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Exercise 8: Outlier Scores

Exercise 8-1 Monotonicity of Simple Outlier Scores

Proof or give an counterexample for the following claims:

(a) If o is an D(ε, π)-outlier, it is also an D(ε′, π)-outlier for ε′ ≤ ε.
The statement is true. Let o be an D(ε, π)-outlier. Then,

π |D|
♣
≥ |{q ∈ D | dist(o, q) < ε}|

♥
≥
∣∣{q ∈ D | dist(o, q) < ε′

}∣∣
where ♣ is the definition of D(ε, π)-outlier, and ♥ holds due to the transitivity of < and ≤:

dist(o, q) < ε′ ∧ ε′ ≤ ε =⇒ dist(o, q) < ε

(b) If o is an D(ε, π)-outlier, it is also an D(ε, π′)-outlier for π′ ≥ π.

This statement is also true.

π′|D| ≥ π|D| ≥ |{q ∈ D | dist(o, q) < ε}|

(c) If o is an kNN-outlier for threshold τ , it is also an k′NN-outlier for the same threshold with k′ > k.

Let nndist(o, k) denote the k-distance of o. As the k-distance is the kth smallest distance to an object in
the database, we clearly have nndist(o, k) ≤ nndist(o, k + 1) (the (k + 1)-smallest distance cannot be
larger than the k-smallest). Hence,

nndist(o, k′) ≥ nndist(o, k) > τ,

i.e. o is also a k′NN outlier for threshold τ .

(d) If o is an kNN-outlier for threshold τ , it is also an kNN-outlier for threshold τ ′ < τ .

Let nndist(o, k) denote the k-distance of o. Then,

nndist(o, k) > τ > τ ′

i.e. o is also a kNN outlier for threshold τ ′.
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(e) The local density is monotonously decreasing in k, i.e. ldk(o) ≥ ldk′(o) for k′ > k.

This statement is true. Let nndist(o, k) denote the k-distance of o, i.e. the distance between o and its kth
nearest neighbor. Then, we have

k′ ≥ k =⇒ nndist(o, k′) ≥ nndist(o, k)

i.e. the k-distance is monotonously increasing in k. With this notation, we can note the (reciprocal) local
density ldk(o) by

(ldk(o))
−1 =

1

k

k∑
i=1

nndist(o, i)

Moreover, we can apply the following sequence of equivalence transformations of the inequality of inte-
rest

ldk(o) ≥ ldk+1(o)

⇐⇒ (ldk(o))
−1 ≤ (ldk+1(o))

−1

⇐⇒ 1

k

k∑
i=1

nndist(o, i) ≤ 1

k + 1

k+1∑
i=1

nndist(o, i)

⇐⇒ (k + 1)
k∑

i=1

nndist(o, i) ≤ k
k+1∑
i=1

nndist(o, i)

⇐⇒ k

k∑
i=1

nndist(o, i) +

k∑
i=1

nndist(o, i) ≤ k

k+1∑
i=1

nndist(o, i)

⇐⇒
k∑

i=1

nndist(o, i) ≤ k · nndist(o, k + 1)

The last inequality holds due to

k∑
i=1

nndist(o, i)
♠
≤

k∑
i=1

nndist(o, k + 1) = k · nndist(o, k + 1)

where ♠ uses the monotonicity of the k-distance.

Exercise 8-2 Outlier Scores

Given the following 2 dimensional data set:
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As distance function, use Manhattan distance L1(a, b) := |a1−b1|+ |a2−b2|. The following table summarises
the pairwise distances.

A B C D E F G H I J K L M N O P Q R S T

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

0 1 1 2 6 10 11 12 13 13 15 17 14 12 13 14 11 12 13 11

1 0 2 1 5 9 10 11 12 12 14 16 13 11 12 13 10 11 12 10

1 2 0 1 5 9 10 11 12 12 14 16 13 11 12 13 10 11 12 10

2 1 1 0 4 8 9 10 11 11 13 15 12 10 11 12 9 10 11 9

6 5 5 4 0 4 5 6 7 7 9 11 8 6 7 8 7 8 9 9

10 9 9 8 4 0 1 2 3 3 5 7 10 10 11 12 11 12 13 13

11 10 10 9 5 1 0 1 2 2 4 8 11 11 12 13 12 13 14 14

12 11 11 10 6 2 1 0 1 1 3 7 10 10 11 12 11 12 13 13

13 12 12 11 7 3 2 1 0 2 4 8 11 11 12 13 12 13 14 14

13 12 12 11 7 3 2 1 2 0 2 6 9 9 10 11 10 11 12 12

15 14 14 13 9 5 4 3 4 2 0 4 7 7 8 9 8 9 10 10

17 16 16 15 11 7 8 7 8 6 4 0 3 5 4 5 6 5 6 6

14 13 13 12 8 10 11 10 11 9 7 3 0 2 1 2 3 2 3 3

12 11 11 10 6 10 11 10 11 9 7 5 2 0 1 2 1 2 3 3

13 12 12 11 7 11 12 11 12 10 8 4 1 1 0 1 2 1 2 2

14 13 13 12 8 12 13 12 13 11 9 5 2 2 1 0 3 2 1 3

11 10 10 9 7 11 12 11 12 10 8 6 3 1 2 3 0 1 2 2

12 11 11 10 8 12 13 12 13 11 9 5 2 2 1 2 1 0 1 1

13 12 12 11 9 13 14 13 14 12 10 6 3 3 2 1 2 1 0 2

11 10 10 9 9 13 14 13 14 12 10 6 3 3 2 3 2 1 2 0

(a) Calculate the D(ε, π)-outliers using

(i) ε = 2 with nπ = 1 and nπ = 2.

(ii) ε = 4 with nπ = 1, nπ = 3 and nπ = 4.

(iii) ε = 6 with nπ = 4, nπ = 5 and nπ = 6.

For the D(ε, π) outliers we have to check whether at most π percent of all points have a distance less
than ε. Hence, we count per column how many times the distance is less than ε yielding

ε A B C D E F G H I J K L M N O P Q R S T

2 3 3 3 3 1 2 3 4 2 2 1 1 2 3 5 3 3 5 3 2
4 4 4 4 4 1 5 5 6 5 6 3 2 9 8 8 8 8 8 8 8
6 4 5 5 5 6 7 7 6 6 6 7 7 9 9 9 9 8 9 8 8

Finally, we check if the number divided by the number of objects n = 20 is at most the threshold π. We
obtain the following outliers:

(i) For (ε, nπ) = (2, 1): EKL. For (ε, nπ) = (2, 2): EFIJKLMT.

(ii) For (ε, nπ) = (4, 1): E. For (ε, nπ) = (4, 3): EKL. For (ε, nπ) = (4, 4): ABCDEKL.

(iii) For (ε, nπ) = (6, 4): A. For (ε, nπ) = (6, 5): ABCD. For (ε, nπ) = (6, 6): ABCDEHIJ.
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(b) Calculate the kNN based outliers for (k, τ) = (3, 3) and (k, τ) = (5, 8). The point itself is counted as
the 0-nearest neighbour.

First, we compute the k-distances for each point.

k A B C D E F G H I J K L M N O P Q R S T

3 2 2 2 2 5 3 2 1 2 2 4 4 2 2 1 2 2 1 2 2
5 10 9 9 8 5 4 4 3 4 3 4 5 3 2 2 2 2 2 2 3

Finally, we obtain the outliers as those points whose k-distance exceeds the threshold τ , i.e. for (k, τ) =
(3, 3) we have E,K,L, and for (k, τ) = (5, 8) we have A,B,C.

(c) Given the following curves of the local density ldk for different values of k.

2 4 6 8 10 12 14 16 18
k

0.2

0.4

0.6

0.8

1.0

ld
k

Can you identify which curve belongs to which point? Explain your mapping.

This is the ground truth mapping.
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We can observe:

• The dark green line has a ldk of one up to k = 4. Hence, the inverse average distance to the 4-
nearest neighbours is 1, and equivalently, the average of distances of the 4-nearest neighbours is
one. We can only find two points in the dataset fulfilling this requirement: O and R.

• The dark blue line has a ld1 of 0.25, i.e. the 1-nearest neighbour has distance 4. This requirement is
only fulfilled by E.

• For the light blue line we can observe that ldk stays one until k = 2, i.e. there are two points with
distance 1. This reduces the candidate set to ABCDG. As we observe a sharp drop afterwards, the
point is likely to reside in ABCD. All of these points have a quite similar ldk-line.
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• The light green line is also in a region that has a low local density already for small k values. As it
is still higher, as the light green line, we might suspect a point that has a slightly smaller 1-distance,
such as K, or L. Using ld1 = 0.5, we can conclude that the 1-distance is equal to 2, and hence only
K possible.
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