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Exercise 3: Privacy, Frequent Itemset Mining

Exercise 3-1 Privacy

Given the following table

Key Quasi-Identifier Sensitive
Name Sex Age Zip Disease
Alice F 24 10000 Heart Disease
Bob M 22 10000 Lung Cancer

Charlotte F 24 10000 Breast Cancer
Dave M 22 10000 Lung Cancer

Emma F 20 10000 Heart Disease
Francis M 20 10000 Heart Disease
Garry M 22 10000 Lung Cancer
Harry M 20 10000 Heart Disease
Iris F 21 10001 Flu

John F 21 10001 Flu
Kendra F 20 10000 Heart Disease

Lisa F 20 10000 Lung Cancer

(a) k-Anonymity:

(i) Determine the largest k such that the table is k-anonym. Explain which rows contradict the (k+1)-
anonymity.
The dataset is 2-anonymous, as there is no Quasi-Identifier-tuple which occurs only once. It is not
3-anonymous, as e.g. (F, 24, 10000) occurs only twice.

(ii) You may now use suppression on the columns. Assume that by removing one digit from Age or Zip,
or suppressing the Sex attribute, you lose one ”value”. What is the minimal value loss required to
achieve 5-anonymity?
5-anonymity can be achieved by suppressing the last digit of Age and the last digit of Zip. Hence,
the minimal value is at most 2. It is not 1 as:

• Suppressing Sex leads to 2-anonymity, e.g. (∗, 24, 10000) occurs only twice.
• Suppressing the last digit of Age leads to 2-anonymity, e.g. (F, 2∗, 10001) occurs only twice.

Suppressing the first digit does not give any benefit, as all age numbers begin with ”2”.
• Suppressing the last digit of Zip leads to 2-anonymity, e.g. (F, 24, 1000∗) occurs only twice.

Suppressing any other digit does not give any benefit, as all zip codes begin with ”1000”.

(b) Distinct l-Diversity
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(i) What is one shortcoming of k-anonymity compared to l-diversity? Which attack exploits this weak-
ness?
k-anonymity only regards the quasi-identifiers, but does not investigate the distribution of the sen-
sitive attribute within one equivalence-class w.r.t. the quasi-identifier. This can be exploited by the
Background-Knowledge Attack.

(ii) Given that a dataset is k-anonymous, but not (k+1)-anonymous. What implications does this have
on the distinct l-diversity of the dataset? Give a lower and upper bound for l.
The smallest equivalence-class w.r.t. to the Quasi-Identifier has size k. Hence, in this class there
can only be at most k different values for the sensitive attribute. Thus, l can be bounded from above
as l ≤ k. Trivially, 1 ≤ l holds as lower bound. As k-anonymity does not make any statement
about the distribution of the sensitive attribute, we cannot guarantee a larger lower bound, i.e. the
following bounds are tight: 1 ≤ l ≤ k.

(iii) Knowing only the distribution of the sensitive attribute values; What bounds can you derive for l in
distinct l-diversity?
Let L be the number of different sensitive attribute values. Then, there can also be at most L different
values within each equivalence class w.r.t. to an Quasi-Identifier. Thus, l ≤ L.
Additional information: This bound is independent of the bound from (ii), as the former one operates
only on the Quasi-Identifier columns and this one solely considers the sensitive attribute.

(iv) What is the largest l such that the above mentioned dataset is distinct l-diverse?
The dataset is distinct 1-diverse as QI = (F, 21, 10001) =⇒ Disease = Flu.

(v) Assume suppressing the last digit of the Zip column and generalising Age to {(−∞, 22], (22,+∞)}.
For what value of l can distinct l-diversity now be guaranteed.
There are the following equivalence classes

Sex Age Zip Diseases l

F (−∞, 22] 1000∗ {Flu, Heart Disease, Lung Cancer} 3
M (−∞, 22] 1000∗ {Heart Disease, Lung Cancer} 2
F (22,∞) 1000∗ {Breast Cancer, Heart Disease} 2

Hence, the table is now distinct 2-diverse.

Exercise 3-2 Apriori Principle

The apriori principle can be used to prune candidates for frequent itemsets and association rules. Let I be the set
of all items. You can use the following Venn diagram as help to understand the subset relations in the following
tasks.

X

X ′

Y Z

I

Give proofs or counterexamples for the following claims:

(a) Let X ⊆ I be an arbitrary itemset. Then, supp(X ′) ≥ supp(X) holds for any non-empty subset ∅ ⊂
X ′ ⊆ X .
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For all T ⊆ I we have X ⊆ T =⇒ X ′ ⊆ T by transitivity of the subset relation. Hence, {T ∈ D |
X ′ ⊆ T} ⊇ {T ∈ D | X ⊆ T} and thus supp(X ′) ≥ supp(X).

(b) Let Y,Z ⊆ I be arbitrary itemsets with |Y | > |Z|. Then, supp(Y ) ≤ supp(Z).

Counterexample: Consider I = {a, b, c}, Y = {a, b}, Z = {c} and D = {t} with t = {a, b}. Then,
supp(Y ) = 1 > 0 = supp(Z).

(c) Let X ⊆ I be a frequent itemset. Then, every non-empty subset ∅ ⊂ X ′ ⊆ X must also be frequent.

As X is frequent, supp(X) ≥ minSup. Then, by (a) it follows: supp(X ′)
(a)

≥ supp(X) ≥ minSup.
Thus, by definition, X ′ is frequent as well.

(d) Let X ⇒ Y be not strong. Then, for all Z ⊆ I holds X ⇒ (Y ∪ Z) not strong.

X ⇒ Y is not strong. Hence,

minConf > conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)

(a)

≥ supp(X ∪ Y ∪ Z)

supp(X)
= conf(X ⇒ (Y ∪ Z))

Thus, X ⇒ (Y ∪ Z) is also not strong.

(e) Let X ⇒ Y be not strong. Then, for all X ′ ⊆ X holds (X \X ′)⇒ (Y ∪X ′) not strong.

X ⇒ Y is not strong. Then,

minConf > conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)

(a),♣
≥ supp((X \X ′) ∪ (Y ∪X ′))

supp(X \X ′)

= conf((X \X ′)⇒ (Y ∪X ′))

where ♣ also exploits that (X \X ′) ∪ (Y ∪X ′) = X ∪ Y for X ′ ⊆ X .̧

Exercise 3-3 Apriori Algorithm

Given a set of items {a, b, c, d, e, f, g, h} and a set of transactions T according to the following table

TID Items
1 ag
2 bcg
3 eg
4 dg
5 dfg
6 dg
7 ag
8 ag
9 ae
10 ag
11 afh
12 af
13 ade
14 dfg

(a) Using the Apriori algorithm, compute all frequent itemsets for minSup = 0.1 (i.e. 2 transactions are
needed for an itemset to be frequent).
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k candidate prune count threshold closed maximal

1

a 8 a X
b 1
c 1
d 5 d X
e 3 e X
f 4 f X
g 10 g X
h 1

2

ad 1
ae 2 ae X X
af 2 af X X
ag 4 ag X X
de 1
df 2 df
dg 4 dg X
ef 0
eg 1
fg 2 fg

3

aef with ef
aeg with eg
afg 0
dfg 2 dfg X X

(b) Which of the found frequent itemsets are closed/maximal? Is there a dependency between those two
concepts?

Maximal implies closed. To this end, observe that if X is frequent and maximal, then for all Y ⊃ X
holds supp(Y ) < minSup. As X is frequent, supp(X) ≥ minSup. Hence, for all Y ⊃ X holds
supp(Y ) < minSup ≤ supp(X), which implies X being closed.
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