Consider the following training data:

\[x_1 = (2, 3), x_2 = (3, 2), x_3 = (4, 4), x_4 = (4, 2) \]
\[x_5 = (6, 4), x_6 = (6, 3), x_7 = (7, 2), x_8 = (8, 3) \]

Let \(y_A = -1, y_B = +1 \) be the class indicators for both classes

\[A = \{ x_1, x_2, x_3, x_4 \}, B = \{ x_5, x_6, x_7, x_8 \}. \]

(a) Just using the above-standing plot, specify which of the points should be identified as support vectors.

The points \(\{ x_3, x_4, x_5, x_6 \} \) are chosen as support vectors.
(b) Draw the maximum margin line which separates the classes (you don’t have to do any computations here). Write down the normalized normal vector $\mathbf{w} \in \mathbb{R}^2$ of the separating line and the offset parameter $b \in \mathbb{R}$.

![Graph showing the maximum margin line and points classified by the decision rule.](image)

We obtain $\mathbf{w} = (1, 0)^T$, and $b = -5$.

(c) Consider the decision rule: $H(x) = \langle \mathbf{w}, x \rangle + b$. Explain how this equation classifies points on either side of a line. Determine the class for the points $x_9 = (3, 4)$, $x_{10} = (7, 4)$ and $x_{11} = (5, 5)$.

We have the following decision rule:

$$H(x) = \text{sign} \left(\langle \left(\begin{array}{c} 1 \\ 0 \end{array} \right), x \rangle - 5 \right)$$

and hence,

$$H \left(\left(\begin{array}{c} 3 \\ 4 \end{array} \right) \right) = \text{sign} \left(\langle \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 3 \\ 4 \end{array} \right) \rangle - 5 \right) = \text{sign}(3 - 5) = \text{sign}(-2) = -1,$n

i.e. point x_9 is classified as belonging to class A (red).

$$H \left(\left(\begin{array}{c} 7 \\ 4 \end{array} \right) \right) = \text{sign} \left(\langle \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 7 \\ 4 \end{array} \right) \rangle - 5 \right) = \text{sign}(7 - 5) = \text{sign}(2) = 1,$n

i.e. point x_{10} is classified as belonging to class B (blue).

$$H \left(\left(\begin{array}{c} 5 \\ 5 \end{array} \right) \right) = \text{sign} \left(\langle \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 5 \\ 5 \end{array} \right) \rangle - 5 \right) = \text{sign}(5 - 5) = \text{sign}(0) = 0,$n

i.e. point x_{11} lies exactly on the decision boundary.

Exercise 11-2 Kernel Trick

Consider the polynomial kernel function

$$K: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto (x^T y + \gamma)^p, \text{ with } p = 2, \gamma = 1.$$

Furthermore let

$$\phi: \mathbb{R}^2 \to \mathbb{R}^6, x \mapsto (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2).$$

Show that $K(x, y) = \langle \phi(x), \phi(y) \rangle$.

$$K(x, y) = \langle \phi(x), \phi(y) \rangle$$

$$\langle x^T y + 1 \rangle^2 = \left(1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2 \right)^T \cdot \left(1, \sqrt{2}y_1, \sqrt{2}y_2, y_1^2, y_2^2, \sqrt{2}y_1y_2 \right)$$

$$\langle x_1 y_1 + x_2 y_2 + 1 \rangle^2 = 1 + 2x_1y_1 + 2x_2y_2 + x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1x_2y_1y_2$$

$$x_1^2 y_1^2 + 2x_1 y_1 x_2 y_2 + 2x_1 y_1 + x_2^2 y_2^2 + 2x_2 y_2 + 1 = 1 + 2x_1 y_1 + 2x_2 y_2 + x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$
Exercise 11-3 Mercer Kernels

As known from the lecture, a Mercer kernel \(\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \) needs to fulfil

1. Symmetry, i.e., \(\kappa(x, y) = \kappa(y, x) \)

2. Positive semi-definiteness, i.e. the kernel matrix \(\kappa(X) := (\kappa(x_i, x_j))_{ij} \in \mathbb{R}^n \) is positive semi-definite for all \(X = \{x_1, \ldots, x_n\} \subseteq \mathcal{X} \).

Show that the following functions are Mercer kernels for \(x, y \in \mathcal{X} = \mathbb{R}^d \).

(a) \(\kappa_1(x, y) = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases} \)

Obviously, \(\kappa_1 \) is symmetric. Furthermore, we have \(\kappa_1(X) = I_n \) for all \(X \subseteq \mathcal{X} \) with \(|X| = n \). Thus, for arbitrary \(c \in \mathbb{R}^n \) it holds

\[
c^T \kappa_1(X)c = c^T (I_n)c = c^T c = \|c\|^2 \geq 0
\]

Hence, \(\kappa_1 \) is a Mercer kernel.

(b) \(\kappa_2(x, y) = x^T y \)

Due to \(x^T y = y^T x \) for \(x, y \in \mathbb{R}^d \), \(\kappa_2 \) is symmetric. Let \(\mathsf{X} \in \mathbb{R}^{d \times n} \) with \(\mathsf{X}_{ij} = (x_j)_i \). Then, for arbitrary \(c \in \mathbb{R}^n \) it holds

\[
c^T \kappa_2(X)c = c^T (\mathsf{X}^T \mathsf{X})c = (c^T \mathsf{X})(\mathsf{X}c) = \|Xc\|^2 \geq 0
\]

Therefore, \(\kappa_2 \) is Mercer kernel.

(c) \(\kappa_3(x, y) = \alpha x^T y + \beta \) for \(\alpha, \beta \in \mathbb{R} \) with \(\alpha, \beta \geq 0 \)

First, we notice \(\kappa_3(x, y) = \alpha \kappa_2(x, y) + \beta \). As \(\kappa_2 \) is symmetric, the same holds for \(\kappa_3 \). Moreover,

\[
c^T \kappa_3(X)c = c^T (\alpha \kappa_2(X) + \beta)c = \alpha c^T \kappa_2(X)c + \beta c^T c = \alpha \gamma + \beta \|c\|^2 \geq 0 \quad \text{for } \gamma \geq 0
\]

Exercise 11-4 Linear Separability

In the following exercise, provide minimal subsets \(\{x_1, \ldots, x_m\} = X \subseteq \mathcal{X} = \mathbb{R}^d \) together with class labels \(y_1, \ldots, y_m \in \{-1, 1\} \) for the given dimensionality \(d \in \mathbb{N} \) that are not linearly separable. Prove both, the minimality (i.e. every \(X' \subseteq X' \) with \(|X'| < |X| \) is linearly separable), as well as the non-separability of \(X \).

(a) \(d = 1 \)

Consider \(X = \{x_1, x_2, x_3\} = \{1, 2, 3\} \), and \(y_1 = y_3 = 1, y_2 = -1 \) as depicted below:

\[
\begin{array}{cccccc}
-1 & 0 & 1 & 2 & 3 \\
\end{array}
\]

In \(\mathbb{R}^1 \), a hyperplane consists of a single threshold point \(\tau \) and a linear separation can be achieved using a decision function

\[
H(x) = \text{sign}(x - \tau) = \begin{cases} -1 & x < \tau \\ 1 & x \geq \tau \end{cases}
\]
For the sake of contradiction, assume that the classes are linearly separable. Then, \(x_1 < x_2 \), and \(y_1 \neq y_2 \) implies that there is a separation between \(x_1 \) and \(x_2 \), i.e., \(x_1 < \tau \leq x_2 \). Hence, \(y = 1 \). But then, \(x_2 < x_3 \) and \(\tau \leq x_2 \) implies that \(H(x_2) = H(x_3) \). This contradicts \(y_2 \neq y_3 \). Thus, the classes are not linearly separable.

Moreover, there is no smaller such set. Consider the case \(m = 2 \) and let \(X' = \{ x_1, x_2 \} \). If \(y_1 = y_2 \), there are no classes to separate and we are finished. Hence, let \(y_1 \neq y_2 \). However, choosing \(\tau = \frac{1}{2}(x_1 + x_2) \), and \(y = y_1 \) yields a linear classifier with perfect prediction, i.e., \(X' \) is linearly separable. Since linear separability of all sets of size \(m \) implies linear separability of all sets of size \(m - 1 \), \(X \) is minimal.

(b) \(d = 2 \)

We can re-use the example from above, and just append a constant dimension to every data point.

However, if we forbid that the data is situated in a 1-dimensional subspace, we need one more point. Consider \(X = \{ x_1, \ldots, x_4 \} \) with \(x_1 = (-1, -1) \), \(x_2 = (-1, 1) \), \(x_3 = (1, -1) \), \(x_4 = (1, 1) \), and \(y_1 = 1 \), and \(y_2 = y_3 = -1 \), as depicted below:

\[
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array}
\]

Assume, there exists a linear split by \(w = (w_0, w_1, w_2) \in \mathbb{R}^3 \). Then, is must hold that

\[
(w^T \tilde{x}_i) y_i > 0 \quad \text{for all } x_i
\]

\[
\Rightarrow \sum_i (w^T \tilde{x}_i) y_i > 0
\]

\[
\Leftrightarrow w^T \tilde{X}^T y > 0
\]

\[
\Leftrightarrow \begin{pmatrix} w_0 & w_1 & w_2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} > 0
\]

\[
\Leftrightarrow \begin{pmatrix} w_0 & w_1 & w_2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} > 0
\]

\[
\Leftrightarrow 0 > 0
\]

Obviously, the last line is not true and hence, such parameter vector does not exist.

Assume there is a \(X' = \{ x_1, \ldots, x_3 \} \) that is not linearly separable, and spans over 2 dimensions. If all \(y_i \) are the same, nothing remains to be shown. Hence, without loss of generality, assume \(y_1 = -1 \), \(y_2 = y_3 = 1 \).

\[
L' \quad \bullet \quad L
\]

Then, there exists a line that separates \(x_1 \) from \(x_2 \) and \(x_3 \); Point \(x_1 \) has a non-zero distance to the line \(L \) through \(x_2 \) and \(x_3 \) (otherwise, the three points would lie on one line, and thus not span a 2-dimensional space). Hence, we can use a line \(L' \) parallel \(L \) and between \(L \) and \(x_1 \) as separating hyperplane (cf. image).