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Exercise 11: SVM, Kernel Trick, Linear Separability

Exercise 11-1 Support Vector Machines
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Consider the following training data:

x1 = (2, 3), x2 = (3, 2), x3 = (4, 4), x4 = (4, 2)

x5 = (6, 4), x6 = (6, 3), x7 = (7, 2), x8 = (8, 3)

Let yA = −1, yB = +1 be the class indicators for both classes

A = {x1, x2, x3, x4}, B = {x5, x6, x7, x8}.

(a) Just using the above-standing plot, specify which of the points should be identified as support vectors.
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The points {x3, x4, x5, x6} are chosen as support vectors.
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(b) Draw the maximum margin line which separates the classes (you don’t have to do any computations
here). Write down the normalized normal vector w ∈ R2 of the separating line and the offset parameter
b ∈ R.
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We obtain w = (1, 0)T , and b = −5.

(c) Consider the decision rule: H(x) = 〈w, x〉+ b. Explain how this equation classifies points on either side
of a line. Determine the class for the points x9 = (3, 4), x10 = (7, 4) and x11 = (5, 5).

We have the following decision rule:

H(x) = sign

(〈(
1
0

)
, x

〉
− 5

)
and hence,

H

((
3
4

))
= sign

(〈(
1
0

)
,

(
3
4

)〉
− 5

)
= sign(3− 5) = sign(−2) = −1,

i.e. point x9 is classified as belonging to class A (red).

H

((
7
4

))
= sign

(〈(
1
0

)
,

(
7
4

)〉
− 5

)
= sign(7− 5) = sign(2) = 1,

i.e. point x10 is classified as belonging to class B (blue).

H

((
5
5

))
= sign

(〈(
1
0

)
,

(
5
5

)〉
− 5

)
= sign(5− 5) = sign(0) = 0,

i.e. point x11 lies exactly on the decision boundary.

Exercise 11-2 Kernel Trick

Consider the polynomial kernel function

K : R2 × R2 → R, (x, y) 7→ (xT y + γ)p, with p = 2, γ = 1.

Furthermore let
φ : R2 → R6, x 7→ (1,

√
2x1,
√
2x2, x

2
1, x

2
2,
√
2x1x2).

Show that K(x, y) = 〈φ(x), φ(y)〉.

K(x, y) = 〈φ(x), φ(y)〉

(xT y + 1)2 =
〈
(1,
√
2x1,
√
2x2, x

2
1, x

2
2,
√
2x1x2), (1,

√
2y1,
√
2y2, y

2
1 , y

2
2 ,
√
2y1y2)

〉
(x1y1 + x2y2 + 1)2 = 1 + 2x1y1 + 2x2y2 + x21y

2
1 + x22y

2
2 + 2x1x2y1y2

x21y
2
1 + 2x1y1x2y2 + 2x1y1 + x22y

2
2 + 2x2y2 + 1 = 1 + 2x1y1 + 2x2y2 + x21y

2
1 + x22y

2
2 + 2x1x2y1y2
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Exercise 11-3 Mercer Kernels

As known from the lecture, a Mercer kernel κ : X × X → R needs to fulfil

(1) Symmetry, i.e., κ(x, y) = κ(y, x)

(2) Positive semi-definiteness, i.e. the kernel matrix κ(X) := (κ(xi, xj))ij ∈ Rn is positive semi-definite
for all X = {x1, . . . , xn} ⊆ X .

Show that the following functions are Mercer kernels for x, y ∈ X = Rd.

(a) κ1(x, y) =

{
1 x = y

0 x 6= y
.

Obviously, κ1 is symmetric. Furthermore, we have κ1(X) = In for all X ⊆ X with |X| = n. Thus, for
arbitrary c ∈ Rn it holds

cTκ1(X)c = cT (In)c = cT c = ‖c‖22 ≥ 0

Hence, κ1 is a Mercer kernel.

(b) κ2(x, y) = xT y.

Due to xT y = yTx for x, y ∈ Rd, κ2 is symmetric. Let X ∈ Rd×n with Xij = (xj)i. Then, for arbitrary
c ∈ Rn it holds

cTκ2(X)c = cT (XTX)c = (cTXT )(Xc) = (Xc)T (Xc) = ‖Xc‖22 ≥ 0

Therefore, κ2 is Mercer kernel.

(c) κ3(x, y) = αxT y + β for α, β ∈ R with α, β ≥ 0

First, we notice κ3(x, y) = ακ2(x, y) + β. As κ2 is symmetric, the same holds for κ3. Moreover,

cTκ3(X)c = cT (ακ2(X) + β)c = α cTκ2(X)c︸ ︷︷ ︸
:=γ≥0

+βcT c = αγ + β‖c‖22 ≥ 0

Exercise 11-4 Linear Separability

In the following exercise, provide minimal subsets {x1, . . . , xm} = X ⊆ X = Rd together with class la-
bels y1, . . . , ym ∈ {−1, 1} for the given dimensionality d ∈ N that are not linear separable. Prove both, the
minimality (i.e. every X ′ ⊆ X with |X ′| < |X| is linearly separable), as well as the non-separability of X .

(a) d = 1

Consider X = {x1, x2, x3} = {1, 2, 3}, and y1 = y3 = 1, y2 = −1 as depicted below:

-1 0 1 2 3

In R1, a hyperplane consists of a single threshold point τ and a linear separation can be achieved using a
decision function

H(x) = sign(x− τ)

=

{
−1 x < τ

1 x ≥ τ
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For the sake of contradiction, assume that the classes are linearly separable. Then, x1 < x2, and y1 6= y2
implies that there is a separation between x1 and x2, i.e. x1 < τ ≤ x2. Hence, y = 1. But then, x2 < x3
and τ ≤ x2 implies that H(x2) = H(x3). This contradicts y2 6= y3. Thus, the classes are not linearly
separable.

Moreover, there is no smaller such set. Consider the case m = 2 and let X ′ = {x1, x2}. If y1 = y2, there
are no classes to separate and we are finished. Hence, let y1 6= y2. However, choosing τ = 1

2(x1 + x2),
and y = y1 yields a linear classifier with perfect prediction, i.e. X ′ is linearly separable. Since linear
separability of all sets of size m implies linear separability of all sets of size m− 1, X is minimal.

(b) d = 2

We can re-use the example from above, and just append a constant dimension to every data point.

However, if we forbid that the data is situated in a 1-dimensional subspace, we need one more point.
Consider X = {x1, . . . , x4} with x1 = (−1,−1), x2 = (−1, 1), x3 = (1,−1), x4 = (1, 1), and
y1 = y4 = 1, and y2 = y3 = −1, as depicted below:

Assume, there exists a linear split by w = (w0, w1, w2) ∈ R3. Then, is must hold that

(wT x̃i)yi > 0 for all xi (1)

=⇒
∑
i

(wT x̃i)yi > 0 (2)

⇐⇒ wT X̃T y > 0 (3)

⇐⇒
(
w0 w1 w2

) 1 1 1 1
−1 −1 1 1
−1 1 −1 1




1
−1
−1
1

 > 0 (4)

⇐⇒
(
w0 w1 w2

)0
0
0

 > 0 (5)

⇐⇒ 0 > 0 (6)

Obviously, the last line is not true and hence, such parameter vector does not exist.

Assume there is a X ′ = {x1, . . . , x3} that is not linearly separable, and spans over 2 dimensions. If
all yi are the same, nothing remains to be shown. Hence, without loss of generality, assume y1 = −1,
y2 = y3 = 1.

L

L′

Then, there exists a line that separates x1 from x2 and x3: Point x1 has a non-zero distance to the line L
through x2 and x3 (otherwise, the three points would lie on one line, and thus not span a 2-dimensional
space). Hence, we can use a line L′ parallel L and between L and x1 as separating hyperplane (cf. image).
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