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Exercise 7: Agglomerative Clustering, OPTICS, Clustering Evaluation

Exercise 7-1 Hierarchical Clustering

Given the following data set:
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As distance function, use Manhattan Distance:

L1(x, y) = |x1 − y1|+ |x2 − y2|

Compute two dendrograms for this data set. To compute the distance of sets of objects, use

• the single-link method
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• the complete-link method
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Hint: With discrete distance values, nodes may have more than two children.

Exercise 7-2 OPTICS
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As distance function, use Manhattan distance L1(a, b) := |a1 − b1|+ |a2 − b2|.
Construct an OPTICS reachability plot for each of the following parameter settings. In case of a tie always
proceed with the first candidate in alphabetical order.

(a) ε = 5 and minPts = 2

(b) ε = 5 and minPts = 4

(c) ε = 2 and minPts = 4

(d) ε =∞ and minPts = 4
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Exercise 7-3 Efficient Evaluation of Clusterings

Let D be a database of size n := |D|, and let C,G be two partitionings of D. Furthermore, let k := |C| and
l := |G| be the number of partitions, and assume that the contingency table is provided as a (k × l) matrix,
where Nij = |Ci ∩Gj | denotes one cell in this table.

As in the lecture slides, let P := {(o, p) ∈ D2 | o 6= p} denote the set of all pairs, and SC = {(o, p) ∈ P |
∃Ci ∈ C : {o, p} ⊆ Ci} be the set of pairs that are contained in a common cluster Ci in C. In addition, SC
denotes the complement of SC in P , i.e. SC = P \ SC . SG and SG are used analogously.

Using these four sets, we can now define the

• True Positives (TP): Same labelling in C and same labelling in G, i.e. TP = |SC ∩ SG |

• False Positives (FP): Same labelling in C, but different labelling in G, i.e. FP = |SC ∩ SG |

• False Negatives (FN): Different labelling in C, but same labelling in G, i.e. FN = |SC ∩ SG |

• True Negatives (TN): Different labelling in C, and different labelling in G, i.e. TN = |SC ∩ SG |

The relation of these four sets and SC as well as SG is also visualised in the following Venn diagram:

SC SC

SG

SG

P

TP FN

FP TN

For each of these cardinalities, provide a method to obtain the numbers solely from the contingency table, i.e.
without explicitly enumerating set of all pairs (which requires O(n2) time).

(a) TP = |SC ∩ SG |,
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(b) FP = |SC ∩ SG |,

(c) FN = |SC ∩ SG |,

(d) TN = |SC ∩ SG |.

The following visualisation shall aid understanding the relation between the contingency table and the retrieval
formalisation. The black and red dots represent data objects. The coloured lines indicate that this pair of data
points is considered as a TP/FP/FN/TN (Important: We only show the relation between the red dot and the black
dots). In the contingency table we only see the number of data objects that reside in a specific cell. Given those,
we hence need to compute the number of pairs that fulfil the TP/FP/FN/TN constraints.

G1 G2 G3

C1

C2
TP

FN
FP

TN

(a) The TP are the pairs that get assigned to the same cluster in C and also in G.

TP = |SC ∩ SG |
= |{(o, p) ∈ P | ∃Ci ∈ C : {o, p} ⊆ Ci} ∩ {(o, p) ∈ P | ∃Gj ∈ G : {o, p} ⊆ Gj}|
= |{(o, p) ∈ P | (∃Ci ∈ C : {o, p} ⊆ Ci) ∧ (∃Gj ∈ G : {o, p} ⊆ Gj)}|
= |{(o, p) ∈ P | ∃Ci ∈ C ∃Gj ∈ G : {o, p} ⊆ Ci ∩Gj}|

=

∣∣∣∣∣∣
k⋃

i=1

l⋃
j=1

{{o, p} ⊆ Ci ∩Gj | o 6= p}

∣∣∣∣∣∣
♣
=

k∑
i=1

l∑
j=1

|{{o, p} ⊆ Ci ∩Gj | o 6= p}|

=
k∑

i=1

l∑
j=1

(
Nij

2

)

=
1

2

k∑
i=1

l∑
j=1

Nij(Nij − 1)

where ♣ uses that Ci ∩Gj and Ci′ ∩Gj′ are disjoint for i 6= i′ or j 6= j′, as C and G are partionings.

(b) The FP are the pairs that get assigned to the same cluster in C but to different ones in G.

We have

|SC ∩ SG |+ |SC ∩ SG | = |SC |

as SC∩SG and SC∩SG are a partitioning of SC , i.e. they are disjoint (no element gets counted twice), and
their union equals SC (every element is counted at least once). As, |SC ∩ SG | = TP is already known,
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we only need |SC |:

|SC | = |{(o, p) ∈ P | ∃Ci ∈ C : {o, p} ⊆ Ci}|

=

∣∣∣∣∣
k⋃

i=1

{{o, p} ⊆ Ci | o 6= p}

∣∣∣∣∣
♣
=

k∑
i=1

|{{o, p} ⊆ Ci | o 6= p}|

=
k∑

i=1

(
NC

i

2

)

=
1

2

k∑
i=1

NC
i (N

C
i − 1)

where♣ holds due to C being a partitioning, i.e., in particular, Ci∩Ci′ = ∅ for i 6= i′, and NC
i =

l∑
j=1

Nij

is the row sum of the contingency table. Thus, FP = |SC | − TP .

(c) The FN are the pairs that get assigned to different clusters in C but to same in G. We can repeat the

steps from FP with G instead of C, define NG
i =

k∑
i=1

Nij (the column sum in the contingency table), and

analogously obtain

|SC | =
1

2

l∑
i=1

NG
i (N

G
i − 1), (1)

i.e. FN = |SG | − TP .

(d) Finally, the TN are the pairs that get assigned to different clusters, both, in C and G. Here, we can use

TP + FP + FN + TN = |P | =
(
|D|
2

)
=

1

2
n(n− 1)

to obtain the value from the three others, i.e. TN = |P | − |SC | − |SG |+ TP .

Exercise 7-4 Mutual Information

Given are two clusterings of D = {A¸ . . . , Z}:

• C = {{A,D,E, I,K,L,M,N, T}, {B,F,O,Q,R, S,X, Y }, {C,G,H, P, V }, {J, U,W,Z}}.

• G = {{A,F,M, Y }, {B,E,H,N,O,Q,R,Z}, {C,G,U,W}, {D, I,K,L, P, T, V }, {J, S,X}}.

(a) Setup the contingency table, i.e. compute the sizes |Ci ∩Gj | for i = 1, . . . , 4, and j = 1, . . . , 5.

G0 G1 G2 G3 G4 NC
i

C0 2 2 0 5 0 9
C1 2 4 0 0 2 8
C2 0 1 2 2 0 5
C3 0 1 2 0 1 4

NG
j 4 8 4 7 3 26
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(b) Using the contingency table from (a), compute the entropy of C and G, i.e. H(C) and H(G).
The entropy of F ∈ {C,G} is given by

H(F) = −
4∑

i=1

NF
i

N
log

NF
i

N

(we will use the logarithm to base 2 here)

NC NC/N log(NC/N)

C0 9 9/26 -1.531
C1 8 8/26 -1.700
C2 5 5/26 -2.379
C3 4 4/26 -2.700

H(C) ≈ 1.926

NG NG/N log(NG/N)

G0 4 4/26 -2.700
G1 8 8/26 -1.700
G2 4 4/26 -2.700
G3 7 7/26 -1.893
G4 3 3/26 -3.115

H(G) ≈ 2.223

(c) Using the contingency table from (a), compute the mutual entropy H(C | G).
Mutual Entropy H(C | G) is computed by

H(C | G) = −
k∑

i=1

NC
i

N

l∑
j=1

Nij

NC
i

log
Nij

NC
i

First, each row is divided by the row-sum NC
i to obtain Nij/Ni

G0 G1 G2 G3 G4 NC
i /N

C0 2/9 2/9 0/9 5/9 0/9 9/26
C1 2/8 4/8 0/8 0/8 2/8 8/26
C2 0/5 1/5 2/5 2/5 0/5 5/26
C3 0/4 1/4 2/4 0/4 1/4 4/26

Second, yij = −xij log xij is computed for each cell individually (where Nij > 0), yielding:

G0 G1 G2 G3 G4
∑

j yij NC
i /N

C0 0.482 0.482 0.471 1.436 9/26
C1 0.500 0.500 0.500 1.500 8/26
C2 0.464 0.529 0.529 1.522 5/26
C3 0.500 0.500 0.500 1.500 4/26

Finally, the tentative sums are weighted by NC
i /N and added to obtain H(C | G) ≈ 1.482

(d) Combine the results from (b) and (c) to obtain the normalised mutual information. What does this value
tell about the two clusterings?

The Mutual Information (MI) is given by

I(C,G) = H(C)−H(C | G) ≈ 1.926− 1.482 = 0.444

The Normalised Mutual Information (NMI) adds another normalisation factor

NMI(C,G) = I(C,G)√
H(C)H(G)

≈ 0.444√
1.926 · 2.223

≈ 0.215

The value range of the NMI is [0, 1], where a value of 1 corresponds to a perfect matching between C and
G. Hence, the clusterings C and G are rather dissimilar.
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