The split is further si-
gnificant since

imp(T1) + imp(T2)

imp(T)
= 0 < τ0 =

1

2

Note that this holds for any positive threshold τ ,
i.e., such a perfect split would always be perfor-
med, irrespective of the chosen threshold.

8

