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Exercise 11: SVM, Kernel Trick, Linear Separability

Exercise 11-1 Support Vector Machines

Consider the following training data:
Tl = (2,3),1’2 = (3, 2),:E3 = (4,4),1’4 = (4, 2)

Ty = (6,4),$6 = (6,3),$7 = (7, 2),$8 = (8,3)

Let ya = —1,yp = +1 be the class indicators for both classes
A= {$1,$2,$3,$4},B - {1'5,1'6,.’157,.%8}.

(a) Just using the above-standing plot, specify which of the points should be identified as support vectors.

The points {3, x4, 5, ¢} are chosen as support vectors.



(b) Draw the maximum margin line which separates the classes (you don’t have to do any computations
here). Write down the normalized normal vector w € R? of the separating line and the offset parameter
beR.

We obtain w = (1,0)7, and b = —5.

(c) Consider the decision rule: H(x) = (w, x) + b. Explain how this equation classifies points on either side
of a line. Determine the class for the points zg = (3,4), z19 = (7,4) and z1; = (5, 5).

We have the following decision rule:

H(z) = sign << (é) x> - 5>
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i.e. point xg is classified as belonging to class A (red).
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i.e. point z1¢ is classified as belonging to class B (blue).
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i.e. point z1; lies exactly on the decision boundary.

and hence,

Exercise 11-2 Kernel Trick
Consider the polynomial kernel function
K:R*xR?2 SR, (z,y)— (zTy+7)P, withp=2,7=1.

Furthermore let
¢: R 5 RS 2 (1,V2x1, V220, 23, 22, V211 20).

Show that K (x,y) = (¢(x), ¢(y)).

K(z,y) = (o(z),6(y))
(eTy+1)2 = <(1,\/ﬁwl,\/ﬁzz,x%,x%\/§$1:v2),(1,\/§y1,\/§y2,y%7y§7\/§y1y2)>

(x1y1 +zoy2 +1)2 = 1+ 2z1y1 + 2x0y2 + 2yT + 23y3 + 2z172y192
z3y? + + 2z +a5ys + 2m0y + 1 = 1+ 2w1y1 + 20y + 2TYT + 2505 +



Exercise 11-3 Mercer Kernels

As known from the lecture, a Mercer kernel k : X x X — R needs to fulfil

(1) Symmetry, i.e., k(z,y) = k(y, x)
(2) Positive semi-definiteness, i.e. the kernel matrix x(X) := (k(z;,x;));; € R" is positive semi-definite
forall X = {z1,...,z,} CX.

Show that the following functions are Mercer kernels for =,y € X = R%.

1 —
(@) k(2 y) = {0 i# ;’

Obviously, x is symmetric. Furthermore, we have x;(X) = I, for all X C X" with | X| = n. Thus, for
arbitrary ¢ € R" it holds
Tri(X)e=c'(I)e=cle= |3 >0

Hence, k1 is a Mercer kernel.
(b) ra(x,y) = a'y.

Due to 27y = y 'z for z,y € R%, ks is symmetric. Let X € R¥™ with X;j = (x;)i. Then, for arbitrary
¢ € R™ it holds

T ra(X)e=cl(ZT%)e = (FxT)(%e) = (X6)T (Xe) = ||Xc|3 >0
Therefore, k9 is Mercer kernel.
(c) k3(w,y) = azxly + Bfora, B € Rwitha,3 >0
First, we notice x3(z,y) = aka(x,y) + (. As k2 is symmetric, the same holds for k3. Moreover,

Tr3(X)e = (ara(X) + B)e = ac ky(X)e+pcl e =ay+ B|cl|3 >0
————’

=v>0
Exercise 11-4 Linear Separability
In the following exercise, provide minimal subsets {z1,...,z,,} = X C X = R? together with class la-
bels y1,...,ym € {—1,1} for the given dimensionality d € N that are not linear separable. Prove both, the

minimality (i.e. every X' C X with | X’| < |X]| is linearly separable), as well as the non-separability of X.

(@) d=1
Consider X = {z1,x9, 23} = {1,2,3},and y; = y3 = 1, y2 = —1 as depicted below:

|

-1 0 1 2 3

In R', a hyperplane consists of a single threshold point 7 and a linear separation can be achieved using a
decision function

H(z) = sign(x — 1)

_ -1 z<r
B 1 z>71



(b)

For the sake of contradiction, assume that the classes are linearly separable. Then, x1 < s, and y; # o
implies that there is a separation between x; and x2, i.e. x1 < 7 < x9. Hence, y = 1. But then, xo < x3
and 7 < zo implies that H(x2) = H(x3). This contradicts y2 # ys3. Thus, the classes are not linearly
separable.

Moreover, there is no smaller such set. Consider the case m = 2 and let X' = {x1, z2}. If y; = o, there
are no classes to separate and we are finished. Hence, let y; # y2. However, choosing 7 = %(1‘1 + x32),
and y = ¥ yields a linear classifier with perfect prediction, i.e. X' is linearly separable. Since linear
separability of all sets of size m implies linear separability of all sets of size m — 1, X is minimal.

d=2
We can re-use the example from above, and just append a constant dimension to every data point.

However, if we forbid that the data is situated in a 1-dimensional subspace, we need one more point.
Consider X = {z1,...,24} with 1 = (=1,-1), 29 = (-1,1), 23 = (1,—-1), x4 = (1,1), and
y1 = ya = 1, and y2 = y3 = —1, as depicted below:

Assume, there exists a linear split by w = (wp, wi, wa) € R3. Then, is must hold that

(wl'z;)y; > 0 forall z; (1)

= Y W'E)y; > 0 2)

— w'XTy > 0 (3)
1 1 1 1 _1

— (wp wi wy)|-1 -1 1 1 | > 0 )

-1 1 -1

1
0

— (w() w1 wg) 0 > 0 )
0

= 0 > 0 (6)

Obviously, the last line is not true and hence, such parameter vector does not exist.

Assume there is a X’ = {x1,...,x3} that is not linearly separable, and spans over 2 dimensions. If
all y; are the same, nothing remains to be shown. Hence, without loss of generality, assume y; = —1,
Y2 =y3 = 1.

Then, there exists a line that separates x; from 9 and x3: Point 7 has a non-zero distance to the line L
through x5 and z3 (otherwise, the three points would lie on one line, and thus not span a 2-dimensional
space). Hence, we can use a line L’ parallel L and between L and x; as separating hyperplane (cf. image).



