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Exercise 6: k-Medoid, EM, DBSCAN

Exercise 6-1 K-Medoid (PAM)

Consider the following 2-dimensional data set:
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x1 2 7 1 8 3 9
x2 3 2 1 5 6 7
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(a) Perform the first loop of the PAM algorithm (k = 2) using the Manhattan distance. Select D and E
(highlighted in the plot) as initial medoids and compute the resulting medoids and clusters.
Hint: When C(m) denotes the cluster of medoid m, and M denotes the set of medoids, then the total
distance TD may be computed as

TD =
∑
m∈M

∑
o∈C(m)

d(m, o)

(b) How can the clustering result C1 = {A,B,C}, C2 = {D,E, F} be obtained with the PAM algorithm
(k = 2) using the weighted Manhattan distance

d(x, y) = w1 · |x1 − y1|+ w2 · |x2 − y2|?

Assume that B and E are the initial medoids and give values for the weights w1 and w2 for the first and
second dimension respectively.
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Exercise 6-2 Convergence of PAM

Show that the algorithm PAM converges.

Exercise 6-3 Assignments in EM-Algorithm

Given a data set with 100 points consisting of three Gaussian clusters A, B and C and the point p.

The cluster A contains 30% of all objects and is represented using the mean of all his points µA = (2, 2) and

the covariance matrix ΣA =

(
3 0
0 3

)
.

The cluster B contains 20% of all objects and is represented using the mean of all his points µB = (5, 3) and

the covariance matrix ΣB =

(
2 1
1 4

)
.

The cluster C contains 50% of all objects and is represented using the mean of all his points µC = (1, 4) and

the covariance matrix ΣC =

(
16 0
0 4

)
.

The point p is given by the coordinates (2.5, 3.0).
Compute the three probabilities of p belonging to the clusters A, B and C.

The following sketch is not exact, and only gives a rough idea of the cluster locations:
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Exercise 6-4 DBSCAN

Given the following data set:
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As distance function, use Manhattan Distance:

L1(x, y) = |x1 − y1|+ |x2 − y2|

Compute DBSCAN and indicate which points are core points, border points and noise points.

Use the following parameter settings:

• Radius ε = 1.1 and minPts = 2

• Radius ε = 1.1 and minPts = 3

• Radius ε = 1.1 and minPts = 4

• Radius ε = 2.1 and minPts = 4

• Radius ε = 4.1 and minPts = 5

• Radius ε = 4.1 and minPts = 4

Exercise 6-5 Properties of DBSCAN

Discuss the following questions/propositions about DBSCAN:

• Using minPts = 2, what happens to the border points?

• The result of DBSCAN is deterministic w.r.t. the core and noise points but not w.r.t. the border points.

• A cluster found by DBSCAN cannot consist of less than minPts points.

• If the dataset consists of n objects, DBSCAN will evaluate exactly n ε-range queries.

• On uniformly distributed data, DBSCAN will usually either assign all points to a single cluster or classify
every point as noise. k-means on the other hand will partition the data into approximately equally sized
partitions.
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