
Ludwig-Maximilians-Universität München
Lehrstuhl für Datenbanksysteme und Data Mining

Prof. Dr. Thomas Seidl

Knowledge Discovery and Data Mining I

Winter Semester 2018/19



People

Lecturer

I Prof. Dr. Thomas Seidl

Assistants

I Max Berrendorf

I Julian Busch

Student Assistants

I Maximilian Hünemörder

I Florentin Schwarzer

Introduction Organisation February 6, 2019 1

http://www.dbs.ifi.lmu.de/cms/personen/professoren/seidl/index.html
http://www.dbs.ifi.lmu.de/cms/personen/mitarbeiter/berrendorf/index.html
http://www.dbs.ifi.lmu.de/cms/personen/mitarbeiter/busch/index.html


Schedule

Lecture (begins: 16.10.2018)

Tu. 09:15-11:45 B U101 (Oettingenstraße. 67)

Tutorials (begin: 25.10.2018)

Th. 12:15-13:45 Lehrturm-VU107 (Prof.-Huber-Pl. 2)
Th. 14:15-15:45 Lehrturm-VU107 (Prof.-Huber-Pl. 2)
Fr. 12:15-13:45 Lehrturm-V005 (Prof.-Huber-Pl. 2)
Fr. 14:15-15:45 C 111 (Theresienstr. 41)

Exam

1. Hauptklausur:
Mo., 25.02.19, 14:00-16:00, B 101 B 201 (Hauptgebäude)

2. Nachholklausur:
tba
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Material, Tutorials & Exam

Material (Slides, Exercises, etc.)

Available on course webpage:
http://www.dbs.ifi.lmu.de/cms/studium_lehre/lehre_master/kdd1819/index.html

Tutorial

I Python Introduction now available on website
I First exercise sheet available for download around 18.10.2018
I Prepare at home
I Presentation and discussion one week after

Exam

I Written exam at the end of semester
I All material discussed in the lecture and tutorials
I Registration via UniWorX
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Textbook / Acknowledgements

The slides used in this course are modified versions of the copyrighted original slides
provided by the authors of the adopted textbooks:

I c© Jiawei Han, Micheline Kamber, Jian Pei: Data
Mining – Concepts and Techniques, 3rd ed., Morgan
Kaufmann Publishers, 2011.
http://www.cs.uiuc.edu/~hanj/bk3

I c© Martin Ester and Jörg Sander: Knowledge Discovery
in Databases – Techniken und Anwendungen Springer
Verlag, 2000 (in German).
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Motivation

I Data Mining = extraction of patterns from data
I Patterns

I Regularities – examples: frequent itemsets, clusters
I Irregularities – examples: outliers

I Not all patterns are useful
I ”all mothers in our database are female”  trivial/known
I ”bread, butter is frequent” given ”bread, butter, salt is frequent”  redundant

I Aggregation of data may help: Basic statistics

Introduction Motivation February 6, 2019 6



What is Data Mining?

Knowledge Discovery in Databases (Data Mining)

Extraction of interesting (non-trivial, implicit, previously unknown and potentially
useful) information or patterns from data in large databases

Roots of Data Mining

I Statistics

I Machine Learning

I Database Systems

I Information Visualization
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Data Mining: Motivation
”Necessity is the mother of invention”

Data Explosion Problem

Tremendous amounts of data caused by

I Automated data collection

I Mature database technology

”We are drowning in data, but starving for knowledge!”

Solution

I Data Warehousing and on-line analytical processing (OLAP)

I Data Mining: Extraction of interesting knowledge (rules, regularities, patterns,
constraints) from data in large databases

Introduction Motivation February 6, 2019 8



Data Mining: Motivation

+Syntax

Characters

+Semantics

Data

+Learning

Information 

+Practice

Knowledge

+Motivation

Proficiency

+Reflection

Action 

+Uniqueness

Expertise Competitiveness 

Operational Perspective

Strategic Perspective

Data and Information Explicit Knowledge Tacit Knowledge

Stairs of Knowledge (K. North) 1

1Stairs of Knowledge: North, K.: Wissensorientierte Unternehmensführung - Wertschöpfung durch
Wissen. Gabler, Wiesbaden 1998.

Introduction Motivation February 6, 2019 9



Data Mining: Potential Applications

I Database analysis and decision support
I Market analysis and management:

target marketing, customer relation management, market basket analysis, cross
selling, market segmentation

I Risk analysis and management:
Forecasting, customer retention (”Kundenbindung”), improved underwriting, quality
control, competitive analysis

I Fraud detection and management

I Other Applications:
I Text mining (news group, email, documents) and Web analysis.
I Intelligent query answering
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The Knowledge Discovery Process
I The KDD-Process (Knowledge Discovery in Databases)

Databases/
Information repositories 

"Data Warehouse" Task-relevant
data 

Patterns Knowledge

Visualization,
Evaluation Data Mining

Transformation,
Selection,
Projection 

Data Cleaning,
Data Integration 

Visualization,
"Visual Data Mining" 

I Data Mining:
I Frequent Pattern Mining
I Clustering
I Classification
I Regression
I Process Mining
I . . .
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KDD Process: Data Cleaning & Integration

I . . . may take 60% of effort
I Integration of data from different sources

I Mapping of attribute names, e.g. C Nr→ O Id
I Joining different tables, e.g. Table1 = [C Nr, Info1] and Table2 = [O Id,

Info2]

 JoinedTable = [O Id, Info1, Info2]

I Elimination of inconsistencies

I Elimination of noise

I Computation of missing values (if necessary and possible): Possible strategies e.g.
default value, average value, or application specific computations
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KDD Process: Focusing on Task-Relevant Data

Task

I Find useful features, dimensionality/variable reduction, invariant representation

I Creating a target data set

Selections

Select the relevant tuples/rows from the database tables, e.g., sales data for the year
2001
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KDD Process: Focusing on Task-Relevant Data

Projections

Select the relevant attributes/columns from the database tables, e.g., (id, name, date,
location, amount)  (id, date, amount)

Transformations, e.g.:

I Discretization of numerical attributes, e.g.,
amount: [0, 100]  d amount: {low, medium, high}

I Computation of derived tuples/rows and derived attributes:
I aggregation of sets of tuples, e.g., total amount per months
I new attributes, e.g., diff = sales current month - sales previous month

Introduction Knowledge Discovery Process February 6, 2019 14



KDD Process: Basic Data Mining Tasks

Goal

Find patterns of interest

Tasks

I Identify task: Are there labels (in the training data)?
I Many  Supervised learning (focus on given concepts)
I Some few  Semi-supervised learning (focus on few hidden concepts)
I None  Unsupervised learning (many hidden concepts)

I Choose fitting mining algorithm(s)
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Basic Mining Tasks: Frequent Itemset Mining

Setting

Given a database of transactions,
e.g.

Transaction ID Items Bought

2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Motivation

Frequently co-occurring items in the set of transactions indicate correlations or
causalities

Examples

I buys(x, "diapers")⇒buys(x, "beers") [supp: 0.5%, conf: 60%]

I major(x, "CS")∧takes(x, "DB")⇒grade(x,"A") [supp: 1.0%, conf: 75%]
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Basic Mining Tasks: Frequent Itemset Mining

Applications

I Market-basket analysis

I Cross-marketing

I Catalogue design

I Also used as a basis for clustering, classification

I Association rule mining: Determine correlations between different itemsets
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Basic Mining Tasks: Clustering

Setting

I Database of objects

I (Dis-)Similarity function between objects

I Unknown class labels

Task

Group objects into sub-groups (clusters)
”maximizing” intra-class similarity and
”minimizing” interclass similarity
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Basic Mining Tasks: Clustering

Applications

I Customer profiling/segmentation

I Document or image collections

I Web access patterns

I . . .
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Basic Mining Tasks: Classification

Setting

Class labels are known for a small set of ”training
data”

Task

Find models/functions/rules (based on attribute
values of the training examples) that

I describe and distinguish classes

I predict class membership for “new” objects

a

b

a

a

a
a

a
a

a

a
b b

b
b

b
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Basic Mining Tasks: Classification

Applications

I Classify disease type for tissue samples from gene expression values

I Automatic assignment of categories to large sets of newly observed celestial
objects

I Predict unknown or missing values (cf. KDD data cleaning & integration)

I . . .
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Basic Mining Tasks: Regression

Setting

Numerical output values are known for a small set
of ”training data”

Task

Find models/functions/rules (based on attribute
values of the training examples) that

I describe the numerical output values of the
training data

I predict the numerical value for “new” objects

Wind
speed

Delay of
flight

query

predicted
value
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Basic Mining Tasks: Regression

Applications

I Build a model of the housing values, which can be used to predict the price for a
house in a certain area

I Build a model of an engineering process as a basis to control a technical system

I . . .
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Basic Mining Tasks: Generalization Levels

I Generalize, summarize, and contrast data characteristics
I Based on attribute aggregation along concept hierarchies

I Data cube approach (OLAP)
I Attribute-oriented induction approach
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Basic Mining Tasks: Other Methods

Outlier Detection

Find objects that do not comply with the general behaviour of the data (fraud
detection, rare events analysis)

Trends and Evolution Analysis

Sequential patterns (find re-occurring sequences of events)

Methods for special data types, and applications

I Process Mining

I Spatial Data Mining

I Graphs

I . . .
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KDD Process: Evaluation and Visualization

I Pattern evaluation and knowledge presentation: Visualization, transformation,
removing redundant patterns, etc.

I Integration of visualization and data mining:
I data visualization
I data mining result visualization
I data mining process visualization
I interactive visual data mining

I Different types of 2D/3D plots, charts and diagrams are used, e.g. box-plots,
trees, scatterplots, parallel coordinates

I Use of discovered knowledge
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Summary

I Data mining = Discovering interesting patterns from large amounts of data

I A natural evolution of database technology, machine learning, statistics,
visualization, in great demand, with wide applications

I A KDD process includes data cleaning, data integration, data selection,
transformation, data mining, pattern evaluation, and knowledge presentation

I Data mining functionalities: characterization, discrimination, association,
classification, clustering, outlier and trend analysis, etc.
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Objects and Attributes

Entity-Relationship Diagram (ER)

Student

name

semester

major 

skills

UML Class Diagram

Student

name

semester

major

skills

Data Tables (Relational Model)
name sem major skills
Ann 3 CS Java, C, R
Bob 1 CS Java, PHP

Charly 4 History Piano
Debra 2 Arts Painting
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Overview of (Attribute) Data Types

Simple Data Types

Numeric/metric, Categorical/nominal, ordinal

Composed Data Types

Sets, sequences, vectors

Complex Data Types

I Multimedia: Images, videos, audio, text, documents, web pages, etc.

I Spatial, geometric: Shapes, molecules, geography, etc.

I Structures: Graphs, networks, trees, etc.
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Simple Data Types: Numeric Data

Numeric Data

I Numbers: natural, integer, rational, real numbers

I Examples: age, income, shoe size, height, weight

I Comparison: difference

I Example: 3 is more similar to 30 than to 3,000

Basics Data Representation February 6, 2019 31



Simple Data Types: Categorical Data

I ”Just identities”
I Examples:

I occupation = { butcher, hairdresser, physicist, physician, . . . }
I subjects = { physics, biology, math, music, literature, . . . }

I Comparison: How to compare values?
I Trivial metric:

d(p, q) =

{
0 if p = q

1 else

I Generalization hierarchy: Use path length

biology physics

science

math music 

arts 

all 

literature civil eng. mech. eng. 

engineering 

elec. eng. 
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Generalization: Metric Data

Metric Space

Metric space (O, d) consists of object set O and metric distance function
d : O × O → R≥0 which fulfills:

Symmetry: ∀p, q ∈ O : d(p, q) = d(q, p)

Identity of Indiscernibles: ∀p, q ∈ O : d(p, q) = 0 ⇐⇒ p = q

Triangle Inequality: ∀p, q, o ∈ O : d(p, q) ≤ d(p, o) + d(o, q)

Example: Points in 2D space with Euclidean distance
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Simple Data Types: Ordinal

Characteristic
There is a (total) order ≤ on the set of possible data values O:

Transitivity: ∀p, q, o ∈ O : p ≤ q ∧ q ≤ o =⇒ p ≤ o

Antisymmetry: ∀p, q ∈ O : p ≤ q ∧ q ≤ p =⇒ p = q

Totality: ∀p, q ∈ O : p ≤ q ∨ q ≤ p

Examples

I Words & lexicographic ordering: high ≤ highschool ≤ highscore

I (Vague) sizes: tiny ≤ small ≤ medium ≤ big ≤ huge

I Frequencies: never ≤ seldom ≤ rarely ≤ occasionally ≤ sometimes ≤ often ≤
frequently ≤ regularly ≤ usually ≤ always
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Composed Data Types: Sets

Characteristic

Unordered collection of individual values

Example

I skills = { Java, C, Python }

Comparison

I Symmetric Set Difference:

R∆S = (R − S) ∪ (S − R)

= (R ∪ S)− (R ∩ S)

I Jaccard Distance: d(R, S) = |R∆S |
|R∪S |

R∆S

R ∪ S
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Composed Data Types: Sets

Bitvector Representation

I Given a set S , an ordered base set B = (b1, . . . , bn), create binary vector
r ∈ {0, 1}n with ri = 1 ⇐⇒ bi ∈ S .

I Hamming distance: Sum of different entries (equals cardinality of symmetric set
difference)

Example

I Base: B = (Math, Physics, Chemistry, Biology, Music, Arts, English)

I S = { Math, Music, English } = (1,0,0,0,1,0,1)

I R = { Math, Physics, Arts, English } = (1,1,0,0,0,1,1)

I Hamming(R, S) = 3
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Composed Data Types: Sequences, Vectors

Characteristic

I Put n values of a domain D together

I Order does matter: In → D for an index set In = {1, . . . , n}

Examples

(Simple) sum d1(o, q) =
n∑

i=1
|oi − qi | (Manhattan)

Root of sum of squares d2(o, q) =

√
n∑

i=1
(oi − qi )2 (Euclidean)

Maximum d3(o, q) =
n

max
i=1
|oi − qi | (Maximum)

General formula d4(o, q) = p

√
n∑

i=1
|oi − qi |p (Minkowski)

Weighting of dimensions d5(o, q) = p

√
n∑

i=1
wi · |oi − qi |p (Weighted Minkowski)

Basics Data Representation February 6, 2019 37



Complex Data Types

Components

I Structure: graphs, networks, trees

I Geometry: shapes/contours, routes/trajectories

I Multimedia: images, audio, text, etc.

Similarity models: Approaches

I Direct measures – highly data type dependent

I Feature engineering – explicit vector space embedding with hand-crafted features

I Feature learning – explicit vector space embedding learned by machine learning
model, e.g. neural network

I Kernel trick – implicit vector space embedding
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Complex Data Types

Examples for similarity models
Direct Feature

engineering
Feature learning Kernel-based

Graphs Structural
Alignment

Degree
Histograms

Node embeddings Label Sequence
Kernel

Geometry Hausdorff
Distance

Shape
Histograms

Spectral Neural
Network

Spatial Pyramid
Kernel

Sequences Edit Distance Symbol
Histograms

Recurrent neural
network (RNN)

Cosine Distance
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Feature Extraction

I Objects from database DB are mapped to feature vectors

I Feature vector space
I Points represent objects
I Distance corresponds to (dis-)similarity
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Similarity Queries

I Similarity queries are basic operations in (multimedia) databases

I Given: Universe O, database DB, distance function d and query object q

Range query

Range query for range parameter ε ∈ R+
0 :

range(DB, q, d , ε) = {o ∈ DB | d(o, q) ≤ ε}

Nearest neighbor query

NN(DB, q, d) = {o ∈ DB | ∀o′ ∈ DB : d(o, q) ≤ d(o′, q)}
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Similarity Queries

k-nearest neighbor query

k-nearest neighbor query for parameter k ∈ N:

NN(DB, q, d , k) ⊂ DB with |NN(DB, q, d , k)| = k and

∀o ∈ NN(DB, q, d , k), o′ ∈ DB − NN(DB, q, d , k) : d(o, q) ≤ d(o′, q)

Ranking query

Ranking query (partial sorting query): ”get next” functionality for picking database objects in
an increasing order w.r.t. their distance to q:

∀i ≤ j : d(q, rankDB,q,d (i)) ≤ d(q, rankDB,q,d (j))
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Similarity Search

I Example: Range query range(DB, q, d , ε) = {o ∈ DB | d(o, q) ≤ ε}
I Naive search by sequential scan

I Fetch database objects from secondary storage (e.g. disk): O(n)
I Check distances individually: O(n)

I Fast search by applying database techniques
I Filter-refine architecture

I Filter: Boil database DB down to (small) candidate set C ⊆ DB
I Refine: Apply exact distance calculation to candidates from C only

I Indexing structures
I Avoid sequential scans by (hierarchical or other) indexing techniques
I Data access in (fast) O(n), O(log n) or even O(1)
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Filter-Refine Architecture
•  

I Principle of multi-step search:

1. Fast filter step produces candidate set
C ⊂ DB (by approximate distance
function d ′)

2. Exact distance function d is calculated on
candidate set C only.

I Example: Dimensionality reductiona

I ICESb criteria for filter quality

I ndexable – Index enabled
C omplete – No false dismissals
E fficient – Fast individual calculation
S elective – Small candidate set

aGEMINI: Faloutsos 1996; KNOP: Seidl & Kriegel 1998
bAssent, Wenning, Seidl: ICDE 2006
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Indexing

I Organize data in a way that allows for fast access to relevant objects, e.g. by
heavy pruning.

I R-Tree as an example for spatial index structure:
I Hierarchy of minimum bounding rectangles
I Disregard subtrees which are not relevant for the current query region
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Indexing
I Example: Phone book

I Indexed using alphabetical order of participants
I Instead of sequential search:

I Estimate region of query object (interlocutor)
I Check for correct branch
I Use next identifier of query object
I Repeat until query is finished

{} S...

...

...

Se...

...

...

Sei...

...

...

Seid...

...

...

Seidl...

...

...

Image source: hierher/flickr, Licence: CC BY 2.0
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Data Reduction

Why data reduction?

I Better perception of patterns
I Raw (tabular) data is hard to understand
I Visualization is limited to (hundreds of) thousands of objects
I Reduction of data may help to identify patterns

I Computational complexity
I Big data sets cause prohibitively long runtime for data mining algorithms
I Reduced data sets are useful the more the algorithms produce (almost) the same

analytical results

How to approach data reduction?

I Data aggregation (basic statistics)
I Data generalization (abstraction to higher levels)
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Data Reduction Strategies

ID A1 A2 A3

1 54 56 75

2 87 12 65 

3 34 63 76 

4 86 23 4

Numerosity Reduction
Reduce number of objects 

Dimensionality Reduction
Reduce number of attributes 

Quantization, Discretization
Reduce number of values per domain 

ID A1 A3

1 L 75

3 XS 76 

4 XL 4

Numerosity reduction

Reduce number of objects

I Sampling (loss of data)

I Aggregation (model parameters, e.g., center / spread)
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Data Reduction Strategies

Dimensionality reduction

Reduce number of attributes

I Linear methods: feature sub-selection, Principal Components Analysis, Random
projections, Fourier transform, Wavelet transform

I Non-linear methods: Multidimensional scaling (force model)

Quantization, discretization

Reduce number of values per domain

I Binning (various types of histograms)

I Generalization along hierarchies (OLAP, attribute-oriented induction)
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Data Generalization

I Quantization is a special case of generalization
I E.g., group age (7 bits) to age range (4 bits)

I Dimensionality reduction is degenerate quantization
I Dropping age reduces 7 bits to zero bits
I Corresponds to generalization of age to ”all” = ”any age” = no information

all

Twen

... 2920

Teen

... 1913

Mid-age

...30
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Data Aggregation

I Aggregation is numerosity reduction (= less tuples)

I Generalization yields duplicates: Merge duplicate tuples and introduce (additional)
counter attribute

Name Age Major 

Ann 27 CS 

Bob 26 CS 

Eve 19 CS 

Name Age Major 

(any) Twen CS 

(any) Twen CS 

(any) Teen CS 

Age Major Count

Twen CS 2 

Teen CS 1 

Generalization Aggregation
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Basic Aggregates

I Central tendency: Where is the data located? Where is it centered?
I Examples: mean, median, mode, etc. (see below)

I Variation, spread: How much do the data deviate from the center?
I Examples: variance / standard deviation, min-max-range, . . .

Examples

I Age of students is around 20

I Shoe size is centered around 40

I Recent dates are around 2020

I Average income is in the thousands
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Distributive Aggregate Measures

Distributive Measures

The result derived by applying the function to n aggregate values is the same as that
derived by applying the function on all the data without partitioning.

Examples

I count(D1 ∪ D2) = count(D1) + count(D2)

I sum(D1 ∪ D2) = sum(D1) + sum(D2)

I min(D1 ∪ D2) = min(min(D1),min(D2))

I max(D1 ∪ D2) = max(max(D1),max(D2))
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Algebraic Aggregate Measures

Algebraic Measures

Can be computed by an algebraic function with M arguments (where M is a bounded
integer), each of which is obtained by applying a distributive aggregate function.

Examples

I avg(D1 ∪ D2) =
sum(D1 ∪ D2)

count(D1 ∪ D2)
=

sum(D1) + sum(D2)

count(D1) + count(D2)

6= avg(avg(D1), avg(D2))

I standard deviation(D1 ∪ D2)
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Holistic Aggregate Measures

Holistic Measures

There is no constant bound on the storage size which is needed to determine/describe
a sub-aggregate.

Examples

I median: value in the middle of a sorted series of values (=50% quantile)

median(D1 ∪ D2) 6= simple function(median(D1),median(D2))

I mode: value that appears most often in a set of values

I rank: k-smallest / k-largest value (cf. quantiles, percentiles)
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Measuring the Central Tendency

Mean – (weighted) arithmetic mean

Well-known measure for central tendency (”average”).

x̄ =
1

n

n∑
i=1

xi x̄w =

∑n
i=1 wixi∑n

i=1 wi

Mid-range

Average of the largest and the smallest values in a data set:

(max + min)/2

I Algebraic measures

I Applicable to numerical data only (sum, scalar multiplication)

What about categorical data?
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Measuring the Central Tendency

Median

I Middle value if odd number of values

I For even number of values: average of the middle two values (numeric case), or one of
the two middle values (non-numeric case)

I Applicable to ordinal data only (an ordering is required)

I Holistic measure

Examples

I never, never, never, rarely, rarely, often, usually, usually, always

I tiny, small, big, big, big, big, big, big, huge, huge

I tiny, tiny, small, medium, big, big, large, huge

What if there is no ordering?
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Measuring the Central Tendency
Unimodal

red green blue
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Bimodal

red green blue
0.0

0.1

0.2

0.3

0.4

Mode

I Value that occurs most frequently in the data

I Example: blue, red, blue, yellow, green, blue, red

I Unimodal, bimodal, trimodal, . . . : There are 1, 2, 3, . . . modes in the data (multi-modal
in general), cf. mixture models

I There is no mode if each data value occurs only once

I Well suited for categorical (i.e., non-numerical) data
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Measuring the Dispersion of Data

Variance

I Applicable to numerical data, scalable computation:

σ2 =
1

n − 1

n∑
i=1

(xi − x̄)2 =
1

n − 1

 n∑
i=1

x2
i −

1

n

(
n∑

i=1

xi

)2


I Calculation by two passes: numerically much more stable
I Single pass: calculate sum of squares and square of sum in parallel

I Measures the spread around the mean

I It is zero if and only if all the values are equal

I Standard deviation: Square root of the variance

I Both the standard deviation and the variance are algebraic
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Boxplot Analysis

Five-number summary of a distribution

I Minimum, Q1, Median, Q3, Maximum

I Represents 0%, 25%, 50%, 75%, 100%-quantile of the data

I Also called ”25-percentile”, etc.

Boxplot

I Boundaries: first and third quartiles

I Height: inter-quartile range (IQR)

I The median is marked by a line within the box

I Whiskers: minimum and maximum

I Outliers: usually values more than 1.5 · IQR below Q1 or above Q3
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Boxplot Example

setosa versicolor virginica

class
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Iris Dataset
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Data Generalization

I Which partitions of the data to aggregate?
I All data

I Overall mean, overall variance: too coarse (overgeneralized)

I Different techniques to form groups for aggregation
I Binning – histograms, based on value ranges
I Generalization – abstraction based on generalization hierarchies
I Clustering (see later) – based on object similarity
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Binning Techniques: Histograms
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Iris Dataset

I Histograms use binning to approximate data distributions
I Divide data into bins and store a representative (sum, average, median) for each

bin
I Popular data reduction and analysis method
I Related to quantization problems
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Equi-width Histograms

I Divide the range into N intervals of equal size: uniform grid

I If A and B are the lowest and highest values of the attribute, the width of
intervals will be (B − A)/N

Positive

I Most straightforward

Negative

I Outliers may dominate
presentation

I Skewed data is not handled
well
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Equi-width Histograms

Example

I Sorted data, 10 bins: 5, 7, 8, 8, 9, 11,
13, 13, 14, 14, 14, 15, 17, 17, 17, 18,
19, 23, 24, 25, 26, 26, 26, 27, 28, 32,
34, 36, 37, 38, 39, 97

I Insert 999
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Equi-height Histograms

Divide the range into N intervals, each containing approx. the same number of
samples (quantile-based approach)

Positive

I Good data scaling

Negative

I If any value occurs often, the
equal frequency criterion
might not be met (intervals
have to be disjoint!)

Basics Data Reduction February 6, 2019 66



Equi-height Histograms

Example

I Same data, 4 bins: 5, 7, 8, 8, 9, 11,
13, 13, 14, 14, 14, 15, 17, 17, 17, 18,
19, 23, 24, 25, 26, 26, 26, 27, 28, 32,
34, 36, 37, 38, 39, 97

5
13

14
1

8

19
2

7

28
9

9

0

2

4

6

8

I Median = 50%-quantile
I More robust against outliers (cf. value 999 from above)
I Four bin example is strongly related to boxplot
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Concept Hierarchies: Examples

No (real) hierarchies

Set grouping hierarchies
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Concept Hierarchies: Examples

Schema hierarchies
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Concept Hierarchy for Categorical Data

I Concept hierarchies can be specified by experts or just by users

I Heuristically generate a hierarchy for a set of
(related) attributes
I based on the number of distinct values per

attribute in the attribute set
I The attribute with the most distinct values is

placed at the lowest level of the hierarchy

country

province/state

city

street

15 distinct values

65 distinct values

3567 distinct values

674,339 distinct values

I Fails for counter examples: 20 distinct years, 12 months, 7 days of week, but not
”year < month < days of week” with the latter on top
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Summarization-based Aggregation

Data Generalization

A process which abstracts a large set of task-relevant data in a database from low
conceptual levels to higher ones.

1

2

3

4

all

federal states

states

countries

5 cities

conceptual levels example:

I Approaches:
I Data-cube approach (OLAP / Roll-up) – manual
I Attribute-oriented induction (AOI) – automated
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Basic OLAP Operations

Roll up

Summarize data by climbing up hierarchy or by dimension reduction.

Drill down

Reverse of roll-up. From higher level summary to lower level summary or detailed data,
or introducing new dimensions.

Slice and dice

Selection on one (slice) or more (dice) dimensions.

Pivot (rotate)

Reorient the cube, visualization, 3D to series of 2D planes.
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Example: Roll up / Drill down

Query

SELECT ∗
FROM b u s i n e s s
GROUP BY count ry , q u a r t e r

Roll-Up

SELECT ∗
FROM b u s i n e s s
GROUP BY c o n t i n e n t , q u a r t e r

SELECT ∗
FROM b u s i n e s s
GROUP BY c o u n t r y

Drill-Down

SELECT ∗
FROM b u s i n e s s
GROUP BY c i t y , q u a r t e r

SELECT ∗
FROM b u s i n e s s
GROUP BY count ry , q u a r t e r , p r o d u c t
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Example: Roll up in a Data Cube

Roll Up
=⇒
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Example: Slice Operation

SELECT income
FROM time t , p r o d u c t p , c o u n t r y c
WHERE p . name = ’VCR ’

VCR dimension is chosen
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Example: Dice Operation

SELECT income
FROM time t , p r o d u c t p , c o u n t r y c
WHERE p . name = ’VCR ’ OR p . name = ’PC ’ AND t . q u a r t e r BETWEEN 2 AND 3

sub-data cube over PC, VCR and quarters 2 and 3 is extracted

Dice
=⇒
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Example: Pivot (rotate)

year 17 18 19

product TV PC VCR TV PC VCR TV PC VCR
...

...
...

...
...

...
...

...
...

↓ Pivot (rotate) ↓

product TV PC VCR

year 17 18 19 17 18 19 17 18 19
...

...
...

...
...

...
...

...
...
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Basic OLAP Operations

Other operations

I Drill across: involving (across) more than one fact table

I Drill through: through the bottom level of the cube to its back-end relational
tables (using SQL)
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Specifying Generalization by a Star-Net

I Each circle is called a footprint

I Footprints represent the granularities available for OLAP operations

CustomerOrders

Time

Location Organization

Product

Segment

Daily

District
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Discussion of OLAP-based Generalization

I Strength
I Efficient implementation of data generalization
I Computation of various kinds of measures, e.g., count, sum, average, max
I Generalization (and specialization) can be performed on a data cube by roll-up (and

drill-down)

I Limitations
I Handles only dimensions of simple non-numeric data and measures of simple

aggregated numeric values
I Lack of intelligent analysis, can’t tell which dimensions should be used and what

levels the generalization should reach

Basics Data Reduction February 6, 2019 80



Attribute-Oriented Induction (AOI)

I Apply aggregation by merging identical, generalized tuples and accumulating their
respective counts.

I Data focusing: task-relevant data, including dimensions, and the result is the
initial relation

I Generalization Plan: Perform generalization by either attribute removal or
attribute generalization
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Attribute-Oriented Induction (AOI)

Attribute Removal

Remove attribute A if:

I there is a large set of distinct values for A but there is no generalization operator
(concept hierarchy) on A, or

I A’s higher level concepts are expressed in terms of other attributes (e.g. street is
covered by city, state, country).

Attribute Generalization

If there is a large set of distinct values for A, and there exists a set of generalization
operators (i.e., a concept hierarchy) on A, then select an operator and generalize A.
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Attribute Oriented Induction: Example

Name Gender Major Birth place Birth data Residence Phone GPA
Jim Woodman M CS Vancouver, BC,

Canada
8-12-81 3511 Main St.,

Richmond
687-4598 3.67

Scott
Lachance

M CS Montreal, Que,
Canada

28-7-80 345 1st Ave.,
Richmond

253-9106 3.70

Laura Lee F Physics Seattle, WA, USA 25-8-75 125 Austin Ave.,
Burnaby

420-5232 3.83

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I Name: large number of distinct values, no hierarchy – removed

I Gender: only two distinct values – retained

I Major: many values, hierarchy exists – generalized to Sci., Eng., Biz.

I Birth place: many values, hierarchy – generalized, e.g., to country

I Birth date: many values – generalized to age (or age range)

I Residence: many streets and numbers – generalized to city

I Phone number: many values, no hierarchy – removed

I Grade point avg (GPA): hierarchy exists – generalized to good, . . .

I Count: additional attribute to aggregate base tuples
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Attribute Oriented Induction: Example
I Initial Relation:

Name Gender Major Birth place Birth data Residence Phone GPA
Jim Woodman M CS Vancouver, BC,

Canada
8-12-81 3511 Main St.,

Richmond
687-4598 3.67

Scott
Lachance

M CS Montreal, Que,
Canada

28-7-80 345 1st Ave.,
Richmond

253-9106 3.70

Laura Lee F Physics Seattle, WA, USA 25-8-75 125 Austin Ave.,
Burnaby

420-5232 3.83

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I Prime Generalized Relation:
Gender Major Birth region Age Range Residence GPA Count

M Science Canada 20-25 Richmond Very good 16
F Science Foreign 25-30 Burnaby Excellent 22

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I Crosstab for generalized relation:
Canada Foreign Total

M 16 14 30
F 10 22 32

Total 26 36 62
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Attribute Generalization Control

I Problem: How many distinct values for an attribute?
I Overgeneralization: values are too high-level
I Undergeneralization: level not sufficiently high
I Both yield tuples of poor usefulness

I Two common approaches
I Attribute-threshold control: default or user-specified, typically 2-8 values
I Generalized relation threshold control: control the size of the final relation/rule, e.g.,

10-30
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Next Attribute Selection Strategies for Generalization

I Aiming at minimal degree of generalization
I Choose attribute that reduces the number of tuples the most
I Useful heuristic: choose attribute with highest number of distinct values.

I Aiming at similar degree of generalization for all attributes
I Choose the attribute currently having the least degree of generalization

I User-controlled
I Domain experts may specify appropriate priorities for the selection of attributes
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Data Visualization

I Patterns in large data sets are hardly perceived
from tabular numerical representations

I Data visualization transforms data in visually
perceivable representations (”a picture is worth
a thousand words”)

I Combine capabilities:
I Computers are good in number crunching

(and data visualization by means of computer
graphics)

I Humans are good in visual pattern recognition

Monthly average temperature [°C]
Städte Ø Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt Nov Dez
Abu Dhabi 25 27 31 36 40 41 42 43 42 37 31 27
Acapulco 32 31 32 32 33 33 33 33 33 33 32 32
Anchorage -4 -2 0 6 13 17 18 17 13 5 -3 -5
Antalya 15 16 19 22 27 32 35 36 32 27 21 17
Athen 13 14 17 20 26 30 34 34 29 24 18 14
Atlanta 11 13 18 23 26 30 31 31 28 23 17 12
Bangkok 32 33 35 36 35 34 33 33 33 32 32 32
Bogota 20 19 19 19 19 18 18 18 19 19 19 20
Buenos Aires 30 28 26 23 19 16 15 17 19 21 26 29
Caracas 30 28 30 30 31 32 32 32 33 32 31 30
Casablanca 18 18 20 21 22 25 26 27 26 24 21 19
Chicago 0 1 9 16 21 26 29 28 24 17 9 2
Colombo (Sri Lanka) 31 31 32 32 32 31 31 31 31 31 31 31
Dallas 13 16 21 25 29 33 36 36 32 26 19 14
Denver 7 8 14 14 21 28 32 30 25 18 12 6
Faro (Algarve) 16 16 19 21 23 27 29 29 26 23 19 17
Grand Canyon (Arizona) 6 8 13 15 21 27 29 27 25 18 12 6
Harare 27 26 27 26 24 21 22 24 28 29 28 27
Helsinki -3 -3 2 9 15 20 23 21 17 9 3 0
Heraklion (Kreta) 15 16 18 20 24 27 30 30 27 24 20 17
Hongkong 19 20 23 26 30 32 33 33 32 30 25 21
Honolulu 26 26 27 27 28 30 30 31 30 30 28 27
Houston 16 19 23 27 30 33 34 35 32 28 21 17
Irkutsk -14 -9 1 9 16 23 24 21 16 7 -4 -13
Istanbul 9 9 13 17 23 27 30 30 26 20 15 11
Jakutsk (Nordostsibirien) -35 -28 -10 3 14 23 26 21 11 -3 -25 -34
Johannesburg 25 25 24 22 20 17 17 20 24 25 25 25
Kairo 19 20 24 27 32 35 35 35 34 30 25 20
Kapstadt 27 27 26 24 21 18 18 18 19 22 24 26
Kathmandu 18 21 25 28 28 29 28 28 28 26 23 20
Larnaka (Zypern) 17 18 20 23 26 31 33 34 31 28 23 19
Las Palmas 21 20 22 23 24 25 27 28 28 27 24 22
Las Vegas 15 16 23 26 31 38 40 39 35 27 20 14
Lhasa 9 10 13 17 21 24 23 22 21 17 13 10
Lima 26 26 27 24 21 20 19 18 19 20 22 24
Lissabon 14 15 18 20 23 27 28 29 27 22 17 15
Los Angeles 19 18 19 19 22 22 24 25 25 23 21 19
Madeira 19 18 20 20 21 24 25 26 26 25 22 20
Madrid 11 13 17 19 24 31 34 33 28 21 14 11
Malaga 17 17 19 22 25 29 32 31 28 24 20 18
Mallorca 15 15 18 20 24 29 31 32 28 24 19 16
Marrakesch 19 20 24 26 29 35 38 38 32 29 23 20
Mexico City 21 23 25 27 27 26 24 24 23 23 22 22
Moskau -4 -4 3 11 19 23 25 23 17 9 1 -2
Neu Delhi 20 24 31 36 40 39 36 34 34 33 28 23
New York 4 4 10 16 21 27 30 28 25 18 12 7
Palermo 15 14 17 19 23 27 29 30 27 24 19 16
Peking (Beijing) 2 6 13 20 27 30 32 31 26 19 10 3
Perth (Australien) 32 31 31 26 23 20 18 20 20 24 27 30
Reykjavik 2 3 4 6 9 13 15 14 11 7 4 2
Rio de Janeiro 30 30 30 28 26 26 25 25 26 27 27 29
Rom 13 13 16 19 23 27 30 29 27 22 17 14
San Francisco 14 15 17 18 20 22 22 22 24 21 17 14
Santiago de Chile 30 27 28 24 19 16 15 17 19 22 26 28
Santo Domingo (Karibik) 30 29 30 30 31 31 32 32 32 32 31 30
Shanghai 8 10 14 19 25 27 33 32 28 23 17 10
Singapur 30 31 32 32 32 32 31 31 31 32 31 30
Sydney (Australien) 27 26 25 23 20 18 18 19 22 23 25 25
Teneriffa Süd 22 21 23 23 24 25 28 28 28 27 25 23
Tunis 16 16 19 22 27 31 34 34 30 27 21 18
Windhoek 31 29 29 27 25 23 22 25 29 31 31 32
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Data Visualization Techniques
Type Idea Examples

Geometric Visualization of geometric
transformations and projec-
tions of the data
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Scatterplots
Parallel Coordinates

Icon-Based Visualization of data as
icons

Chernoff Faces Stick Figures

Pixel-oriented Visualize each attribute
value of each data object by
one coloured pixel

Recursive Patterns
Other Hierarchical Techniques, Graph-based Techniques, Hybrid-

Techniques, . . .
Slide credit: Keim, Visual Techniques for Exploring Databases, Tutorial Slides, KDD 1997.
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Quantile Plot
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Iris dataset

Characteristic

The p-quantile xp is the value for which the fraction p of all data is less than or equal
to xp.

Benefit

Displays all of the data (allowing the user to assess both the overall behavior and
unusual occurrences)

Basics Visualization February 6, 2019 89



Quantile-Quantile (Q-Q) Plot
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Iris dataset

Characteristic

Graphs the quantiles of one univariate distribution against the corresponding quantiles
of another.

Benefit

Allows the user to compare to distributions against each other.
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Scatter Plot
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Characteristic

Each pair of values is treated as a pair of coordinates and plotted as points in the
plane.

Benefit

Provides a first look at bivariate data to see clusters of points, outliers, etc.
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Loess Curve
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Characteristic

Loess curve is fitted by setting two parameters: a smoothing parameter, and the
degree of the polynomials that are fitted by the regression.

Benefit

Adds a smooth curve to a scatter plot in order to provide better perception of the
pattern of dependence.
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Scatterplot Matrix

Characteristic

Matrix of scatterplots for pairs of
dimensions

Ordering

Ordering of dimensions is important:

I Reordering improves understanding of
structures and reduces clutter

I Interestingness of orderings can be
evaluated with quality metrics (e.g.
Peng et al.)
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Clutter Reduction in Multi-Dimensional Data Visualizazion Using Dimension Reordering, IEEE Symp. on Inf. Vis., 2004.
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Parallel Coordinates

Characteristics

I d-dimensional data space is visualised by d parallel axes

I Each axis is scaled to min-max range

I Object = polygonal line intersecting axis at value in this dimension
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Parallel Coordinates

Ordering

I Again, the ordering of the dimensions is important

I Quality metric for interestingness of ordering

I Quality or interestingness of orderings depends on what you want to visualize

I Visualize clusters

I Visualize correlations between
dimensions

Bertini et al., Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization, Trans. on Vis. and Comp. Graph., 2011.
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Spiderweb Model

Characteristics

I Illustrate any single object by a polygonal line

I Contract origins of all axes to a global origin point

I Works well for few objects only
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Pixel-Oriented Techniques

Characteristics

I Each data value is mapped onto a colored pixel

I Each dimension is shown in a separate window

How to arrange the pixel ordering?

One strategy: Recursive Patterns iterated line and
column-based arrangements

Figures from Keim, Visual Techniques for Exploring Databases, Tutorial Slides, KDD 1997.
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Chernoff Faces

Characteristics

Map d-dimensional space to facial expression, e.g. length of nose =
dim 6; curvature of mouth = dim 8

Advantage

Humans can evaluate similarity between faces much more intuitively
than between high-dimensional vectors

Disadvantages

I Without dimensionality reduction only applicable to data spaces
with up to 18 dimensions

I Which dimension represents what part?

Figures taken from Mazza, Introduction to Information Visualization, Springer, 2009.
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Chernoff Faces

Example: Weather Data

Figures from Riccardo Mazza, Introduction to Information Visualization, Springer, 2009.
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Chernoff Faces

Example: Finance Data

Figure from Huff et al., Facial Representation of Multivariate Data, Journal of Marketing, Vol. 45, 1981, pp. 53-59.

Basics Visualization February 6, 2019 100



Agenda

1. Introduction

2. Basics
2.1 Data Representation
2.2 Data Reduction
2.3 Visualization
2.4 Privacy

3. Unsupervised Methods

4. Supervised Methods

5. Advanced Topics



Data Privacy

Situation

I Huge volume of data is collected

I From a variety of devices and platforms (e.g. Smartphones, Wearables, Social
Networks, Medical systems)

I Capturing human behaviors, locations, routines, activities and affiliations

I Providing an opportunity to perform data analytics

Data Abuse is inevitable

I It compromises individual’s privacy

I Or breaches the security of an institution
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Data Privacy

I These privacy concerns need to be mitigated

I They have prompted huge research interest to protect data

I But,

Strong Privacy Protection =⇒ Poor Data Utility

Good Data Utility =⇒ Weak Privacy Protection

Privacy
Data Utility

Challenge

Find a good trade-off between Data Utility and Privacy
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Data Privacy

Objectives of Privacy Preserving Data Mining

I Ensure data privacy

I Maintain a good trade-off between data utility and privacy

Paradigms

I k-Anonymity

I l-Diversity

I Differential Privacy
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Linkage Attack

Method

Different public records can be linked to it to breach privacy

Hospital Records
Private Public
Name Sex Age Zip Disease
Alice F 29 52062 Breast Cancer
Janes F 27 52064 Breast Cancer
Jones M 21 52066 Lung Cancer
Frank M 35 52072 Heart Disease
Ben M 33 52078 Fever

Betty F 37 52080 Nose Pains

Public Records from Sport Club
Public

Name Sex Age Zip Sport
Alice F 29 52062 Tennis
Theo M 41 52066 Golf
John M 24 52062 Soccer
Betty F 37 52080 Tennis
James M 34 82066 Soccer
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k-Anonymity

k-Anonymity

Privacy paradigm for protecting data records before publication

Three kinds of attributes:

1. Key Attributes: Uniquely identifiable attributes (e.g., Name, Social Security
Number, Telephone Number)

2. Quasi-identifier: Groups of attributes that can be combined with external data to
uniquely re-identify an individual (e.g. (Date of Birth, Zip Code, Gender))

3. Sensitive Attributes: An attacker should not be able to combine these with the
key attributes. (e.g. Disease, Salary, Habit, Location etc.)
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k-Anonymity

Attention

Hiding key attributes alone does not guarantee privacy.

An attacker may be able to break the privacy by combining the quasi-identifiers from
the data with those from publicly available information.

Definition: k-Anonymity

Given a set of quasi-identifiers in a database table, the database table is said to be
k-Anonymous, if the sequence of records in each quasi-identifier exists at least k times.

Ensure privacy by Suppression or Generalization of quasi-identifiers.
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k-Anonymity: Suppression

Suppression

Accomplished by replacing a part or the entire attribute value by placeholder, e.g. “?”
(= generalization)

Example

I Suppress Postal Code: 52062 7→ 52???

I Suppress Gender: Male 7→ ?; Female 7→ ?
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k-Anonymity: Generalization

Generalization

Accomplished by aggregating values from fine levels to coarser resolution using
generalisation hierarchy.

Example

Generalize exam grades:

Not Available

PassedFailed

{Good, Average} Very Good ExcellentSickPoorVery Poor
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Shortcomings: Background Knowledge Attack

Background Knowledge Attack

Lack of diversity of the sensitive attribute values (homogeneity)

Example

I Background Knowledge: Alice is (i) 29
years old and (ii) female

I Homogeneity: All 2*-aged females
have Breast Cancer.
=⇒ Alice has BC!

Release
Quasi Identifier Sensitive

Sex Age Zip Disease
F 2? 520?? Breast Cancer
F 2? 520?? Breast Cancer
M 2? 520?? Lung Cancer
M 3? 520?? Heart Disease
M 3? 520?? Fever
F 3? 520?? Nose Pains

This led to the creation of a new privacy model called l-diversity
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l-Diversity

Distinct l-Diversity

An quasi-identifier is l-diverse, if there are at least l different values. A dataset is
l-diverse, if all QIs are l-diverse.

Example
Not ”diverse”

Quasi Identifier Sensitive
QI 1 Headache
QI 1 Headache
QI 1 Headache
QI 2 Cancer
QI 2 Cancer

2-diverse

Quasi Identifier Sensitive
QI 1 Headache
QI 1 Cancer
QI 1 Headache
QI 2 Headache
QI 2 Cancer
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l-Diversity

Other Variants

I Entropy l-Diversity: For each equivalent class, the entropy of the distribution of
its sensitive values must be at least l

I Probabilistic l-Diversity: The most frequent sensitive value of an equivalent class
must be at most 1/l

Limitations

I Not necessary at times

I Difficult to achieve: For large record size, many equivalent classes will be needed
to satisfy l-Diversity

I Does not consider the distribution of sensitive attributes
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Background Attack Assumption

I k-Anonymity and l-Diversity make assumptions about the adversary

I They at times fall short of their goal to prevent data disclosure

I There is another privacy paradigm which does not rely on background knowledge,
called Differential Privacy
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Differential Privacy

Core Idea

Privacy through data perturbation.

I The addition or removal of one record from a database should not reveal any
information to an adversary, i.e. your presence or absence does not reveal or leak
any information.

I Use a randomization mechanism to perturb query results of count, sum, mean
functions, as well as other statistical query functions.

Basics Privacy February 6, 2019 113



Differential Privacy

D 
Queries

Answers
S R

Definition

A randomized mechanism R(x) provides ε-differential privacy if for any two databases
D1 and D2 that differ on at most one element, and all outputs S ⊆ Range(R)

Pr [R(D1) ∈ S ]

Pr [R(D2) ∈ S ]
≤ exp(ε)

ε is a parameter called privacy budget/level.
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Data Perturbation

Data perturbation is achieved by noise addition.

Some Kinds of Noise

I Laplace noise

I Gaussian noise

I Exponential Mechanism
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What is Frequent Pattern Mining?

Setting: Transaction Databases

A database of transactions, where each transaction comprises a set of items, e.g. one
transaction is the basket of one customer in a grocery store.

Frequent Pattern Mining

Finding frequent patterns, associations, correlations, or causal structures among sets of
items or objects in transaction databases, relational databases, and other information
repositories.

Applications

Basket data analysis, cross-marketing, catalogue design, loss-leader analysis, clustering,
classification, recommendation systems, etc.
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What is Frequent Pattern Mining?

Task 1: Frequent Itemset Mining

Find all subsets of items that occur together in many transactions.

Example

Which items are bought together frequently?

D = { { butter , bread ,milk, sugar},
{ butter , flour ,milk , sugar},
{ butter , eggs,milk, salt},
{ eggs},
{ butter , flour ,milk , salt, sugar}}

 80% of transactions contain the itemset {milk, butter}

Unsupervised Methods Frequent Pattern Mining February 6, 2019 117



What is Frequent Pattern Mining?

Task 2: Association Rule Mining

Find all rules that correlate the presence of one set of items with that of another set of
items in the transaction database.

Example

98% of people buying tires and auto accessories also get automotive service done
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Mining Frequent Itemsets: Basic Notions

I Items I = {i1, . . . , im}: a set of literals (denoting items)

I Itemset X : Set of items X ⊆ I

I Database D: Set of transactions T , each transaction is a set of items T ⊆ I

I Transaction T contains an itemset X : X ⊆ T

I Length of an itemset X equals its cardinality |X |
I k-itemset: itemset of length k

I (Relative) Support of an itemset: supp(X ) = |{T ∈ D | X ⊆ T}|/|D|
I X is frequent if supp(X ) ≥ minSup for threshold minSup.

Goal

Given a database D and a threshold minSup, find all frequent itemsets X ∈ Pot(I ).
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Mining Frequent Itemsets: Basic Idea

Näive Algorithm

Count the frequency of all possible subsets of I in the database D.

Problem

Too expensive since there are 2m such itemsets for m items (for |I | = m, 2m =
cardinality of the powerset of I ).
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Mining Frequent Patterns: Apriori Principle

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

I frequent

I non-frequent

Apriori Principle (anti-monotonicity)

I Any non-empty subset of a frequent itemset is frequent, too!
A ⊆ I : supp(A) ≥ minSup =⇒ ∀∅ 6= A′ ⊂ A : supp(A′) ≥ minSup

I Any superset of a non-frequent itemset is non-frequent, too!
A ⊆ I : supp(A) < minSup =⇒ ∀A′ ⊃ A : supp(A′) < minSup
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Apriori Algorithm

Idea

I First count the 1-itemsets, then the 2-itemsets, then the 3-itemsets, and so on

I When counting (k + 1)-itemsets, only consider those (k + 1)-itemsets where all
subsets of length k have been determined as frequent in the previous step
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Apriori Algorithm
variable Ck : candidate itemsets of size k
variable Lk : frequent itemsets of size k
L1 = {frequent items}
for (k = 1; Lk 6= ∅; k++) do

join Lk with itself to produce Ck+1 . JOIN STEP
discard (k + 1)-itemsets from Ck+1 that . . . . PRUNE STEP

. . . contain non-frequent k-itemsets as subsets

Ck+1 = candidates generated from Lk

for each transaction T ∈ D do
Increment the count of all candidates in Ck+1 . . .

. . . that are contained in T

Lk+1 = candidates in Ck+1 with minSupp

return
⋃

k Lk

Produce
candidates.

Prove
candidates.
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Apriori Algorithm: Generating Candidates – Join Step

Requirements for Candidate (k + 1)-itemsets

I Completeness: Must contain all frequent (k + 1)-itemsets (superset property
Ck+1 ⊇ Lk+1)

I Selectiveness: Significantly smaller than the set of all (k + 1)-subsets

Suppose the itemsets are sorted by any order (e.g. lexicographic)

Step 1: Joining (Ck+1 = Lk ./ Lk)

I Consider frequent k-itemsets p and q

I p and q are joined if they share the same first (k − 1) items.
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Apriori Algorithm: Generating Candidates – Join Step

Example

I k = 3 ( =⇒ k + 1 = 4)

I p = (a, c , f ) ∈ Lk

I q = (a, c, g) ∈ Lk

I r = (a, c , f , g) ∈ Ck+1

SQL example

insert into Ck+1

select p.i1, p.i2, . . . , p.ik , q.ik

from Lk : p, Lk : q

where p.i1 = q.i1, . . . , p.ik−1 = q.ik−1, p.ik < q.ik
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Apriori Algorithm: Generating Candidates – Prune Step

Step 2: Pruning (Lk+1 = {X ∈ Ck+1 | supp(X ) ≥ minSup})

I Näive: Check support of every itemset in Ck+1  inefficient for huge Ck+1

I Better: Apply Apriori principle first: Remove candidate (k + 1)-itemsets which
contain a non-frequent k-subset s, i.e., s /∈ Lk

Pseudocode

for all c ∈ Ck+1 do
for all k-subsets s of c do

if s /∈ Lk then
Delete c from Ck+1
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Apriori Algorithm: Generating Candidates – Prune Step

Example

I L3 = {acf , acg , afg , afh, cfg}
I Candidates after join step: {acfg , afgh}
I In the pruning step: delete afgh because fgh /∈ L3, i.e. fgh is not a frequent

3-itemset (also agh /∈ L3)

I C4 = {acfg}  check the support to generate L4

Unsupervised Methods Frequent Pattern Mining February 6, 2019 127



Apriori Algorithm: Full example

Database
TID items

0 acdf
1 bce
2 abce
3 aef

minSup = 0.5

Alphabetic Ordering
k candidate prune count threshold

1

a 3 a
b 2 b
c 3 c
d 1
e 3 e
f 2 f

2

ab 1
ac 2 ac
ae 2 ae
af 2 af
bc 2 bc
be 2 be
bf 0
ce 2 ce
cf 1
ef 1

3

ace 1
acf with cf
aef with ef
bce 2 bce

Frequency-Ascending Ordering
k candidate prune count threshold

1

d 1
b 2 b
f 2 f
a 3 a
c 3 c
e 3 e

2

bf 0
ba 1
bc 2 bc
be 2 be
fa 2 fa
fc 1
fe 1
ac 2 ac
ae 2 ae
ce 2 ce

3

bce 2 bce
ace 1
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Counting Candidate Support

Motivation

Why is counting supports of candidates a problem?

I Huge number of candidates

I One transaction may contain many candidates

Solution

Store candidate itemsets in hash-tree
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Counting Candidate Support: Hash Tree

Hash-Tree

I Leaves contain itemset lists with their support (e.g. counts)

I Interior nodes comprise hash tables

I subset function to find all candidates contained transaction

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

Unsupervised Methods Frequent Pattern Mining February 6, 2019 130



Hash-Tree: Construction

Search

I Start at the root (level 1)

I At level d : Apply hash function h to d-th item in the itemset

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)
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Hash-Tree: Construction

Insertion

I Search for the corresponding leaf node
I Insert the itemset into leaf; if an overflow occurs:

I Transform the leaf node into an internal node
I Distribute the entries to the new leaf nodes according to the hash function h

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)
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Hash-Tree: Counting
Search all candidates of length k in transaction T = (t1, . . . , tn)
I At root:

I Compute hash values for all items t1, . . . , tn−k+1

I Continue search in all resulting child nodes
I At internal node at level d (reached after hashing of item ti ):

I Determine the hash values and continue the search for each item tj with
i < j ≤ n − k + d

I At leaf node:
I Check whether the itemsets in the leaf node are contained in transaction T

Example

3-itemsets;
h(i) = i mod 3
Transaction:
{1, 3, 7, 9, 12}

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

3

9 7 3,9 7

1,7

9,12
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Apriori – Performance Bottlenecks

Huge Candidate Sets

I 104 frequent 1-itemsets will generate 107 candidate 2-itemsets

I To discover a frequent pattern of size 100, one needs to generate 2100 ≈ 1030

candidates.

Multiple Database Scans

I Needs n or n + 1 scans, where n is the length of the longest pattern

Is it possible to mine the complete set of frequent itemsets without candidate
generation?
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Mining Frequent Patterns Without Candidate Generation

Idea

I Compress large database into compact tree structure; complete for frequent
pattern mining, but avoiding several costly database scans (called FP-tree)

I Divide compressed database into conditional databases associated with one
frequent item
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FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

Freq. Item

c
cd
cef
cef
bcd
bcd
bcd
bde
bd
b
b
b

minSup=2/12

Header Table
Item Frequency

b 8
c 7
d 6
e 3
f 2

Head

∅

b:8

c:3

d:3

d:2

e:1

c:4

e:2

f:2

d:1

1

2.1

2.2

1. Scan DB once, find
frequent 1-itemsets
(single items); Order
frequent items in
frequency descending
order

2. Scan DB again:
2.1 Keep only freq. items; sort

by descending freq.
2.2 Does path with common

prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch
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Benefits of the FP-Tree Structure

Completeness

I never breaks a long pattern of any transaction

I preserves complete information for frequent pattern mining

Compactness

I reduce irrelevant information – infrequent items are gone

I frequency descending ordering: more frequent items are more likely to be shared

I never be larger than the original database (if not count node-links and counts)

I Experiments demonstrate compression ratios over 100
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Mining Frequent Patterns Using FP-Tree

General Idea: (Divide-and-Conquer)

Recursively grow frequent pattern path using the FP-tree

Method

1. Construct conditional pattern base for each node in the FP-tree

2. Construct conditional FP-tree from each conditional pattern-base

3. Recursively mine conditional FP-trees and grow frequent patterns obtained so far;
If the conditional FP-tree contains a single path, simply enumerate all the patterns
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Major Steps to Mine FP-Tree: Conditional Pattern Base
Header Table

Item Frequency

b 8
c 7
d 6
e 3
f 2

Head

∅

b:8

c:3

d:3

d:2

e:1

c:4

e:2

f:2

d:1Conditional Pattern
Item Cond. Patterns

Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

1

2

3

1. Start from header table

2. Visit all nodes for this
item (following links)

3. Accumulate all
transformed prefix paths
to form conditional
pattern base (the
frequency can be read
from the node).
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Properties of FP-Tree for Conditional Pattern Bases

Node-Link Property

For any frequent item ai , all the possible frequent patterns that contain ai can be
obtained by following ai ’s node-links, starting from ai ’s head in the FP-tree header.

Prefix Path Property

To calculate the frequent patterns for a node ai in a path P, only the prefix sub-path
of ai in P needs to be accumulated, and its frequency count should carry the same
count as node ai .
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Major Steps to Mine FP-Tree: Conditional FP-Tree

Conditional Pattern
Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

Example: e-conditional FP-Tree
Item Frequency

c 2
b 1
d 1

∅ | e

c:2

Construct conditional FP-tree from each
conditional pattern-base

I The prefix paths of a suffix represent
the conditional basis  can be
regarded as transactions of a database.

I For each pattern-base:
I Accumulate the count for each item

in the base
I Re-sort items within sets by

frequency
I Construct the FP-tree for the

frequent items of the pattern base
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Major Steps to Mine FP-Tree: Conditional FP-Tree

I Build conditional FP-Trees for each item

Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

∅ | b = ∅ ∅ | c

b:3

∅ | d

b:5

c:3

c:1

∅ | e

c:2

∅ | f

c:2

e:2
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Major Steps to Mine FP-Tree: Recursion

Base Case: Single Path

If the conditional FP-tree contains a single path, simply enumerate all the patterns
(enumerate all combinations of sub-paths)

Example

∅ | f

c:2

e:2

 

All frequent patterns concerning f :
f,

fc, fe
fce
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Major Steps to Mine FP-Tree: Recursion

Recursive Case: Non-degenerated Tree

If the conditional FP-tree is not just a single path, create conditional pattern base for
this smaller tree, and recurse.

Example

∅ | d

b:5

c:3

c:1

Conditional Pattern Base
Item Cond. Patterns

b ∅
c b:3, ∅

∅ | db = ∅ ∅ | dc

b:3
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Principles of Frequent Pattern Growth

Pattern Growth Property

Let X be a frequent itemset in D, B be X ’s conditional pattern base, and Y be an
itemset in B. Then X ∪ Y is a frequent itemset in D if and only if Y is frequent in B.

Example

”abcdef” is a frequent pattern, if and only if

I ”abcde” is a frequent pattern, and

I ”f” is frequent in the set of transactions containing ”abcde”
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Why Is Frequent Pattern Growth Fast?

Performance study1 shows: FP-growth is an order
of magnitude faster than Apriori, and is also faster
than tree-projection

Reasoning:

I No candidate generation, no candidate test
(Apriori algorithm has to proceed breadth-first)

I Use compact data structure

I Eliminate repeated database scan

I Basic operation is counting and FP-tree
building

Image Source: [1]

1Han, Pei & Yin, Mining frequent patterns without candidate generation, SIGMOD’00
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Maximal or Closed Frequent Itemsets

Challenge

Often, there is a huge number of frequent itemsets (especially if minSup is set too low), e.g. a
frequent itemset of length 100 contains 2100 − 1 many frequent subsets

Closed Frequent Itemset

Itemset X is closed in dataset D if for all Y ⊃ X : supp(Y ) < supp(X ).

⇒ The set of closed frequent itemsets contains complete information regarding its
corresponding frequent itemsets.

Maximal Frequent Itemset

Itemset X is maximal in dataset D if for all Y ⊃ X : supp(Y ) < minSup.

⇒ The set of maximal itemsets does not contain the complete support information

⇒ More compact representation
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Simple Association Rules: Introduction

Example

Transaction database:

D = { { butter , bread ,milk, sugar},
{ butter , flour ,milk, sugar},
{ butter , eggs,milk, salt},
{ eggs},
{ butter , flour ,milk, salt, sugar}}

Frequent itemsets:
items support
{butter} 4
{milk} 4
{butter, milk} 4
{sugar} 3
{butter, sugar} 3
{milk, sugar} 3
{butter, milk, sugar} 3

Question of interest

I If milk and sugar are bought, will the customer always buy butter as well?
milk, sugar ⇒ butter?

I In this case, what would be the probability of buying butter?
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Simple Association Rules: Basic Notions

Let Items, Itemset, Database, Transaction, Transaction Length, k-itemset, (relative)
Support, Frequent Itemset be defined as before. Additionally:

I The items in transactions and itemsets are sorted lexicographically: itemset
X = (x1, . . . , xk ), where x1 ≤, . . . ,≤ xk

I Association rule: An association rule is an implication of the form X ⇒ Y where
X ,Y ⊆ I are two itemsets with X ∩ Y = ∅

I Note: simply enumerating all possible association rules is not reasonable!

What are the interesting association rules w.r.t. D?
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Interestingness of Association Rules

Goal

Quantify the interestingness of an association rule with respect to a transaction
database D.

Support

I Frequency (probability) of the entire rule with respect to D:

supp(X ⇒ Y ) = P(X ∪ Y ) =
|{T ∈ D | X ∪ Y ⊆ T}|

|D|
= supp(X ∪ Y )

I ”Probability that a transaction in D contains the itemset.”
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Interestingness of Association Rules

Confidence

I Indicates the strength of implication in the rule:

conf (X ⇒ Y ) = P(Y | X ) =
|{T ∈ D | X ⊆ T} ∩ {T ∈ D | Y ⊆ T}|

|{T ∈ D | X ⊆ T}|

=
|{T ∈ D | X ⊆ T ∧ Y ⊆ T}|

|{T ∈ D | X ⊆ T}|

=
|{T ∈ D | X ∪ Y ⊆ T}|
|{T ∈ D | X ⊆ T}|

=
supp(X ∪ Y )

supp(X )

I ”Conditional probability that a transaction in D containing the itemset X also
contains itemset Y .”
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Interestingness of Association Rules

Rule form

”Body ⇒ Head [support, confidence]”

Association rule examples

I buys diapers ⇒ buys beer [0.5 %, 60%]

I major in CS ∧ takes DB ⇒ avg. grade A [1%, 75%]
buys
diapers

buys
beer

buys
both
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Mining of Association Rules

Task of mining association rules

Given a database D, determine all association rules having a supp ≥ minSup and a
conf ≥ minConf (so-called strong association rules).

Key steps of mining association rules

1. Find frequent itemsets, i.e., itemsets that have supp ≥ minSup (e.g. Apriori,
FP-growth)

2. Use the frequent itemsets to generate association rules
I For each itemset X and every nonempty subset Y ⊂ X generate rule Y ⇒ (X \ Y )

if minSup and minConf are fulfilled
I We have 2|X | − 2 many association rule candidates for each itemset X
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Mining of Association Rules

Example

I Frequent itemsets:

1-itemset count 2-itemset count 3-itemset count
{ a } 3 { a,b } 3 { a,b,c } 2
{ b } 4 { a,c } 2
{ c } 5 { b,c } 4

I Rule candidates
I From 1-itemsets: None
I From 2-itemsets: a⇒ b; b ⇒ a; a⇒ c ; c ⇒ a; b ⇒ c ; c ⇒ b
I From 3-itemsets: a, b ⇒ c ; a, c ⇒ b; c , b ⇒ a; a⇒ b, c ; b ⇒ a, c ; c ⇒ a, b
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Generating Rules from Frequent Itemsets

Rule generation

I For each frequent itemset X :
I For each nonempty subset Y of X , form a rule Y ⇒ (X \ Y )
I Delete those rules that do not have minimum confidence

I Note:
I Support always exceeds minSup
I The support values of the frequent itemsets suffice to calculate the confidence

I Exploit anti-monotonicity for generating candidates for strong association rules!
I Y ⇒ Z not strong =⇒ for all A ⊆ D : Y ⇒ Z ∪ A not strong
I Y ⇒ Z not strong =⇒ for all Y ′ ⊆ Y : (Y \ Y ′)⇒ (Z ∪ Y ′) not strong
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Generating Rules from Frequent Itemsets

Example: minConf = 60%

conf (a⇒ b) = 3/3 3

conf (b ⇒ a) = 3/4 3

conf (a⇒ c) = 2/3 3

conf (c ⇒ a) = 2/5 7

conf (b ⇒ c) = 4/4 3

conf (c ⇒ b) = 4/5 3

conf (b, c ⇒ a) = 1/2 7

conf (a, c ⇒ b) = 1 3

conf (a, b ⇒ c) = 2/3 3

conf (a⇒ b, c) = 2/3 3

conf (b ⇒ a, c) = 2/4 7 (pruned with b, c ⇒ a)
conf (c ⇒ a, b) = 2/5 7 (pruned with b, c ⇒ a)

itemset count
{ a } 3
{ b } 4
{ c } 5

{ a,b } 3
{ a,c } 2
{ b,c } 4

{ a,b,c } 2
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Interestingness Measurements

Objective measures

Two popular measures:

I Support

I Confidence

Subjective measures [Silberschatz & Tuzhilin, KDD95]

A rule (pattern) is interesting if it is

I unexpected (surprising to the user) and/or

I actionable (the user can do something with it)
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Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

I Among 5000 students
I 3000 play basketball (=60%)
I 3750 eat cereal (=75%)
I 2000 both play basket ball and eat cereal (=40%)

I Rule ”play basketball ⇒ eat cereal [40%, 66.7%]” is misleading because the
overall percentage of students eating cereal is 75% which is higher than 66.7%

I Rule ”play basketball ⇒ not eat cereal [20%, 33.3%]” is far more accurate,
although with lower support and confidence

I Observation: ”play basketball” and ”eat cereal” are negatively correlated

Not all strong association rules are interesting and some can be misleading.

I Augment the support and confidence values with interestingness measures such as
the correlation: ”A ⇒ B [supp, conf , corr ]”

Unsupervised Methods Frequent Pattern Mining February 6, 2019 158



Other Interestingness Measures: Correlation

Correlation

Correlation (sometimes called Lift) is a simple measure between two items A and B:

corrA,B =
P(A ∪ B)

P(A)P(B)
=

P(B | A)

P(B)
=

conf (A⇒ B)

supp(B)

I The two rules A⇒ B and B ⇒ A have the same correlation coefficient

I Takes both P(A) and P(B) in consideration

I corrA,B > 1: The two items A and B are positively correlated

I corrA,B = 1: There is no correlation between the two items A and B

I corrA,B < 1: The two items A and B are negatively correlated
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Other Interestingness Measures: Correlation

Example 2

item transactions
X 1 1 1 1 0 0 0 0
Y 1 1 0 0 0 0 0 0
Z 0 1 1 1 1 1 1 1

rule support confidence correlation
X ⇒ Y 25% 50% 2
X ⇒ Z 37.5% 75% 0.86
Y ⇒ Z 12.5% 50% 0.57

I X and Y : positively correlated

I X and Z : negatively related

I Support and confidence of X ⇒ Z dominates

I But: items X and Z are negatively correlated

I Items X and Y are positively correlated
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Hierarchical Association Rules: Motivation

Problem

I High minSup: apriori finds only few rules

I Low minSup: apriori finds unmanagably many rules

Solution

Exploit item taxonomies (generalizations, is-a hierarchies) which exist in many
applications

Example

clothes

outerwear

jackets jeans

shirts

shoes

sport shoes boots
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Hierarchical Association Rules

New Task

Find all generalized association rules between generalized items, i.e. Body and Head of
a rule may have items of any level of the hierarchy

Generalized Association Rule

X ⇒ Y with X ,Y ⊂ I ,X ∩ Y = ∅ and no item in Y is an ancestor of any item in X

Example

I Jeans ⇒ Boots; supp < minSup

I Jackets ⇒ Boots; supp < minSup

I Outerwear ⇒ Boots; supp > minSup
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Hierarchical Association Rules: Characteristics

Y

Xi
. . .X1

. . . Xk

Characteristics

Let Y =
k⊎

i=1
Xi be a generalisation.

I For all 1 ≤ i ≤ k it holds supp(Y ⇒ Z ) ≥ supp(Xi ⇒ Z )

I In general, supp(Y ⇒ Z ) =
k∑

i=1
supp(Xi ⇒ Z ) does not hold (a transaction might

contain elements from multiple low-level concepts, e.g. boots and sport shoes).
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Mining Multi-Level Associations

Top-Down, Progressive-Deepening Approach

1. First find high-level strong rules, e.g. milk ⇒
bread [20%, 60%]

2. Then find their lower-level ”weaker” rules, e.g.
low-fat milk ⇒ wheat bread [6%, 50%].

Support Threshold Variants

Different minSup threshold across multi-levels lead
to different algorithms:

I adopting the same minSup across multi-levels

I adopting reduced minSup at lower levels

food

milk bread

. . .1.5% 3.5%

. . . . . .
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Minimum Support for Multiple Levels

Uniform Support

I Search procedure is simplified
(monotonicity)

I User only specifies one
threshold

milk
supp=10%

1.5%
supp=6%

3.5%
supp=4%

minSup=5%

minSup=5%

Reduced Support (Variable Support)

I Takes into account lower
frequency of items in lower
levels

milk
supp=10%

1.5%
supp=6%

3.5%
supp=4%

minSup=3%

minSup=5%
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Multilevel Association Mining using Reduced Support

Level-by-level independent method

Examine each node in the hierarchy, regardless of the frequency of its parent node.

Level-cross-filtering by single item

Examine a node only if its parent node at the preceding level is frequent.

Level-cross-filtering by k-itemset

Examine a k-itemset at a given level only if its parent k-itemset at the preceding level
is frequent.
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Multi-level Association: Redundancy Filtering

Some rules may be redundant due to ”ancestor” relationships between items.

Example

I R1: milk ⇒ wheat bread [8%, 70%]

I R2: 1.5% milk ⇒ wheat bread [2%, 72%]

We say that rule 1 is an ancestor of rule 2.

Redundancy

A rule is redundant if its support is close to the ”expected” value, based on the rule’s
ancestor.

c
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Interestingness of Hierarchical Association Rules: Notions

Let X ,X ′,Y ,Y ′ ⊆ I be itemsets.

I X ′ is ancestor of X iff there exists ancestors x ′1, . . . , x
′
k of x1, . . . , xk ∈ X and

xk+1, . . . , xn with n = |X | such that X ′ = {x ′1, . . . , x ′k , xk+1, . . . , xn}
I Let X ′ and Y ′ be ancestors of X and Y . Then we call the rules X ′ ⇒ Y ′,

X ⇒ Y ′, and X ′ ⇒ Y ancestors of the rule X ⇒ Y .
I The rule X ′ ⇒ Y ′ is a direct ancestor of rule X ⇒ Y in a set of rules if:

1. Rule X ′ ⇒ Y ′ is an ancestor of rule X ⇒ Y , and
2. There is no rule X ′′ ⇒ Y ′′ being ancestor of X ⇒ Y and X ′ ⇒ Y ′ is an ancestor of

X ′′ ⇒ Y ′′
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R-Interestingness

R-Interestingness

A hierarchical association rule X ⇒ Y is called R-interesting if:

I There are no direct ancestors of X ⇒ Y or

I The actual support is larger than R times the expected support or

I The actual confidence is larger than R times the expected confidence
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R-Interestingness: Expected Support

Given the rule for X ⇒ Y and its ancestor rule X ′ ⇒ Y ′ the expected support of
X ⇒ Y is defined as:

EZ ′ [P(Z )] = P(Z ′) ·
j∏

i=1

P(yi )

P(yi )′

where Z = X ∪ Y = {z1, . . . , zn}, Z ′ = X ′ ∪ Y ′ = {z ′1, . . . , z ′j , zj+1, . . . , zn} and each
z ′i ∈ Z ′ is an ancestor of zi ∈ Z .

R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.
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R-Interestingness: Expected Confidence

Given the rule for X ⇒ Y and its ancestor rule X ′ ⇒ Y ′, then the expected confidence
of X ⇒ Y is defined as:

EX ′⇒Y ′ [P(Y |X )] = P(Y ′ | X ′) ·
j∏

i=1

P(yi )

P(yi )′

where Y = {y1, . . . , yn} and Y ′ = {y ′1, . . . , y ′j , yj+1, . . . , yn} and each y ′i ∈ Y ′ is an
ancestor of yi ∈ Y .

R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.
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R-Interestingness: Example

Item Support

clothes 20
outerwear 10

jackets 4

Let R = 1.6

No Rule Support R-Interesting?

1 clothes ⇒ shoes 10 yes: no ancestors
2 outerwear ⇒ shoes 9 yes (wrt. rule 1):

supp(X ⇒ Y ) = 9 > 1.6 · 10
20 · 10 = 8 = 1.6 · E(P(Z ))

3 jackets ⇒ shoes 4 Not wrt. support:
E(P(jackets ∪ shoes)) = 3.2 (wrt rule 1)
E(P(jackets ∪ shoes)) = 5.75 (wrt rule 2)

Still need to check the confidence!
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Summary Frequent Itemset & Association Rule Mining

I Frequent Itemsets
I Mining: Apriori algorithm, hash trees, FP-tree
I support, confidence

I Simple Association Rules
I Mining: (Apriori)
I Interestingness measures: support, confidence, correlation

I Hierarchical Association Rules
I Mining: Top-Down Progressive Deepening
I Multilevel support thresholds, redundancy, R-interestingness

I Further Topics (not covered)
I Quantitative Association Rules (for numerical attributes)
I Multi-dimensional association rule mining
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Motivation

Motivation

I In many applications the order matters, e.g. because the ordering encodes spatial
or temporal aspects.

I In an ordered sequence, items are allowed to occur more than one time

Applications

Bioinformatics (DNA/protein sequences), Web mining, text mining, sensor data
mining, process mining, . . .
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Sequential Pattern Mining: Basic Notions I

We now consider transactions having an order of the items. Define:

I Alphabet Σ is set symbols or characters (denoting items)

I Sequence S = s1s2 . . . sk is an ordered list of a length |S | = k items where si ∈ Σ
is an item at position i also denoted as S [i ]

I A k-sequence is a sequence of length k

I Consecutive subsequence R = r1r2 . . . rm of S = s1s2 . . . sn is also a sequence in Σ
such that r1r2 . . . rm = sj sj+1 . . . sj+m−1 with 1 ≤ j ≤ n −m + 1. We say S
contains R and denote this by R ⊆ S

I In a more general subsequence R of S we allow for gaps between the items of R,
i.e. the items of the subsequence R ⊆ S must have the same order of the ones in
S but there can be some other items between them

I A prefix of a sequence S is any consecutive subsequence of the form
S [1 : i ] = s1s2 . . . si with 0 ≤ i ≤ n, S [1 : 0] is the empty prefix
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Sequential Pattern Mining: Basic Notions II

I A suffix of a sequence S is any consecutive subsequence of the form
S [i : n] = si si+1 . . . sn with 1 ≤ i ≤ n + 1, S [n + 1 : n] is the empty suffix.

I (Relative) support of a sequence R in D: supp(R) = |{S ∈ D | R ⊆ S}|/|D|
I S is frequent (or sequential) if supp(S) ≥ minSup for threshold minSup.

I A frequent sequence is maximal if it is not a subsequence of any other frequent
sequence

I A frequent sequence is closed if it is not a subsequence of any other frequent
sequence with the same support
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Sequential Pattern Mining

Task

Find all frequent subsequences occuring in many transactions.

Difficulty

The number of possible patterns is even larger than for frequent itemset mining!

Example

There are |Σ|k different k-sequences, where k > |Σ| is possible and often encountered,
e.g. when dealing with DNA sequences where the alphabet only comprises four
symbols.
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Sequential Pattern Mining Algorithms

Breadth-First Search Based

I GSP (Generalized Sequential Pattern) algorithm2

I SPADE3

I . . .

Depth-First Search Based

I PrefixSpan4

I SPAM5

I . . .

2
Sirkant & Aggarwal: Mining sequential patterns: Generalizations and performance improvements. EDBT 1996

3
Zaki M J. SPADE: An efficient algorithm for mining frequent sequences. Machine learning, 2001, 42(1-2): 31-60.

4
Pei at. al.: Mining sequential patterns by pattern-growth: PrefixSpan approach. TKDE 2004

5
Ayres, Jay, et al: Sequential pattern mining using a bitmap representation. SIGKDD 2002.
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GSP (Generalized Sequential Pattern) algorithm

I Breadth-first search: Generate frequent sequences ascending by length

I Given the set of frequent sequences at level k , generate all possible sequence
extensions or candidates at level k + 1

I Uses the Apriori principle (anti-monotonicity)

I Next compute the support of each candidate and prune the ones with
supp(c) < minSup

I Stop the search when no more frequent extensions are possible
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Projection-Based Sequence Mining: PrefixSpan: Representation

I The sequence search space can be organized in a prefix search tree

I The root (level 0) contains the empty sequence with each item x ∈ Σ as one of its
children

I A node labelled with sequence: S = s1s2 . . . sk at level k has children of the form
S ′ = s1s2 . . . sk sk+1 at level k + 1 (i.e. S is a prefix of S ′ or S ′ is an extension of
S)
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Prefix Search Tree: Example

ID Sequence

S1 CAGAAGT
S2 TGACAG
S3 GAG
S4 AGTT
S5 ATAG

minSup = .8

∅ (5)

A(5)

C(2)

G(4)

T(5)

AA(3)

AC(-)

AG(5)

AT(3)

GA(3)

GC(-)

GG(3)

GT(2)

TA(1)

TC(-)

TG(2)

TT(1)

AGA(-)

AGC(-)

AGG(-)

AGT(-)

seq (count) frequent

seq ( - ) infrequent (pruned)

seq (count) infrequent

prunes

generates
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Projected Database

I For a database D and an item s ∈ Σ, the projected database w.r.t. s is denoted
Ds and is found as follows: For each sequence Si ∈ D do
I Find the first occurrence of s in Si , say at position p
I suffSi ,s ← suffix(Si ) starting at position p + 1
I Remove infrequent items from suffSi ,s

I Ds = Ds ∪ suffSi ,s

Example

minSup = .8 (i.e. 4 transactions)
ID Sequence DA DG DT

S1 CAGAAGT GAAGT AAGT ∅
S2 TGACAG AG AAG GAAG
S3 GAG G AG -
S4 AGTT GTT TT T
S5 ATAG TAG ∅ AG

Unsupervised Methods Frequent Pattern Mining February 6, 2019 182



Projection-Based Sequence Mining: PrefixSpan Algorithm

I The PrefixSpan algorithm computes the support for only the individual items in
the projected databased Ds

I Then performs recursive projections on the frequent items in a depth-first manner

1: Initialization: DR ← D,R ← ∅,F ← ∅
2: procedure PrefixSpan(DR ,R,minSup,F)
3: for all s ∈ Σ such that supp(s,DR ) ≥ minSup do
4: Rs ← R + s . append s to the end of R
5: F ← F ∪ {(Rs , sup(s,DR ))} . calculate support of s for each Rs within DR

6: Ds ← ∅
7: for all Si ∈ DR do
8: S ′i ← projection of Si w.r.t. item s
9: Remove all infrequent symbols from S ′i

10: if S ′ 6= ∅ then
11: Ds ← Ds ∪ S ′i
12: if Ds 6= ∅ then
13: PrefixSpan(Ds ,Rs ,minSup,F)
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PrefixSpan: Example

minSup = 0.8 (i.e. 4 transactions)

D∅

ID Sequence

S1 CAGAAGT
S2 TGACAG
S3 GAG
S4 AGTT
S5 ATAG

A(5)C(2)G(5)T(4)

DG

ID Sequence

S1 AAGT
S2 AAG
S3 AG
S4 TT
S5 ∅
A(3)G(3)T(2)

DT

ID Sequence

S1 ∅
S2 GAAG
- -

S4 T
S5 AG

A(2)G(2)T(1)

DA

ID Sequence

S1 GAAGT
S2 AG
S3 G
S4 GTT
S5 TAG

A(3)G(5)T(3)

DAG

ID Sequence

S1 G
S2 ∅
S3 ∅
S4 ∅
S5 ∅

G(1)

Hence, the frequent sequences are: ∅, A, G, T, AG
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Interval-based Sequential Pattern Mining

Interval-Based Representation

I Deals with the more common interval-based items s (or events).

I Each event has a starting t+
s and an ending time point t−s , where t+

s < t−s

Application

Health data analysis, Stock market data analysis, etc.

Relationships

Predefined relationships between items are more complex.

I Point-based relationships: before, after, same time.

I Interval-based relationships: Allen’s relations6, End point representation7, etc.

6
Allen: Maintaining knowledge about temporal intervals. In Communications of the ACM 1983

7
Wu, Shin-Yi, and Yen-Liang Chen: Mining nonambiguous temporal patterns for interval-based events. TKDE 2007
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Allen’s Relations
Before Overlaps Contains Starts Finished-By Meets Equal
After Overlapped-By During Started-By Finishes Met-by Equal

Problem

I Allen’s relationships only describe the relation between two intervals.

I Describing the relationship between k intervals unambiguously requires O(k2)
comparisons.

A B

C

A B

C
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Interval-based Sequential Pattern Mining

I TPrefixSpan8 converts interval-based sequences into point-based sequences:

A

B
{A+}, {A−}, {B+}, {B−}

A

B
{A+}, {B+}, {A−}, {B−}

A

B
{A+}, {A−,B+}, {B−}

I Similar prefix projection mining approach as PrefixSpan algorithm.

I Validation checking is necessary in each expanding iteration to make sure that the
appended time point can form an interval with a time point in the prefix.

8
Wu, Shin-Yi, and Yen-Liang Chen: Mining nonambiguous temporal patterns for interval-based events. TKDE 2007
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An Open Issue: Considering Timing Information
Idea
Learn pattern from data by clustering, e.g. QTempIntMiner9, Event Space Miner10, PIVOTMiner11

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

0
0

2

2

4

4

6

6

8

8

start

end

I

II

III

IV

V VI

9
Guyet, T., & Quiniou, R.: Mining temporal patterns with quantitative intervals. ICDMW 2008

10
Ruan, G., Zhang, H., & Plale, B.: Parallel and quantitative sequential pattern mining for large-scale interval-based temporal data. IEEE Big

Data 2014
11

Hassani M., Lu Y. & Seidl T.: A Geometric Approach for Mining Sequential Patterns in Interval-Based Data Streams. FUZZ-IEEE 2016
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What is Clustering?

Clustering

Grouping a set of data objects into clusters (=collections of data
objects).

I Similar to one another within the same cluster

I Dissimilar to the objects in other clusters

Typical Usage

I As a stand-alone tool to get insight into data distribution

I As a preprocessing step for other algorithms
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General Applications of Clustering

I Preprocessing – as a data reduction (instead of sampling)
I Image data bases (color histograms for filter distances)
I Stream clustering (handle endless data sets for offline clustering)

I Pattern Recognition and Image Processing
I Spatial Data Analysis:

I create thematic maps in Geographic Information Systems by clustering feature spaces
I detect spatial clusters and explain them in spatial data mining

I Business Intelligence (especially market research)
I WWW

I Documents (Web Content Mining)
I Web-logs (Web Usage Mining)

I Biology, e.g. Clustering of gene expression data
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Application Example: Downsampling Images
I Reassign color values to k distinct colors

I Cluster pixels using color difference, not spatial data

65536 256 16

8 4 2
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Major Clustering Approaches

I Partitioning algorithms: Find k partitions, minimizing some
objective function

I Probabilistic Model-Based Clustering (EM)

I Density-based: Find clusters based on connectivity and density
functions

I Hierarchical algorithms: Create a hierarchical decomposition of
the set of objects

I Other methods:
I Grid-based
I Neural networks (SOMs)
I Graph-theoretical methods
I Subspace Clustering
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Partitioning Algorithms: Basic Concept

Partition

Given a set D, a partitioning C = {C1, . . . ,Ck} of D fulfils:

I Ci ⊆ D for all 1 ≤ i ≤ k

I Ci ∩ Cj = ∅ ⇐⇒ i 6= j

I
⋃

Ci = D

(i.e. each element of D is in exactly one set Ci )

Goal

Construct a partitioning of a database D of n objects into a set of k (k ≤ n) clusters
minimizing an objective function.

Exhaustively enumerating all possible partitionings into k sets in order to find the
global minimum is too expensive.
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Partitioning Algorithms: Basic Concept

Popular Heuristic Methods

I Choose k representatives for clusters, e.g., randomly
I Improve these initial representatives iteratively:

I Assign each object to the cluster it “fits best” in the current clustering
I Compute new cluster representatives based on these assignments
I Repeat until the change in the objective function from one iteration to the next

drops below a threshold

Example

I k-means: Each cluster is represented by the center of the cluster

I k-medoid: Each cluster is represented by one of its objects
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k-Means Clustering: Basic Idea

Idea1

Find a clustering such that the
within-cluster variation of each cluster is
small and use the centroid of a cluster as
representative.

Objective

For a given k , form k groups so that the
sum of the (squared) distances between the
mean of the groups and their elements is
minimal

Poor clustering

μ

μ

μ

clustermean
distance

μ Centroids

Good clustering

μ

μ

μ

μ Centroids

1
S.P. Lloyd: Least squares quantization in PCM. In IEEE Information Theory, 1982 (original version: technical report, Bell Labs, 1957)
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k-Means Clustering: Basic Notions

I Objects p = (p1, . . . , pd ) are points in a d-dimensional vector space (the mean µS

of a set of points S must be defined: µS = 1
|S|
∑

p∈S

p)

I Measure for the compactness of a cluster Cj (sum of squared distances):
SSE (Cj ) =

∑
p∈Cj

||p − µCj
||22

I Measure for the compactness of a clustering C:
SSE (C) =

∑
Cj∈C

SSE (Cj ) =
∑

p∈D

||p − µC(p)||22

I Optimal Partitioning: argmin
C

SSE (C)

I Optimizing the within-cluster variation is computationally challenging (NP-hard)
 use efficient heuristic algorithms
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k-Means Clustering: Algorithm

k-Means Algorithm: Lloyd’s algorithm

1: Given: k
2: Initialization: Choose k arbitrary representatives
3: repeat
4: Assign each object to the cluster with the nearest representative.
5: Compute the centroids of the clusters of the current partitioning.
6: until representatives do not change

Example

Start Update Reassign Update Reassign
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k-Means: Voronoi Model for Convex Cluster Regions

Voronoi Diagram

I For a given set of points P = {p1, . . . , pk} (here: cluster representatives), a
Voronoi diagram partitions the data space into Voronoi cells, one cell per point

I The cell of a point p ∈ P covers all points in the data space for which p is the
nearest neighbors among the points from P

Observations

I The Voronoi cells of two neighboring points
pi , pj ∈ P are separated by the perpendicular
hyperplane (”Mittelsenkrechte”) between pi and pj .

I Voronoi cells are intersections of half spaces and thus
convex regions

Unsupervised Methods Clustering February 6, 2019 198



k-Means: Discussion

Strength

I Relatively efficient: O(tkn) (n: #obj., k: #clus., t: #it.; typically: k, t � n)

I Easy implementation

Weaknesses

I Applicable only when mean is defined

I Need to specify k , the number of clusters, in advance

I Sensitive to noisy data and outliers

I Clusters are forced to convex space partitions (Voronoi Cells)

I Result and runtime strongly depend on the initial partition; often terminates at a
local optimum – however: methods for a good initialization exist
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Variants: Basic Idea

One Problem of k-Means

Applicable only when mean is defined (vector space)

Alternatives for Mean representatives

I Median: (Artificial) Representative object ”in the middle”

I Mode: Value that appears most often

I Medoid: Representative object ”in the middle”

Objective

Find k representatives so that the sum of total distances (TD) between objects and
their closest representative is minimal (more robust against outliers).

Unsupervised Methods Clustering February 6, 2019 200



k-Median

A B C D E F G H I J K
tiny

small

medium

large

huge

data point

median

Idea

I If there is an ordering on the data use median instead of mean.

I Compute median separately per dimension ( efficient computation)
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k-Mode

Technician Manager Cook Programmer Advisor

Cat

Dog

Snake

None

2

1

2

1

1

1 1 c
data point
(count=c)

mode

Mode

I Given: categorical data D ⊆ Ω = A1× · · ·×Ad where Ai are categorical attributes

I A mode of D is a vector M = (m1, . . . ,md ) ∈ Ω that minimizes
d(M,D) =

∑
p∈D d(p,M) where d is a distance function for categorical values

(e.g. Hamming distance)

I Note: M is not necessarily an element of D
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k-Mode

Theorem to determine a mode

Let f (c , j ,D) = 1
n |{p ∈ D | p[j ] = c}| be the relative frequency of category c of

attribute Aj in the data, then:

d(M,D) is minimal ⇔ ∀j ∈ {1, . . . , d}∀c ∈ Aj : f (mj , j ,D) ≥ f (c , j ,D)

I This allows to use the k-Means paradigm to cluster categorical data without
losing its efficiency

I k-Modes algorithm1 proceeds similar to k-Means algorithm

I Note: The mode of a dataset might be not unique

1
Huang, Z. ”A Fast Clustering Algorithm to Cluster very Large Categorical Data Sets in Data Mining” DMKD (1997)
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k-Medoid

Potential problems with previous methods:

I Artificial centroid object might not make sense (e.g. education=”high school”
and occupation=”professor”)

I There might only be a distance function available but no explicit attribute-based
data representations (e.g. Edit Distance on strings)

Partitioning Around Medoids 1: Initialization

Given k, the k-medoid algorithm is initialized as follows:

I Select k objects arbitrarily as initial medoids (representatives)

I Assign each remaining (non-medoid) object to the cluster with the nearest
representative

I Compute current TDcurrent

1
Kaufman, Leonard, and Peter Rousseeuw. ”Clustering by means of medoids.” (1987)
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k-Medoid

Partitioning Around Medoids (PAM) Algorithm

procedure PAM(Set D, Integer k)
Initialize k medoids
∆TD = −∞
while ∆TD < 0 do

Compute TDN↔M for each pair (medoid M, non-medoid N), i.e., TD after swapping M with N
Choose pair (M,N) with minimal ∆TD = TDN↔M − TDcurrent

if ∆TD < 0 then
Replace medoid M with non-medoid N
TDcurrent ← TDN↔M

Store current medoids and assignments as best partitioning so far
return medoids

I Problem with PAM: high complexity O
(
tk(n − k)2

)
I Several heuristics can be employed, e.g. CLARANS 1: randomly select (medoid,

non-medoid)-pairs instead of considering all pairs

1
Ng, Raymond T., and Jiawei Han. ”CLARANS: A method for clustering objects for spatial data mining.” IEEE TKDE (2002)
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K -Means/Median/Mode/Medoid Clustering: Discussion

k-Means k-Median k-Mode k-Medoid

data numerical (mean) ordinal categorical metric

efficiency high O (tkn) low O
(
tk(n − k)2

)
sensitivity
to outliers

high low

I Strength: Easy implementation (many variations and optimizations exist)
I Weaknesses

I Need to specify k in advance
I Clusters are forced to convex space partitions (Voronoi Cells)
I Result and runtime strongly depend on the initial partition; often terminates at a

local optimum – however: methods for good initialization exist
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Initialization of Partitioning Clustering Methods

I Naive
I Choose sample A of the dataset
I Cluster A and use centers as initialization

I k-means++1

I Select first center uniformly at random
I Choose next point with probability proportional to the

squared distance to the nearest center already chosen
I Repeat until k centers have been selected
I Guarantees an approximation ratio of O(log k) (standard

k-means can generate arbitrarily bad clusterings)

I In general: Repeat with different initial centers and
choose result with lowest clustering error

Bad initialization

Good initialization

1
Arthur, D., Vassilvitskii, S. ”k-means++: The Advantages of Careful Seeding.” ACM-SIAM Symposium on Discrete Algorithms (2007)
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Choice of the Parameter k

I Idea for a method:
I Determine a clustering for each k = 2, . . . , n − 1
I Choose the ”best” clustering

I But how to measure the quality of a clustering?
I A measure should not be monotonic over k
I The measures for the compactness of a clustering SSE and TD are monotonously

decreasing with increasing value of k .

Silhouette-Coefficient 1

Quality measure for k-means or k-medoid clusterings that is not monotonic over k.

1
Rousseeuw, P. ”Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis”. Computational and Applied

Mathematics (1987)
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The Silhouette Coefficient

Basic idea

I How good is the clustering = how appropriate is the mapping of objects to clusters
I Elements in cluster should be ”similar” to their representative

I Measure the average distance of objects to their representative: a(o)

I Elements in different clusters should be ”dissimilar”
I Measure the average distance of objects to alternative clusters (i.e. second closest

cluster): b(o)
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The Silhouette Coefficient

I a(o) = ”Avg. distance between o and objects
in its cluster A.”

a(o) =
1

|C (o)|
∑

p∈C(o)

d(o, p)

I b(o): ”Smallest avg. distance between o and
objects in other cluster.”

b(o) = min
Ci 6=C(o)

 1

|Ci |
∑
p∈Ci

d(o, p)
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The Silhouette Coefficient

I The silhouette of o is then defined as

s(o) =

{
0 if a(o) = 0, e.g. |Ci | = 1

b(o)−a(o)
max(a(o),b(o)) else

I The value range of the silhouette coefficient is [−1, 1]

I The silhouette of a cluster Ci is defined as

s(Ci ) =
1

|Ci |
∑
o∈Ci

s(o)

I The silhouette of a clustering C = (C1, . . . ,Ck ) is defined as

s(C) =
1

|D|
∑
o∈D

s(o)

where D denotes the whole dataset
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The Silhouette Coefficient

I ”Reading” the silhouette coefficient: Let a(o) 6= 0
I b(o)� a(o) =⇒ s(o) ≈ 1: good assignment of o to its cluster A
I b(o) ≈ a(o) =⇒ s(o) ≈ 0: o is in-between A and B
I b(o)� a(o) =⇒ s(o) ≈ −1: bad, on average o is closer to members of B

I Silhouette coefficient s(C) of a clustering: Average silhouette of all objects
I 0.7 < s(C) ≤ 1.0: strong structure
I 0.5 < s(C) ≤ 0.7: medium structure
I 0.25 < s(C) ≤ 0.5: weak structure
I s(C) ≤ 0.25: no structure
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Silhouette Coefficient: Example

dataset with 10 clusters

Image from Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
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Expectation Maximization (EM)

I Statistical approach for finding maximum likelihood
estimates of parameters in probabilistic models.

I Here: Using EM as clustering algorithm

I Approach: Observations are drawn from one of several
components of a mixture distribution.

I Main idea:
I Define clusters as probability distributions → each

object has a certain probability of belonging to each
cluster

I Iteratively improve the parameters of each distribution
(e.g. center, ”width” and ”height” of a Gaussian
distribution) until some quality threshold is reached

↓

↓

Additional Literature: C. M. Bishop ”Pattern Recognition and Machine Learning”, Springer, 2009
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Excursus: Gaussian Mixture Distributions

Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

Gaussian Distribution

I Univariate: single variable x ∈ R:

p(x | µ, σ2) = N (x | µ, σ2) =
1

√
2πσ2

exp

(
−

1

2σ2
(x − µ)2

)

with mean µ ∈ R and variance σ2 ∈ R
I Multivariate: d-dimensional vector x ∈ Rd :

p(x | µ,Σ) = N (x | µ,Σ) =
1√

(2π)d |Σ|
exp

(
−

1

2
(x − µ)T Σ−1(x − µ)

)

with mean vector µ ∈ Rd and covariance matrix Σ ∈ Rd×d
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Excursus: Gaussian Mixture Distributions

Gaussian mixture distribution with k components

I For d-dimensional vector x ∈ Rd :

p(x) =
k∑

l=1

πl · N (x | µl ,Σl )

with mixing coefficients πl ∈ R,
∑

l πl = 1 and 0 ≤ πl ≤ 1
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EM: Exemplary Application

Example taken from: C. M. Bishop ”Pattern Recognition and Machine Learning”, 2009
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EM: Clustering Model

Clustering

A clustering M = (C1, . . . ,Ck ) is represented by a mixture
distribution with parameters θ = (π1, µ1,Σ1, . . . , πk , µk ,Σk ):

p(x | θ) =
k∑

l=1

πl · N (x | µl ,Σl )

Cluster

Each cluster is represented by one component of the mixture
distribution:

p(x | µl ,Σl ) = N (x | µl ,Σl )
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EM: Maximum Likelihood Estimation

I Given a dataset X = {x1, . . . , xn} ⊆ Rd , the likelihood
that all data points xi ∈ X are generated (independently)
by the mixture model with parameters θ is given as:

p(X | θ) =
n∏

i=1

p(xi | θ)

Goal

Find the maximum likelihood estimate (MLE), i.e., the
parameters θML with maximal likelihood:

θML = argmax
θ
{p(X | θ)}
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EM: Maximum Likelihood Estimation

I Goal: Find MLE. For convenience, we use the log-likelihood:

θML = argmax
θ
{p(X | θ)}

= argmax
θ
{log p(X | θ)}

I The log-likelihood can be written as

log p(X | θ) = log
n∏

i=1

k∑
l=1

πl · p(xi | µl ,Σl )

=
n∑

i=1

log
k∑

l=1

πl · p(xi | µl ,Σl )
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EM: Maximum Likelihood Estimation

I Maximization w.r.t. the means:

∂ log p(X | θ)

∂µj
=

n∑
i=1

∂ log p(xi | θ)

∂µj
=

n∑
i=1

∂ log p(xi |θ)
∂µj

p(xi | θ)
=

n∑
i=1

∂ log p(xi |θ)
∂µj∑k

l=1 p(xi | µl ,Σl )

=
n∑

i=1

πj · Σ−1
j (xi − µj ) · N (xi | µj ,Σj )∑k

l=1 p(xi | µl ,Σl )

= Σ−1
j

n∑
i=1

(xi − µj )
πj · N (xi | µj ,Σj )∑k
l=1 πl · N (xi | µl ,Σl )

!
= 0

I Use ∂
∂µj
N (xi | µj ,Σj ) = Σ−1

j (xi − µj ) · N (xi | µj ,Σj )

I Define γj (xi ) := πj · N (xi | µj ,Σj ): Probability that component j generated xi
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EM: Maximum Likelihood Estimation

I Maximization w.r.t. the means yields

µj =

∑n
i=1 γj (xi )xi∑n

i=1 γj (xi )

I Maximization w.r.t. the covariance matrices yields

Σj =

∑n
i=1 γj (xi )(xi − µj )(xi − µj )

T∑n
i=1 γj (xi )

I Maximization w.r.t. the mixing coefficients yields

πj =

∑n
i=1 γj (xi )∑k

l=1

∑n
i=1 γl (xi )
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EM: Maximum Likelihood Estimation

Problem with finding the optimal parameters θML:

µj =

∑n
i=1 γj (xi )xi∑n

i=1 γj (xi )
and γj (xi ) =

πj · N (xi | µj ,Σj )∑k
l=1 πj · N (xi | µl ,Σk )

I Non-linear mutual dependencies

I Optimizing the Gaussian of cluster j depends on all other Gaussians.

I There is no closed-form solution!

I Approximation through iterative optimization procedures

I Break the mutual dependencies by optimizing µj and γj (xi ) independently
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EM: Iterative Optimization

Iterative Optimization

1. Initialize means µj , covariances Σj , and mixing coefficients πj and evaluate the
initial log-likelihood.

2. E-step: Evaluate the responsibilities using the current parameter values:

γnew
j (xi ) =

πj · N (xi | µj ,Σj )∑k
l=1 πj · N (xi | µl ,Σl )

3. M-step: Re-estimate the parameters using the current responsibilities:

µnew
j =

∑n
i=1 γ

new
j (xi )xi∑n

i=1 γ
new
j (xi )

...
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EM: Iterative Optimization

Iterative Optimization

...

Σnew
j =

∑n
i=1 γ

new
j (xi )(xi − µnew

j )(xi − µnew
j )T∑n

i=1 γ
new
j (xi )

πnew
j =

∑n
i=1 γ

new
j (xi )∑k

l=1

∑n
i=1 γ

new
l (xi )

4. Evaluate the new log-likelihood log p(X | θnew ) and check for convergence of
parameters or log-likelihood (| log p(X | θnew )− log p(X | θ)| ≤ ε). If the
convergence criterion is not satisfied, set θ = θnew and go to step 2.
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EM: Turning the Soft Clustering into a Partitioning

I EM obtains a soft clustering (each object belongs to each cluster with a certain
probability) reflecting the uncertainty of the most appropriate assignment

I Modification to obtain a partitioning variant: Assign each object to the cluster to
which it belongs with the highest probability

C (xi ) = argmax
l∈{1,...,k}

{γl (xi )}

Example taken from: C. M. Bishop ”Pattern Recognition and Machine Learning”, 2009
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EM: Discussion

I Superior to k-Means for clusters of varying size or clusters
having differing variances
I More accurate data representation

I Convergence to (possibly local) maximum
I Computational effort for t iterations: O(tnk)

I t is quite high in many cases

I Both, result and runtime, strongly depend on
I the initial assignment

I Do multiple random starts and choose the final estimate
with highest likelihood

I Initialize with clustering algorithms (e.g., k-Means): usually
converges much faster

I Local maxima and initialization issues have been addressed
in various extensions of EM

I a proper choice of k (next slide)
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EM: Model Selection for Determining Parameter k

Problem

Classical trade-off problem for selecting the proper number of components k :

I If k is too high, the mixture may overfit the data

I If k is too low, the mixture may not be flexible enough to approximate the data

Idea

Determine candidate models θk for k ∈ {kmin, . . . , kmax} and select the model
according to some quality measure qual :

θk∗ = max
k∈{kmin,...,kmax}

{qual(θk )}

I Silhouette Coefficient (as for k-Means) only works for partitioning approaches

I The likelihood is nondecreasing in k
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EM: Model Selection for Determining Parameter k

Solution

Deterministic or stochastic model selection methods 1 which try to balance the
goodness of fit with simplicity.

I Deterministic:
qual(θk ) = log p(X | θk ) + P(k)

where P(k) is an increasing function penalizing higher values of k

I Stochastic: Based on Markov Chain Monte Carlo (MCMC)

1G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.
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Density-Based Clustering

Basic Idea

Clusters are dense regions in the data space,
separated by regions of lower density

Results of a k-medoid algorithm for k = 4:
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Density-Based Clustering: Basic Concept

Note

Different density-based approaches exist in the literature. Here we discuss the ideas
underlying the DBSCAN algorithm.

Intuition for Formalization

I For any point in a cluster, the local point density around that point has to exceed
some threshold

I The set of points from one cluster is spatially connected
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Density-Based Clustering: Basic Concept

Local Point Density

Local point density at a point q defined by two parameters:

I ε-radius for the neighborhood of point q

Nε(q) = {p ∈ D | dist(p, q) ≤ ε} (1)

In this chapter, we assume that q ∈ Nε(q)!

I MinPts: minimum number of points in the given neighbourhood Nε(q).
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Density-Based Clustering: Basic Concept

q

Core Point

q is called a core object (or core point) w.r.t. ε, MinPts if |Nε(q)| ≥ minPts
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Density-Based Clustering: Basic Definitions

p

q

p

q

(Directly) Density-Reachable

p directly density-reachable from q w.r.t. ε, MinPts if:

1. p ∈ Nε(q) and

2. q is core object w.r.t. ε,MinPts

Density-reachable is the transitive closure of directly density-reachable
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Density-Based Clustering: Basic Definitions

p

qo

Density-Connected

p is density-connected to a point q w.r.t. ε, MinPts if there is a point o such that
both, p and q are density-reachable from o w.r.t. ε,MinPts
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Density-Based Clustering: Basic Definitions

Density-Based Cluster

∅ ⊂ C ⊆ D with database D satisfying:

Maximality: If q ∈ C and p is density-reachable from q then p ∈ C
Connectivity: Each object in C is density-connected to all other objects in C
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Density-Based Clustering: Basic Definitions

Core

Border
Noise

Density-Based Clustering

A partitioning {C1, . . . ,Ck ,N} of the database D where

I C1, . . . ,Ck are all density-based clusters

I N = D \ (C1 ∪ . . . ∪ Ck ) is called the noise (objects not in any cluster)
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Density-Based Clustering: DBSCAN Algorithm

Basic Theorem

I Each object in a density-based cluster C is density-reachable from any of its
core-objects

I Nothing else is density-reachable from core objects.
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Density-Based Clustering: DBSCAN Algorithm

Density-Based Spatial Clustering of Applications with Noise12

1: for all o ∈ D do
2: if o is not yet classified then
3: if o is a core-object then
4: Collect all objects density-reachable from o and assign them to a new cluster.
5: else
6: Assign o to noise N

Note

Density-reachable objects are collected by performing successive ε-neighborhood queries.

12
Ester M., Kriegel H.-P., Sander J., Xu X.: ”A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”, In

KDD 1996 , pp. 226-231.
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DBSCAN: Example
Parameters: ε = 1.75, minPts = 3. Clusters: C1, C2; Noise: N

ε ε
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Determining the Parameters ε and MinPts

Recap

Cluster: Point density higher than specified by ε and MinPts

Idea

Use the point density of the least dense cluster in the data set as parameters.

Problem

How to determine this?
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Determining the Parameters ε and MinPts

Heuristic

1. Fix a value for MinPts (default: 2d − 1 where d is the
dimension of the data space)

2. Compute the k-distance for all points p ∈ D (distance
from p to the its k-nearest neighbor), with k = minPts.

3. Create a k-distance plot, showing the k-distances of all
objects, sorted in decreasing order

4. The user selects ”border object” o from the
MinPts-distance plot: ε is set to MinPts-distance(o).

3
-d

is
ta

n
ce

"border object"

Objects

first "kink"
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Determining the Parameters ε and MinPts: Problematic Example

A

B

C

D

E

D

F

G

D1
D2

G1

G2
G3

A

B

C

E
F

G1

G2

D2
D1

D

G

G3

A, B, C

B

B, D, E

Objects

A,B,C

B,D,E

D1,D2,G1,
G2,G3

D,F,G
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Database Support for Density-Based Clustering

Standard DBSCAN evaluation is based on recursive database traversal. Böhm et al.13

observed that DBSCAN, among other clustering algorithms, may be efficiently built on
top of similarity join operations.

ε-Similarity Join

An ε-similarity join yields all pairs of ε-similar objects from two data sets Q, P:

Q ./ε P = {(q, p) ∈ Q × P | dist(q, p) ≤ ε}

SQL Query

SELECT ∗ FROM Q,P WHERE dist(Q,P) ≤ ε

13
Böhm C., Braunmüller, B., Breunig M., Kriegel H.-P.: High performance clustering based on the similarity join. CIKM 2000: 298-305.
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Database Support for Density-Based Clustering

ε-Similarity Self-Join

An ε-similarity self join yields all pairs of ε-similar objects from a database D.

D ./ε D = {(q, p) ∈ D × D | dist(q, p) ≤ ε}

SQL Query

SELECT ∗ FROM D q,D p WHERE dist(q, p) ≤ ε
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Database Support for Density-Based Clustering

The relation ”directly ε, MinPts-density reachable” may be expressed in terms of an
ε-similarity self join (abbreviate minPts with µ):

ddrε,µ = {(q, p) ∈ D × D | q is ε, µ-core-point ∧ p ∈ Nε(q)}
= {(q, p) ∈ D × D | dist(q, p) ≤ ε ∧ ∃≥µp′ ∈ D : dist(q, p′) ≤ ε}
= {(q, p) ∈ D × D | (q, p) ∈ D ./ε D ∧ ∃≥µp′(q, p′) ∈ D ./ε D}
= σ|πq(D./εD)|≥µ(D ./ε D) =: D ./ε,µ D

SQL Query

SELECT ∗ FROM D q,D p WHERE dist(q, p) ≤ ε GROUP BY q.id HAVING
count(q.id) ≥ µ

Afterwards, DBSCAN computes the connected components of D ./ε,µ D.
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Efficient Similarity Join Processing

For very large databases, efficient join techniques are available

I Block nested loop or index-based nested loop joins exploit secondary storage
structure of large databases.

I Dedicated similarity join, distance join, or spatial join methods based on spatial
indexing structures (e.g., R-Tree) apply particularly well. They may traverse their
hierarchical directories in parallel (see illustration below).

I Other join techniques including sort-merge join or hash join are not applicable.

Q

Q ./ε P

P
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DBSCAN: Discussion

Advantages

I Clusters can have arbitrary shape and size; no restriction to convex shapes

I Number of clusters is determined automatically

I Can separate clusters from surrounding noise

I Complexity: Nε-query: O(n), DBSCAN: O(n2).

I Can be supported by spatial index structures ( Nε-query: O(log n))

Disadvantages

I Input parameters may be difficult to determine

I In some situations very sensitive to input parameter setting
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Iterative Mode Search

Idea

Find modes in the point density.

Algorithm14

1. Select a window size ε, starting position m

2. Calculate the mean of all points inside the window W (m).

3. Shift the window to that position

4. Repeat until convergence.

14
K. Fukunaga, L. Hostetler: The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition, IEEE Trans

Information Theory, 1975
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Iterative Mode Search: Example
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Mean Shift: Core Algorithm

Algorithm15

Apply iterative mode search for each data point. Group those that converge to the
same mode (called Basin of Attraction).

15
D. Comaniciu, P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on pattern analysis and machine

intelligence, 2002
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Mean Shift: Extensions

Weighted Mean

Use different weights for the points in the window calculated by some kernel κ

m(i+1) =

∑
x∈W (m(i))

κ(x)x∑
x∈W (m(i))

κ(x)

Binning

First quantise data points to grid. Apply iterative mode seeking only once per bin.
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Mean Shift: Discussion

Disadvantages

I Relatively high complexity: Nε-query (=windowing): O(n). Algorithm: O(tn2)

Advantages

I Clusters can have arbitrary shape and size; no restriction to convex shapes

I Number of clusters is determined automatically

I Robust to outliers

I Easy implementation and parallelisation

I Single parameter: ε

I Support by spatial index: Nε-query (=windowing): O(log n). Algorithm:
O(tn log n)
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Clustering as Graph Partitioning

Approach

I Data is modeled by a similarity graph G = (V ,E )
I Vertices v ∈ V : Data objects
I Weighted edges {vi , vj} ∈ E : Similarity of vi and vj

I Common variants: ε-neighborhood graph, k-nearest
neighbor graph, fully connected graph

I Cluster the data by partitioning the similarity graph
I Idea: Find global minimum cut

I Only considers inter-cluster edges, tends to cut small
vertex sets from the graph

I Partitions graph into two clusters

I Instead, we want a balanced multi-way partitioning
I Such problems are NP-hard, use approximations
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Spectral Clustering

Given

Undirected graph G with weighted edges

I Let W be the (weighted) adjacency matrix of the graph

I And D its degree matrix with Dii =
∑n

j=1 Wij ; other
entries are 0

Aim

Partition G into k subsets, minimizing a function of the edge
weights between/within the partitions.
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Spectral Clustering

Idea

I Consider the indicator vector fC for the cluster C , i.e.

fC i =

{
1 if vi ∈ C

0 else

and the Laplacian matrix L = D −W
I Further, consider the function fLf T = 1

2

∑n
i=1

∑n
j=1 Wij (fi − fj )

2 (derivation on

next slide)
I Small if f corresponds to a good partitioning
I Given an indicator vector fC , the function fC Lf T

C measures the weight of the
inter-cluster edges!

I Since L is positive semi-definite we have fLf T ≥ 0
I Try to minimize fLf T
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Spectral Clustering

fLf T = fDf T − fWf T

=
∑

i

di f
2

i −
∑

ij

wij fi fj

=
1

2

∑
i

(
∑

j

wij )f 2
i − 2

∑
ij

wij fi fj +
∑

j

(
∑

i

wij )f 2
j


=

1

2

∑
ij

wij f
2

i − 2
∑

ij

wij fi fj +
∑

ij

wij f
2

j


=

1

2

∑
ij

wij (f 2
i − 2fi fj + f 2

j )

=
1

2

∑
ij

wij (fi − fj )
2
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Spectral Clustering: Example for Special Case

I Special case: The graph consists of k connected components (here: k = 3)

I The k components yield a ”perfect” clustering (no edges between clusters), i.e.
optimal clustering by indicator vectors fC1 = (1, 1, 1, 0, 0, 0, 0, 0, 0),
fC2 = (0, 0, 0, 1, 1, 1, 0, 0, 0) and fC1 = (0, 0, 0, 0, 0, 0, 1, 1, 1)

I Because of the block form of L, we get fC Lf T
C = 0 for each component C
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Connected Components and Eigenvectors

I General goal: find indicator vectors minimizing function fLf T besides the trivial
indicator vector fC = (1, . . . , 1)

I Problem: Finding solution is NP-hard (cf. graph cut problems)

I How can we relax the problem to find a (good) solution more efficiently?
I Observation: For the special case with k connected components, the k indicator

vectors fulfilling fC Lf T
C = 0 yield the perfect clustering

I The indicator vector for each component is an eigenvector of L with eigenvalue 0
I The k indicator vectors are orthogonal to each other (linearly independent)

Lemma

The number of linearly independent eigenvectors with eigenvalue 0 for L equals the
number of connected components in the graph.
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Spectral Clustering: General Case
I In general: L does not have zero-eigenvectors

I One large connected component, no perfect clustering
I Determine the (linear independent) eigenvectors with

the k smallest eigenvalues!

I Example: The 3 clusters are now connected by
additional edges

I Smallest eigenvalues of L: (0.23, 0.70, 3.43)

Eigenvectors of L
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Spectral Clustering: Data Transformation
I How to find the clusters based on the eigenvectors?

I Easy in special setting: 0-1 values; now: arbitrary real numbers
I Data transformation: Represent each vertex by a vector of its corresponding

components in the eigenvectors
I In the special case, the representations of vertices from the same connected

component are equal, e.g. v1, v2, v3 are transformed to (1, 0, 0)
I In general case only similar eigenvector representations

I Clustering (e.g. k-Means) on transformed data points yields final result
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Illustration: Embedding of Vertices to a Vector Space

Spectral layout of previous example
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Spectral Clustering: Discussion

Advantages

I No assumptions on the shape of the clusters
I Easy to implement

Disadvantages

I May be sensitive to construction of the similarity graph
I Runtime: k smallest eigenvectors can be computed in O(n3) (worst case)

I However: Much faster on sparse graphs, faster variants have been developed

I Several variations of spectral clustering exist, using different Laplacian matrices
which can be related to different graph cut problems 1

1
Von Luxburg, U.: A tutorial on spectral clustering, in Statistics and Computing, 2007
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From Partitioning to Hierarchical Clustering

Global parameters to separate all clusters with a partitioning clustering method may
not exist:

Need a hierarchical clustering algorithm in these situations
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Hierarchical Clustering: Basic Notions

I Hierarchical decomposition of the data set (with respect to a given similarity
measure) into a set of nested clusters

I Result represented by a so called dendrogram (greek δενδρo = tree)
I Nodes in the dendrogram represent possible clusters
I Dendrogram can be constructed bottom-up (agglomerative approach) or top down

(divisive approach)
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Hierarchical Clustering: Example

I Interpretation of the dendrogram
I The root represents the whole data set
I A leaf represents a single object in the data set
I An internal node represents the union of all objects in its sub-tree
I The height of an internal node represents the distance between its two child nodes
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Agglomerative Hierarchical Clustering

Generic Algorithm

1. Initially, each object forms its own cluster

2. Consider all pairwise distances between the initial
clusters (objects)

3. Merge the closest pair (A,B) in the set of the current
clusters into a new cluster C = A ∪ B

4. Remove A and B from the set of current clusters; insert
C into the set of current clusters

5. If the set of current clusters contains only C (i.e., if C
represents all objects from the database): STOP

6. Else: determine the distance between the new cluster C
and all other clusters in the set of current clusters and
go to step 3.
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Single-Link Method and Variants

I Agglomerative hierarchical clustering requires a distance function for clusters

I Given: a distance function dist(p, q) for database objects

I The following distance functions for clusters (i.e., sets of objects) X and Y are
commonly used for hierarchical clustering:

Single-Link: distsl (X ,Y ) = minx∈X ,y∈Y dist(x , y)
Complete-Link: distcl (X ,Y ) = maxx∈X ,y∈Y dist(x , y)
Average-Link: distal (X ,Y ) = 1

|X |·|Y |
∑

x∈X ,y∈Y dist(x , y)
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Divisive Hierarchical Clustering

General Approach: Top Down

I Initially, all objects form one cluster
I Repeat until all clusters are singletons

I Choose a cluster to split → how?
I Replace the chosen cluster with the sub-clusters and split into two → how to split?

Example solution: DIANA

I Select the cluster C with largest diameter for splitting
I Search the most disparate object o in C (highest average dissimilarity)

I Splinter group S = {o}
I Iteratively assign the o′ /∈ S with the highest D(o′) > 0 to the splinter group until

D(o′) ≤ 0 for all o′ /∈ S , where

D(o′) =
∑

oj∈C\S

d(o′, oj )

|C \ S |
−
∑
oi∈S

d(o′, oi )

|S |
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Discussion Agglomerative vs. Divisive HC

I Divisive and Agglomerative HC need n − 1 steps
I Agglomerative HC has to consider n(n−1)

2 =
(

n
2

)
combinations in the first step

I Divisive HC potentially has 2n−1 − 1 many possibilities to split the data in its first
step. Not every possibility has to be considered (DIANA)

I Divisive HC is conceptually more complex since it needs a second ”flat” clustering
algorithm (splitting procedure)

I Agglomerative HC decides based on local patterns

I Divisive HC uses complete information about the global data distribution  able
to provide better clusterings than Agglomerative HC?
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Density-Based Hierarchical Clustering

I Observation: Dense clusters are completely contained by less dense clusters

I Idea: Process objects in the ”right” order and keep track of point density in their
neighborhood
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Core Distance and Reachability Distance
Parameters: ”generating” distance ε, fixed value MinPts

core-distε,MinPts(o)

I ”smallest distance such that o is a core object”
I if core-dist > ε: undefined

reach-distε,MinPts(p, o)

I ”smallest dist. s.t. p is directly density-reachable from o”
I if reach-dist > ε: ∞

reach-dist(p, o) =


dist(p, o) , dist(p, o) ≥ core-dist(o)

core-dist(o) , dist(p, o) < core-dist(o)

∞ , dist(p, o) > ε
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The Algorithm OPTICS

OPTICS1: Main Idea

”Ordering Points To Identify the Clustering Structure”
I Maintain two data structures

I seedList: Stores all objects with shortest reachability
distance seen so far (”distance of a jump to that point”) in
ascending order; organized as a heap

I clusterOrder : Resulting cluster order is constructed
sequentially (order of objects + reachability-distances)

I Visit each point
I Always make a shortest jump

1
Ankerst M., Breunig M., Kriegel H.-P., Sander J. ”OPTICS: Ordering Points To Identify the Clustering Structure”. SIGMOD (1999)
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The Algorithm OPTICS

1: seedList = ∅
2: while there are unprocessed objects in DB do
3: if seedList = ∅ then
4: insert arbitrary unprocessed object into

clusterOrder with reach-dist =∞
5: else
6: remove first object from seedList and insert into

clusterOrder with its current reach-dist

7: // Let o be the last object inserted into clusterOrder
8: mark o as processed
9: for p ∈ range(o, ε) do

10: // Insert/update p in seedList
11: compute reach-dist(p, o)
12: seedList.update(p, reach-dist(p, o))

Unsupervised Methods Clustering February 6, 2019 274



OPTICS: Example
ε = 44,MinPts = 3
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OPTICS: The Reachability Plot
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OPTICS: The Reachability Plot

I Plot the points together with their reachability-distances. Use the order in which
they where returned by the algorithm
I Represents the density-based clustering structure
I Easy to analyze
I Independent of the dimensionality of the data
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OPTICS: Parameter Sensitivity

I Relatively insensitive to parameter settings

I Good result if parameters are just ”large enough”
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Hierarchical Clustering: Discussion

Advantages

I Does not require the number of clusters to be known in advance
I No (standard methods) or very robust parameters (OPTICS)
I Computes a complete hierarchy of clusters
I Good result visualizations integrated into the methods
I A ”flat” partition can be derived afterwards (e.g. via a cut through the

dendrogram or the reachability plot)

Disadvantages

I May not scale well
I Runtime for the standard methods: O(n2 log n2)
I Runtime for OPTICS: without index support O(n2)

I User has to choose the final clustering
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Evaluation of Clustering Results

Type Positive Negative

Expert’s
Opinion

may reveal new insight
into the data

very expensive, results
are not comparable

External
Measures

objective evaluation needs ”ground truth”

Internal
Measures

no additional informa-
tion needed

approaches optimizing
the evaluation criteria
will always be preferred

Expert’s Opinion

External Measure

Internal Measure
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External Measures

Notation

Given a data set D, a clustering C = {C1, . . . ,Ck} and ground truth G = {G1, . . . ,Gl}.

Problem

Since the cluster labels are ”artificial”, permuting them should not change the score.

Solution

Instead of comparing cluster and ground truth labels directly, consider all pairs of
objects. Check whether they have the same label in G and if they have the same in C.
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Formalisation as Retrieval Problem

C1 C2 C3
D

o

p

p′SC 3

∈ SC

With P = {(o, p) ∈ D × D | o 6= p} define:

I Same cluster label: SC = {(o, p) ∈ P | ∃Ci ∈ C : {o, p} ⊆ Ci}
I Different cluster label: SC = P \ SC

and analogously for G.
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Formalisation as Retrieval Problem

Define

I TP = |SC ∩ SG |
(same cluster in both, ”true positives”)

I FP = |SC ∩ SG |
(same cluster in C, different cluster in G, ”false
positives”)

I TN = |SC ∩ SG |
(different cluster in both, ”true negatives”)

I FN = |SC ∩ SG |
(different cluster in C, same cluster in G, ”false
negatives”)

SC SC

SG

SG

P

TP FN

FP TN
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External Measures

I Recall (0 ≤ rec ≤ 1, larger is better)

rec =
TP

TP + FN
=
|SC ∩ SG |
|SG |

I Precision (0 ≤ prec ≤ 1, larger is better)

prec =
TP

TP + FP
=
|SC ∩ SG |
|SC |

I F1-Measure (0 ≤ F1 ≤ 1, larger is better)

F1 =
2 · rec · prec

rec + prec
=

2|SC ∩ SG |
|SC |+ |SG |

SC SC

SG

SG

P

TP FN

FP TN
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External Measures

I Rand Index (0 ≤ RI ≤ 1, larger is better):

RI (C | G) =
TP + TN

TP + TN + FP + FN
=
|SC ∩ SG |+ |SC ∩ SG |

|P|

I Adjusted Rand Index (ARI): Compares RI (C,G) against
expected (R,G) of random cluster assignment R.

I Jaccard Coefficient (0 ≤ JC ≤ 1, larger is better):

JC =
TP

TP + FP + FN
=

|SC ∩ SG |
|P| − |SC ∩ SG |

SC SC

SG

SG

P

TP FN

FP TN
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External Measures

I Confusion Matrix / Contingency Table N ∈ Nk×l with Nij = |Ci ∩ Gj |
G1 . . . Gl

C1 |C1 ∩ G1| . . . |C1 ∩ Gl |
...

...
. . .

Ck |Ck ∩ G1| |Ck ∩ Gl |

I Define Ni =
l∑

j=1
Nij (i.e. Ni = |Ci |)

I Define N =
k∑

i=1
Ni (i.e. N = |D|)
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External Measures

I (Shannon) Entropy:

H(C) = −
∑
Ci∈C

p(Ci ) log p(Ci ) = −
∑
Ci∈C

|Ci |
|D|

log
|Ci |
|D|

= −
k∑

i=1

Ni

N
log

Ni

N

I Mutual Entropy:

H(C | G) = −
∑
Ci∈C

p(Ci )
∑
Gj∈G

p(Gj | Ci ) log p(Gj | Ci )

= −
∑
Ci∈C

|Ci |
|D|

∑
Gj∈G

|Ci ∩ Gj |
|Ci |

log
|Ci ∩ Gj |
|Ci |

= −
k∑

i=1

Ni

N

l∑
j=1

Nij

Ni
log

Nij

Ni
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External Measures

I Mutual Information:

I (C,G) = H(C)− H(C | G) = H(G)− H(G | C)

I Normalized Mutual Information (NMI) (0 ≤ NMI ≤ 1, larger is better):

NMI (C,G) =
I (C,G)√

H(C)H(G)

I Adjusted Mutual Information (AMI): Compares MI (C,G) against expected
MI (R,G) of random cluster assignment R.
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Internal Measures: Cohesion

Notation

Let D be a set of size n = |D|, and let C = {C1, . . . ,Ck} be a partitioning of D.

Cohesion

Average distance between objects of the same cluster.

coh(Ci ) =

(
|Ci |

2

)−1 ∑
o,p∈Ci ,o 6=p

d(o, p)

Cohesion of clustering is equal to weighted mean of the clusters’
cohesions.

coh(C) =
k∑

i=1

|Ci |
n

coh(Ci )
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Internal Measures: Separation

Separation

Separation between to clusters: Average distance between pairs

sep(Ci ,Cj ) =
1

|Ci ||Cj |
∑

o∈Ci ,p∈Cj

d(o, p)

Separation of one cluster: Minimum separation to another cluster:

sep(Ci ) = min
j 6=i

sep(Ci ,Cj )

Separation of clustering is equal to weighted mean of the clusters’
separations.

sep(C) =
k∑

i=1

|Ci |
n

sep(Ci )
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Evaluating the Distance Matrix

7.5 5.0 2.5 0.0 2.5 5.0

7.5
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dataset
(well separated)
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80

0.0
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7.5
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17.5

Distance matrix
(sorted by k-means cluster label)

after: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
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Evaluating the Distance Matrix

Distance matrices differ for different clustering approaches (here on random data)
k-means EM DBSCAN Complete Link
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after: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
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Cohesion and Separation

Problem

Suitable for convex cluster, but not for stretched clusters (cf. silhouette coefficient).
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Ambiguity of Clusterings

I Clustering according to: Color of shirt, direction of view, glasses, . . .
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Ambiguity of Clusterings

from: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
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Ambiguity of Clusterings

”Philosophical” Problem

“What is a correct clustering?”

I Most approaches find clusters in every dataset,
even in uniformly distributed objects

I Are there clusters?
I Apply clustering algorithm
I Check for reasonability of clusters

I Problem: No clusters found 6= no clusters
existing
I Maybe clusters exists only in certain models,

but can not be found by used clustering
approach
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Hopkins Statistics

Sample

dataset
(n objects)

Random selection
(m objects) m<<n

m uniformly
distributed objects

w3

w4

w5

w6

w1
w2

u1

u2

u3
u4

u5

u6

H =

m∑
i=1

ui

m∑
i=1

ui +
m∑

i=1
wi

I wi : distance of selected objects to the next neighbor in dataset

I ui : distances of uniformly distributed objects to next neighbor in dataset

I 0 ≤ H ≤ 1;
I H ≈ 0: very regular data (e.g. grid);
I H ≈ 0.5: uniformly distributed data;
I H ≈ 1: strongly clusteredc
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Ensemble Clustering

Problem

I Many differing clustering models

I Different parameter choices, usually highly influences the result

What is a ”good” clustering?

Idea

Find a consensus solution (also ensemble clustering) that consolidates multiple
clustering solutions.
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Ensemble Clustering: Benefits

I Knowledge Reuse: Possibility to integrate the knowledge of multiple known, good
clusterings

I Improved Quality: Often ensemble clustering leads to ”better” results than its
individual base solutions.

I Improved Robustness: Combining several clustering approaches with differing data
modeling assumptions leads to an increased robustness across a wide range of
datasets.

I Model Selection: Novel approach for determining the final number of clusters

I Distributed Clustering: if data is inherently distributed (either feature-wise or
object-wise) and each clusterer has only access to a subset of objects and/or
features, ensemble methods can be used to compute a unifying result
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Ensemble Clustering: Basic Notions

Given

A set of L clusterings C = C1, . . . , CL for dataset D = {x1, . . . , xn} ∈ Rd .

Goal

Find a consensus clustering C∗.

How to define a consensus clustering?

Two categories:

I Approaches based on pairwise similarity: Find a consensus clustering C∗ for which
the similarity function Φ(C, C∗) =

∑
C∈C

φ(C, C∗) (φ is basically an external measure)

I Probabilistic approaches: Assume that the L labels for the objects xi ∈ D follow a
certain distribution.
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Similarity-Based Approaches

Goal

Find a consensus clustering C∗ for which the similarity function
Φ(C, C∗) =

∑
C∈C

φ(C, C∗) is maximal.

Choices for φ

I Pair counting-based measures: Rand Index (RI), Adjusted RI, Probabilistic RI

I Information theoretic measures: Mutual Information (I), Normalized Mutual
Information (NMI), Variation of Information (VI)

Problem

Minimising the objective for the above mentioned choices of φ in intractable.
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Similarity-Based Approaches

Solutions

I Methods based on the co-association matrix (related to RI)
I Methods using cluster labels without co-association matrix (often related to NMI)

I Mostly graph partitioning
I Cumulative voting
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Ensemble Clustering: Co-Association Matrix

Co-Association Matrix

The co-association matrix SC ∈ Rn×n represents the label similarity of object pairs:

SC
ij =

∑
C∈C

I[xi ∈ C ∧ xj ∈ C]

where I is the indicator function with I[False] = 0, and I[True] = 1.

Example

D = {1, 2, 3, 4, 5} (i.e. n = 5),
C = {C1, C2},
C1 = {{1, 2, 3}, {4, 5}},
C2 = {{1, 2}, {3, 4, 5}}.

S =


2 2 1 0 0
2 2 1 0 0
1 1 2 1 1
0 0 1 2 2
0 0 1 2 2
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Ensemble Clustering: Co-Association Matrix

Usage of Co-Association Matrix

I Use SC as similarity matrix to apply traditional clustering approach.

I By interpreting SC as weighted adjacency matrix, graph partitioning methods can
be applied.

Co-Association Matrix and Rand Index

In 16 a connection of consensus clustering based on the co-association matrix and the
optimization of the pairwise similarity based on the Rand Index has been proven:

Cbest = argmax
C∗

∑
C∈C

RI (C, C∗)

16
B. Mirkin: Mathematical Classification and Clustering. Kluwer, 1996.
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Information-Theoretic Approaches

Setting

Find a consensus clustering C∗ for which the similarity function Φ(C, C∗) =
∑
C∈C

φ(C, C∗)

is maximal, with φ chosen as (Normalised) Mutual Information.

Problem

Usually a hard optimization problem!

Solution 1

Use meaningful optimization approaches (e.g. gradient descent) or heuristics to
approximate the best clustering solution (e.g. 17)

17
A. Strehl, J. Ghosh: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning

Research, 3, 2002, pp. 583-617.
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Information-Theoretic Approaches

Solution 2

I Use a similar but solvable objective, e.g. 18:

I Use as objective

Cbest = argmax
C∗

∑
C∈C

I s(C, C∗)

where I s is the mutual information based on the generalized entropy of degree s:

Hs(X ) = (21−s − 1)−1
∑
xi∈X

(ps
i − 1)

For s = 2, I s(C, C∗) is equal to the category utility function whose maximization is
proven to be equivalent to the minimization of the square-error clustering
criterion. =⇒ Apply a simple label transformation and use e.g. K-Means

18
A. Topchy, A.K. Jain, W. Punch. Combining multiple weak clusterings. In ICDM, pages 331-339, 2003
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Probabilistic Approach

Assumptions

I All clusterings C ∈ C are partitionings of the dataset D.

I There are K∗ consensus clusters.

I With C(x) denoting the cluster label assigned to x in clustering C, the following dataset
Y given by

Y = {yi ∈ NL
0 | xi ∈ D,∀1 ≤ j ≤ L : (yi )j = Ci (xi )}

(labels of base clusterings) follows a multivariate mixture distribution:

p(Y | Θ) =
n∏

i=1

K∗∑
k=1

αk pk (yi | θk )
cond.ind.

=
n∏

i=1

K∗∑
k=1

αk

L∏
j=1

pkl (yij | θkl )

with pkl (yij | θkl ) ∼ M(1, (pkl1, . . . , pkl|Cl |)), i.e. pkl (yij | θkl ) =
|Cl |∏

k′=1

p
I(ynl =k′)
klk′
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Probabilistic Approach

Goal

Find the parameters Θ = (α1, θ1, . . . , αK∗, θK∗) such that the likelihood p(Y | Θ) is
maximized.

Solution 19

Optimize the parameters via the EM approach

19
Topchy, Jain, Punch: A mixture model for clustering ensembles. In ICDM, pp. 379-390, 2004.
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Introduction

What is an outlier?

Hawkins (1980) ”An outlier is an observation which deviates so much from
the other observations as to arouse suspicions that it was generated by a
different mechanism.”

I Statistics-based intuition:
I Normal data objects follow a

“generating mechanism”, e.g. some
given statistical process

I Abnormal objects deviate from this
generating mechanism
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Introduction

Example: Hadlum vs. Hadlum (1949) [Barnett 1978]

I The birth of a child to Mrs. Hadlum
happened 349 days after Mr. Hadlum
left for military service.

I Average human gestation period is
280 days (40 weeks).

I Statistically, 349 days is an outlier.
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Introduction

Example: Hadlum vs. Hadlum (1949) [Barnett 1978]

I Blue: statistical basis (13634
observations of gestation periods)

I Green: assumed underlying Gaussian
process
I Very low probability for the birth of

Mrs. Hadlums child being
generated by this process

I Red: assumption of Mr. Hadlum
(another Gaussian process responsible
for the observed birth, where the
gestation period starts later)
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Introduction

Applications

I Fraud detection
I Purchasing behavior of a credit card owner usually changes when the card is stolen
I Abnormal buying patterns can characterize credit card abuse

I Medicine
I Whether a particular test result is abnormal may depend on other characteristics of

the patients (e.g. gender, age, . . . )
I Unusual symptoms or test results may indicate potential health problems of a patient

I Public health
I The occurrence of a particular disease, e.g. tetanus, scattered across various

hospitals of a city indicate problems with the corresponding vaccination program in
that city

I Whether an occurrence is abnormal depends on different aspects like frequency,
spatial correlation, etc.
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Introduction

Applications (cont’d)

I Sports statistics
I In many sports, various parameters are recorded for players in order to evaluate the

players’ performances
I Outstanding (in a positive as well as a negative sense) players may be identified as

having abnormal parameter values
I Sometimes, players show abnormal values only on a subset or a special combination

of the recorded parameters

I Detecting measurement errors
I Data derived from sensors (e.g. in a given scientific experiment) may contain

measurement errors
I Abnormal values could provide an indication of a measurement error
I Removing such errors can be important in other data mining and data analysis tasks
I ”One person’s noise could be another person’s signal.”
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Introduction

Important Properties of Outlier Models

I Global vs. local approach
I ”Outlierness” regarding whole dataset (global) or regarding a subset of data (local)?

I Labeling vs. Scoring
I Binary decision or outlier degree score?

I Assumptions about ”Outlierness”
I What are the characteristics of an outlier object?
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Clustering-based Outliers

An object is a cluster-based outlier if it does not strongly belong to any cluster.

Basic Idea

I Cluster the data into groups

I Choose points in small clusters as candidate
outliers.

I Compute the distance between candidate
points and non-candidate clusters.

I If candidate points are far from all other
non-candidate points and clusters, they are
outliers
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Clustering-based Outliers

More Systematic Approaches

I Find clusters and then assess the degree to
which a point belongs to any cluster
I E.g. for k-Means, use distance to the

centroid

I If eliminating a point results in substantial
improvement of the objective function, we
could classify it as an outlier
I Clustering creates a model of the data and

the outliers distort that model.
I Applicable to clustering algorithms optimizing

some objective function (e.g. k-means)
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Statistical Tests

General Idea

I Given a certain kind of statistical
distribution (e.g., Gaussian)

I Compute the parameters assuming all
data points have been generated by
such a statistical distribution (e.g.,
mean and standard deviation)

I Outliers are points that have a low
probability to be generated by the
overall distribution (e.g., deviate
more than 3 times the standard
deviation from the mean)
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Statistical Tests

Basic Assumption

I Normal data objects follow a (known)
distribution and occur in a high
probability region of this model

I Outliers deviate strongly from this
distribution
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Statistical Tests

A huge number of different tests are available differing in

I Type of data distribution (e.g. Gaussian)

I Number of variables, i.e., dimensions of the data objects (univariate/multivariate)

I Number of distributions (mixture models)

I Parametric versus non-parametric (e.g. histogram-based)

Example on the Following Slides

I Gaussian distribution

I Multivariate

I Single model

I Parametric
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Statistical Outliers: Gaussian Distribution

Probability Density Function of a Multivariate
Normal Distribution

N (x | µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x − µ)2

)

I µ is the mean value of all points (usually data
are normalized such that µ = 0)

I Σ is the covariance matrix from the mean
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Statistical Outliers: Mahalanobis Distance

Mahalanobis Distance

Mahalanobis distance of point x to µ :

MDist(x , µ) =
√

(x − µ)T Σ−1(x − µ)

I MDist follows a χ2-distribution with d degrees
of freedom (d = data dimensionality)

I Outliers: All points x , with
MDist(x , µ) > χ2(0.975) (≈ 3σ)
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Statistical Outliers: Problems

Problems

I Curse of dimensionality: The larger
the degree of freedom, the more
similar the MDist values for all points

I x-axis = observed MDist values

I y-axis = frequency of observation
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Statistical Outliers: Problems

Problems (cont’d)

I Robustness
I Mean and standard deviation are

very sensitive to outliers
I These values are computed for the

complete data set (including
potential outliers)

I The MDist is used to determine
outliers although the MDist values
are influenced by these outliers
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Statistical Outliers: Problems

Problems (cont’d)

I Data distribution is fixed

I Low flexibility (if no mixture models)

I Global method
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Distance-Based Approaches

General Idea

Judge a point based on the distance(s) to its neighbors (Several variants proposed)

Basic Assumption

I Normal data objects have a dense neighborhood

I Outliers are far apart from their neighbors, i.e., have a less dense neighborhood
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Distance-Based Approaches

D(ε, π) Outliers 20

I Given: radius ε, percentage π

I A point p is considered an outlier if at most π percent of all points (including p)
have a distance to p less than ε.

OutlierSet(ε, π) =

{
p ∈ D

∣∣∣ |{q ∈ D | dist(p, q) < ε}|
|D|

≤ π
}

20
E. Knorr, R. Ng. A Unified Notion of Outliers: Properties and Computation. KDD’97
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Distance-Based Approaches: D(ε, π) Example

Score (ε = 0.3)
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Distance-Based Approaches: kNN

Outlier scoring based on kNN distances

General models: Take the kNN distance of a point as its outlier score

Decision

k-distance above some threshold τ ⇐⇒ Outlier.
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Distance-Based Approaches: kNN Example

Score (k = 1)
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Distance-Based Approaches: kNN Example

Score (k = 5)
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kNN: Problems

Problems

I Highly sensitive towards k:
I Too small k : small number of close

neighbors can cause low outlier
scores.

I Too large: all objects in a cluster
with less than k objects might
become outliers.

I cannot handle datasets with regions of
widely different densities due to the
global threshold

Image Source: P. Tan, M. Steinbach, V. Kumar (2006). Classification:

basic concepts, decision trees, and model evaluation. Introduction to data

mining, 1, 145-205.
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Density-Based Approaches

General Idea

I Compare the density around a point with the density around its local neighbors.

I The relative density of a point compared to its neighbors is computed as an
outlier score.

I Approaches also differ in how to estimate density.

Basic Assumption

I The density around a normal data object is similar to the density around its
neighbors.

I The density around an outlier is considerably different to the density around its
neighbors.
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Density-Based Approaches

Problems

I Different definitions of density: e.g.,
#points within a specified distance ε
from the given object

I The choice of ε is critical (too small
=⇒ normal points considered as
outliers; too big =⇒ outliers
considered normal)

I A global notion of density is
problematic (as it is in clustering);
fails when data contain regions of
different densities

D has a higher absolute density than A but
compared to its neighborhood, Ds density is

lower.
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Density-Based Approaches

Failure Case of Distance-Based

I D(ε, π): parameters ε, π cannot be
chosen s.t. o2 is outlier, but none of
the points in C1 (e.g. q)

I kNN-distance: kNN-distance of
objects in C1 (e.g. q) larger than the
kNN-distance of o2.
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Density-Based Approaches

Solution

Consider the relative density w.r.t. to the neighbourhood.

Model

I Local Density (ld) of point p (inverse of avg. distance of kNNs of p)

ldk (p) =

1

k

∑
o∈kNN(p)

dist(p, o)

−1

I Local Outlier Factor (LOF) of p (avg. ratio of lds of kNNs of p and ld of p)

LOFk (p) =
1

k

∑
o∈kNN(p)

ldk (o)

ldk (p)
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Density-Based Approaches

Score (k = 7)
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Density-Based Approaches

Extension (Smoothing factor)

I Reachability ”distance”

rdk (p, o) = max{kdist(o), dist(p, o)}

I Local reachability distance lrdk

lrdk (p) =

 1

k

∑
o∈kNN(p)

rd(p, o)

−1

I Replace ld by lrd

LOFk (p) =
1

k

∑
o∈kNN(p)

lrdk (o)

lrdk (p)
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Density-Based Approaches

Discussion

I LOF ≈ 1 =⇒ point in cluster

I LOF � 1 =⇒ outlier.

I Choice of k defines the reference set
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Angle-Based Approach

General Idea

I Angles are more stable than distances
in high dimensional spaces

I o outlier if most other objects are
located in similar directions

I o no outlier if many other objects are
located in varying directions • inlier

• outlier

Basic Assumption

I Outliers are at the border of the data distribution

I Normal points are in the center of the data distribution
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Angle-Based Approach

Model

I Consider for a given point p the angle between −→px and −→py for any two x , y from
the database

I Measure the variance of the angle spectrum
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Angle-Based Approach

Model (cont’d)

I Weighted by the corresponding distances (for lower dimensional data sets where
angles are less reliable)

ABOD(p) = VARx ,y∈D

(
1

‖−→xp‖2‖−→yp‖2
cos
(−→xp,−→yp

))
= VARx ,y∈D

( 〈−→xp,−→yp
〉

‖−→xp‖2
2‖
−→yp‖2

2

)
I Small ABOD ⇐⇒ outlier
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Angle-Based Approaches

Score (all pairs)
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Summary

I Properties: global vs. local, labeling vs. scoring

I Clustering-Based Outliers: Identification as non-(cluster-members)

I Statistical Outliers: Assume probability distribution; outliers = unlikely to be
generated by distribution

I Distance-Based Outliers: Distance to neighbors as outlier metric

I Density-Based Outliers: Relative density around the point as outlier metric

I Angle-Based Outliers: Angles between outliers and random point pairs vary only
slightly
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Additional Literature for this Chapter

Christopher M. Bishop: Pattern Recognition and Machine Learning. Springer, Berlin 2006.
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Introduction: Example

I Training data

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low

I Simple classifier

if age > 50 then risk = low
if age ≤ 50 and car type = truck then risk = low
if age ≤ 50 and car type 6= truck then risk = high
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Classification: Training Phase (Model Construction)
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Classification: Prediction Phase (Application)

Supervised Methods Classification February 6, 2019 347



Classification

The systematic assignment of new observations to known categories ac-
cording to criteria learned from a training set.

Formal Setup

I A classifier K for a model M(θ) is a function KM(θ) : D → Y , where
I D: data space

I Often d-dim. space with attributes a1, . . . , ad (not necessarily a vector space)
I Some other space, e.g. metric space

I Y = {y1, . . . , yk}: set of k distinct class labels
I O ⊆ D: set of training objects o with known class labels y ∈ Y

I Classification: Application of classifier K on objects from D \ O

I Model M(θ) is the ”type” of the classifier, and θ are the model parameters

I Supervised learning: find/learn optimal parameters θ for M(θ) given O
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Supervised vs. Unsupervised Learning

Unsupervised Learning (clustering)

I The class labels of training data are unknown
I Given a set of measurements, observations, etc. with the aim of establishing the

existence of classes or clusters in the data
I Classes (=clusters) are to be determined

Supervised Learning (classification)

I Supervision: The training data (observations, measurements, etc.) are
accompanied by labels indicating the class of the observations
I Classes are known in advance (a priori)

I New data is classified based on information extracted from the training set
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Numerical Prediction

I Related problem to classification: numerical prediction
I Determine the numerical value of an object
I Method: e.g., regression analysis
I Example: Prediction of flight delays

I Numerical prediction is different from classification
I Classification refers to predict categorical class label
I Numerical prediction models continuous-valued functions

I Numerical prediction is similar to classification
I First, construct a model
I Second, use model to predict unknown value
I Major method for numerical prediction is regression:

I Linear and multiple regression
I Non-linear regression
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Goals for this Section

1. Introduction of different classification models

2. Learning techniques for these models

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low
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Quality Measures for Classifiers

I Classification accuracy or classification error (complementary)
I Compactness of the model

I Decision tree size, number of decision rules, . . .

I Interpretability of the model
I Insights and understanding of the data provided by the model

I Efficiency
I Time to generate the model (training time)
I Time to apply the model (prediction time)

I Scalability for large databases
I Efficiency in disk-resident databases

I Robustness
I Robust against noise or missing values
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Evaluation of Classifiers: Notions

I Using training data to build a classifier and to estimate the model’s accuracy may
result in misleading and overoptimistic estimates
I  Overspecialization of the learning model to the training data

I Train-and-Test: Decomposition of labeled data set O into two partitions
I Training data is used to train the classifier

I Construction of the model by using information about the class labels

I Test data is used to evaluate the classifier
I Temporarily hide class labels, predict them anew and compare with original class labels

I Train-and-Test is not applicable if the set of objects for which the class label is
known is very small
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Evaluation of Classifiers: Cross Validation

m-fold Cross Validation

I Decompose data set evenly into m subsets of (nearly) equal size

I Iteratively use (m − 1) partitions for training data and the remaining single
partition as test data

I Combine the m classification accuracy values to an overall classification accuracy

Leave-one-out: Special case of cross validation (m = n)

I For each of the objects o in the data set O:
I Use set O \ {o} as training set
I Use the singleton set {o} as test set
I Compute classification accuracy by dividing the number of correct predictions

through the database size |O|
I Particularly well applicable to nearest-neighbor classifiers
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Quality Measures: Accuracy and Error

I Let K be a classifier

I Let C (o) denote the correct class label of an object o
I Measure the quality of K :

I Predict the class label for each object o from a data set T ⊆ O
I Determine the fraction of correctly predicted class labels

Classification Accuracy of K

GT (K ) =
|{o ∈ T | K (o) = C (o)}|

|T |

Classification Error of K

FT (K ) =
|{o ∈ T | K (o) 6= C (o)}|

|T |
= 1− GT (K )
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Quality Measures: Accuracy and Error

I Let K be a classifier

I Let TR ⊆ O be the training set: Used to build the classifier

I Let TE ⊆ O be the test set: Used to test the classifier

Resubstitution Error of K

FTR(K ) =
|{o ∈ TR | K (o) 6= C (o)}|

|TR|

(True) Classification Error of K

FTE (K ) =
|{o ∈ TE | K (o) 6= C (o)}|

|TE |
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Quality Measures: Confusion Matrix

I Results on the test set: Confusion matrix
classified as . . .

class 1 class 2 class 3 class 4 class 5

co
rr

ec
t

la
b

el

class 1 35 1 1 1 4
class 2 0 31 1 1 5
class 3 3 1 50 1 2
class 4 1 0 1 10 2
class 5 3 1 9 16 13

(correctly classified in green)

I Based on the confusion matrix, we can compute several accuracy measures,
including:
I Classification Accuracy/Error
I Precision and Recall
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Quality Measures: Precision and Recall

Recall

Fraction of test objects of class i , which have been identified
correctly.

RecallTE (K , i) =
|{o ∈ Ci | K (o) = C (o)}|

|Ci |

Precision

Fraction of test objects assigned to class i , which have been
identified correctly.

PrecisionTE (K , i) =
|{o ∈ Ci | Ki (o) = C (o)}|

|Ki |

1 2 3 4

assigned class K(o)

1

2

3

4

co
rr

ec
t

cl
a

ss
C

(o
)

Ci

Ki

Ci = {o ∈ TE | C (o) = i}
Ki = {o ∈ TE | K (o) = i}
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Overfitting

Characterization of Overfitting

The classifier adapts too closely to the training dataset and may therefore fail to
accurately predict class labels for test objects unseen during training.

Example: Decision Tree
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Overfitting

Overfitting

I Occurs when the classifier is too optimized to the (noisy) training data
I As a result, the classifier yields worse results on the test data set
I Potential reasons:

I Bad quality of training data (noise, missing values, wrong values)
I Different statistical characteristics of training data and test data

Overfitting Avoidance

I Removal of noisy/erroneous/contradicting training data
I Choice of an appropriate size of the training set

I Not too small, not too large

I Choice of appropriate sample
I Sample should describe all aspects of the domain and not only parts of it
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Underfitting

Underfitting

I Occurs when the classifiers model is too simple, e.g. trying to
separate classes linearly that can only be separated by a
quadratic surface

I Happens seldomly

 Trade-off: Usually one has to find a good balance between over- and underfitting.
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Bayes Classification

I Probability based classification
I Based on likelihood of observed data, estimate explicit probabilities for classes
I Classify objects depending on costs for possible decisions and the probabilities for the

classes

I Incremental
I Likelihood functions built up from classified data
I Each training example can incrementally increase/decrease the probability that a

hypothesis (class) is correct
I Prior knowledge can be combined with observed data.

I Good classification results in many applications
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Bayes’ Theorem

Probability Theory

I Conditional probability: P(A | B) = P(A∧B)
P(B) (”prob. of A given B”)

I Product Rule: P(A ∧ B) = P(A | B) · P(B)

Bayes’ Theorem

I P(A ∧ B) = P(A | B) · P(B)

I P(B ∧ A) = P(B | A) · P(A)

I Since P(A ∧ B) = P(B ∧ A), P(A | B) · P(B) = P(B | A) · P(A), and thus

P(A | B) =
P(B | A) · P(A)

P(B)
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Bayes Classifier

I Bayes’ rule: P(cj | x) =
P(x |cj )·P(cj )

p(x) for object x and class cj ∈ C.

I We are interested in maximizing this, i.e.

argmax
cj∈C

(P(cj | x)) = argmax
cj∈C

(
P(x | cj ) · P(cj )

p(x)

)
(∗)
= argmax

cj∈C
(P(x | cj ) · P(cj ))

where (∗) assumes the value of p(x) is constant and hence does not change the
result.

I Final decision rule:

K (x) = cmax = argmax
cj∈C

(P(x | cj ) · P(cj ))

I But how to obtain P(cj ) and P(x | cj ).
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Bayes Classifier: Density Estimation

A-Priori Class Probabilities

Estimate the a-priori probabilities P(cj ) of classes cj ∈ C by using the observed relative
frequency of the individual class labels cj in the training set, i.e.,

P(cj ) =
Ncj

N

Conditional Probabilities

I Non-parametric methods: Kernel methods Parzen’s window, Gaussian kernels, etc.
I Parametric methods, e.g.

I Single Gaussian distribution: Computed by maximum likelihood estimators (MLE)
I Mixture models: e.g. Gaussian Mixture Model computed by EM algorithm
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Bayes Classifier: Density Estimation

Problem

Curse of dimensionality often lead to problems in high dimensional data  Density
functions become too uninformative

Solution

I Dimensionality reduction

I Usage of statistical independence of single attributes (extreme case: näive Bayes)
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Näive Bayes Classifier

Assumptions

I Objects are given as d-dimensional vectors, x = (x1, . . . , xd )

I For any given class cj the attribute values xi are conditionally independent, i.e.

P(x1, . . . , xd | cj ) =
d∏

i=1

P(xi | cj ) = P(x1 | cj ) · . . . · P(xd | cj )

Decision Rule

Knäive(x) = argmax
cj∈C

(
P(cj ) ·

d∏
i=1

P(xi | cj )

)
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Näive Bayes Classifier

Categorical Attribute xi

P(xi | cj ) can be estimated as the relative frequency of samples having value vi as the
ith attribute in class cj in the training set.

Continuous Attribute xi

P(xi | cj ) can, for example, be estimated through a Gaussian distribution determined
by µij , σij .

 Computationally easy in both cases.
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Näive Bayes Classifier: Example

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low

Model Setup

I Age ∼ N(µ, σ2) (normal distribution)

I car type ∼ relative frequencies

I max speed ∼ N(µ, σ2) (normal distribution)
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Näive Bayes Classifier: Example (cont’d)

Query

q = (age = 60; car type = family ; max speed = 190)

Example

We have:

I P(high) = 3
5

I µage,high = 83
3
, σ2

age,high = 1112
3

=⇒ P (age = 60 | high) ≈ 0.00506

I P(car type = family | high) = 1
3

I µmax speed,high = 222, σ2
max speed,high = 2664 =⇒ P (max speed = 190 | high) ≈ 0.00638

and hence

P(high)P(q | high) = P(high)P(age = 60 | high)P(car type = family | high)P(max speed = 190 | high)

≈ 6.45166 · 10−6

Analogously, we obtain P(low)P(q | low) = 15.72290 · 10−6 =⇒ Knäive(q) = low .
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Bayesian Classifier

I Assuming dimensions of x = (x1, . . . , xd ) are not independent

I Assume multivariate normal distribution (i.e. Gaussian)

P(x | Cj ) =
1√

(2π)d det(Σj )
exp

(
−1

2
(x − µj )Σ−1

j (x − µj )
T

)
with

I µj : mean vector of class Cj

I Σj is the d × d covariance matrix

I det(Σj ) is the determinant of Σj , and Σ−1
j its

inverse

Supervised Methods Classification February 6, 2019 371



Example: Interpretation of Raster Images

I Scenario: Automated interpretation of raster images
I Take an image from a certain region (in d different frequency bands, e.g., infrared,

etc.)
I Represent each pixel by d values: (x1, . . . , xd )

I Basic assumption: different surface properties of the earth (”landuse”) follow a
characteristic reflection and emission pattern
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Example: Interpretation of Raster Images

Application of the Bayes classifier:

I Estimation of the P(x | c) without
assumption of conditional
independence

I Assumption of d-dimensional normal
(= Gaussian) distributions for the
value vectors of a class

Probability of class membership

Water

Farmland

Town
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Example: Interpretation of Raster Images

Method

Estimate the following measures from training data

I µj : d-dimensional mean vector of all feature vectors of class Cj

I Σj : d × d covariance matrix of class Cj

Problems

I if likelihood of respective class is very low

I if several classes share the same likelihood

 Mitigate e.g. by applying some minimum likelihood threshold; do not classify
regions below.

Supervised Methods Classification February 6, 2019 374



Bayesian Classifiers: Discussion

Pro

I High classification accuracy for many applications if density function defined
properly

I Incremental computation: many models can be adopted to new training objects
by updating densities
I For Gaussian: store count, sum, squared sum to derive mean, variance
I For histogram: store count to derive relative frequencies

I Incorporation of expert knowledge about the application in the prior P(Ci )

Contra

I Limited applicability: often, required conditional probabilities are not available

I Lack of efficient computation: in case of a high number of attributes (particularly
for Bayesian belief networks)
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The Independence Hypothesis

The Independence Hypothesis . . .

I . . . makes efficient computation possible

I . . . yields optimal classifiers when satisfied

I . . . but is seldom satisfied in practice, as attributes (variables) are often correlated.

Attempts to overcome this limitation

I Bayesian networks, that combine Bayesian reasoning with causal relationships
between attributes

I Decision trees, that reason on one attribute at the time, considering most
important attributes first
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Linear Discriminant Function Classifier

Idea

Separate points of two classes by a hyperplane

I I.e., classification model is a hyperplane

I Points of one class in one half space, points of second
class in the other half space

Questions

I How to formalize the classifier?

I How to find optimal parameters of the model?

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low
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Basic Notions

Recall some general algebraic notions for a vector space V :
I 〈x , y〉denotes an inner product of two vectors x , y ∈ V

I E.g., the scalar product 〈x , y〉 = xT y =
∑d

i=1 xi yi

I H(w ,w0) denotes a hyperplane with normal vector w and constant term w0:

x ∈ H ⇔ 〈x ,w〉+ w0 = 0

I The normal vector w may be normalized to w ′:

w ′ =
1√
〈w ,w〉

w =⇒ 〈w ′,w ′〉 = 1

I Distance of a point x to the hyperplane H(w ′,w0):

dist(x ,H(w ′,w0)) = |〈w ′, x〉+ w0|

Supervised Methods Classification February 6, 2019 378



Formalization

I Consider a two-class example (generalizations later on):
I D: d-dimensional vector space with attributes a1, . . . , ad

I Y = {−1, 1} set of 2 distinct class labels yj

I O ⊆ D: Set of objects o = (o1, . . . , od ) with known class labels y ∈ Y and
cardinality |O| = N

I A hyperplane H(w ,w0) with normal vector w and constant term w0

x ∈ H ⇔ w T x + w0 = 0

Classification Rule

KH(w ,w0)(x) = sign(w T x + w0)
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Optimal Parameter Estimation

How to estimate optimal parameters w ,w0?

1. Define an objective/loss function L(·) that assigns a value (e.g. the error on the
training set) to each parameter-configuration

2. Optimal parameters minimize/maximize the objective function

How does an objective function look like?

I Different choices possible

I Most intuitive: Each misclassified object contributes a constant (loss) value
 0-1 loss
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Optimal Parameter Estimation

0-1 Loss Objective for Linear Classifier

I L(w ,w0) =
∑N

i=1 I (yi 6= KH(w ,w0)(xi ))

I minw ,w0 L(w ,w0)

where I (condition) = 1 if condition holds, 0 otherwise

I Minimize the overall number of training errors, but . . .
I NP-hard to optimize in general (non-smooth, non-convex)
I Small changes of w ,w0 can lead to large changes of the loss
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Loss Functions

Alternative Convex Loss Functions

Sum-of-squares loss (w T xi + w0 − yi )
2

Hinge loss max
{

0, (1− yi (w T xi + w0)
}

(SVM)
Exponential loss exp(−yi (w T xi + w0)) (AdaBoost)
Cross-entropy error −yi log g(xi ) + (1− yi ) log(1− g(xi )) (Logistic Regression)

where g(xi ) = 1
1+exp(−(w T xi +w0))

... and many more

I Optimizing different loss function leads to
several classification algorithms

I Next, we derive the optimal parameters for the
sum-of-squares loss
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Optimal Parameters for SSE loss

Objective Function

SSE (w ,w0) =
1

2

N∑
i=1

(w T xi + w0 − yi )
2

I Minimize the error function for getting optimal parameters
I Use standard optimization technique:

1. Calculate first derivative
2. Set derivative to zero and compute the global minimum (SSE is a convex function)
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Optimal Parameters for SSE Loss

I Transform the problem for simpler computations:
I w T x + w0 =

∑d
i=1 wi xi + w0 =

∑d
i=0 wi xi with x0 = 1

I For w let w̃ = (w0, . . . ,wd )T

I Combine the values to matrices

X̃ =

1 x1,1 . . . x1,d
...

...
. . .

...
1 xN,1 . . . xN,d

 , Y =

y1
...

yN


I Then the sum-of-squares error is equal to

SSE (w̃) =
1

2
(X̃ w̃ − Y )T (X̃ w̃ − Y )

Supervised Methods Classification February 6, 2019 384



Optimal Parameters for SSE Loss

I Take the derivative:
∂

∂w̃
SSW (w̃) = X̃ T (X̃ w̃ − Y )

I Solve ∂
∂w̃ SSE (w̃) = 0:

X̃ T (X̃ w̃ − Y ) = 0

⇔ X̃ T X̃ w̃ = X̃ T Y

⇔ w̃ = (X̃ T X̃ )−1X̃ T︸ ︷︷ ︸
Left-inverse of X̃

(”Moore-Penrose Inverse”)

Y
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Optimal Parameters for SSE Loss

I Set ŵ = (X̃ T X̃ )−1X̃ T Y

I Classify new point x with x0 = 1 using

Classification Rule

KH(ŵ)(x) = sign(ŵx)
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Example SSE
I Data (consider only age and max. speed):

X̃ =


1 23 180
1 17 240
1 43 246
1 68 183
1 32 110

 , Y =


1
1
1
−1
−1


age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low

I Encode classes as {high = 1, low = –1}

(X̃ T X̃ )−1X̃ T =

 0.7491 −0.0836 −0.8603 −0.4736 1.6684
−0.0087 −0.0114 0.0049 0.0194 −0.0043
−0.0012 0.0036 0.0046 −0.0002 −0.0068


=⇒ ŵ = (X̃ T X̃ )−1X̃ T Y =

 w0

wage

wmaxspeed

 =

−1.3896
−0.0302
0.0141
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Example SSE

I Model parameters:

ŵ = (X̃ T X̃ )−1X̃ T Y =

 w0

wage

wmaxspeed

 =

−1.3896
−0.0302
0.0141


=⇒ KH(ŵ)(x) = sign

((
−0.0302
0.0141

)T

x − 1.3896

)
I Query: q = (age = 60; max speed = 190)

sign(ŵ T q̃) = sign(−0.5323) = −1

=⇒ class = low
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Extension to Multiple Classes
Assume we have more than two (k > 2) classes. What to do?
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Extension to Multiple Classes

Idea of Multiclass Linear Classifier

I Take k linear functions of the form Hwj ,wj,0(x) = w T
j x + wj ,0

I Decide for class yj :
yj = argmax

j=1,...,k
Hwj ,wj,0(x)

I Advantage: No ambiguous regions except for points on decision hyperplanes

I The optimal parameter estimation is also extendable to k classes y1, . . . , yk
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Discussion (SSE)

Advantages

I Simple approach
I Closed form solution for parameters
I Easily extendable to non-linear spaces (later on)

Disadvantages

I Sensitive to outliers  not a stable classifier
I How to define and efficiently determine the maximum stable hyperplane?

I Only good results for linearly separable data
I Expensive computation of selected hyperplanes

 Approach to solve problems: Support Vector Machines (SVMs) [Vapnik 1979, 1995]
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Maximum Margin Hyperplane

Question

How to define the notion of the ”best”
hyperplane differently?

Criteria

I Stability at insertion

I Distance to the objects of both classes

?

?
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Support Vector Machines: Principle

Basic Idea

Linear separation with the Maximum
Margin Hyperplane (MMH):

I Distance to points from any of the
two sets is maximal, i.e., at least ξ

I Minimal probability that the
separating hyperplane has to be
moved due to an insertion
 Best generalization behavior; MMH
is “maximally stable”

MMH

margin
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Support Vector Machines: Principle

Support Vectors

MMH only depends on points pi whose
distance to the hyperplane is exactly ξ.
These pi are called support vectors (SV). SV
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Formalisation

I Let xi ∈ Rd denote the data points, and yi = +1, if first class, else yi = −1.

I A hyperplane in Hesse normal form is represented by a normal vector w ∈ Rd of
unit length (i.e., ‖w‖2 = 1), and a (signed) distance from the origin b ∈ R.

I In the following slides, we will define the requirements which the MMH shall fulfil.
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Requirements of the MMH

The parameters (w, b) of the MMH shall fulfil the following two requirements:

No Error

The classification is accurate for all points, i.e.

yi · (〈w, xi〉+ b) > 0 ⇐⇒

{
yi = −1 〈w, xi〉+ b < 0

yi = +1 〈w, xi〉+ b > 0

Requirement: Maximal Margin

Let ξ = min
xi∈TR

|〈w, xi〉+ b| denote the minimum distance of any training object xi to

the hyperplane H(w, b). The margin ξ should be as large as possible.
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Computation of the MMH

I Task: Maximise ξ subject to yi · (〈w, xi〉+ b) > ξ for all i ∈ {1, . . . , n}.
I Scaling the constraints by ξ−1 yields yi · (

〈
ξ−1w, xi

〉
+ ξ−1b) > 1 for all

i ∈ {1, . . . , n}.
I Define w′ = ξ−1w, and b′ = ξ−1b.

I Maximizing ξ corresponds to minimizing 〈w′,w′〉 = 〈w,w〉
ξ2 .

Primary Optimization Problem

min ‖w′‖2
2

s.t. yi · (
〈
w′, xi

〉
+ b′) > 1 i ∈ {1, . . . , n}
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Computation of the MMH

Primary Optimization Problem

min ‖w′‖2
2

s.t. yi · (
〈
w′, xi

〉
+ b′) > 1 i ∈ {1, . . . , n}

I Convex optimization problem: Quadratic programming problem with linear
constraints
=⇒ Solution can be obtained by Lagrangian Theory.

Supervised Methods Classification February 6, 2019 398



Soft Margin Optimization

I Problem of MMH optimization: How to treat non-(linearly separable) data?

I Two typical problems:

data points not linearly separable
complete separation not optimal

(overfitting)

I Trade-off between training error and size of margin
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Soft Margin Optimization

I Additionally regard the number of
training errors when optimizing:
I ξi is the distance from xi to the

margin (often called slack variable):
I ξi = 0 =⇒ xi on correct side
I ξi > 0 =⇒ xi on wrong side

I Introduce parameter C to weight the
misclassification against the size of the
margin.

ξi1

ξi2
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Soft Margin Optimization

Primary Optimization Problem With Soft Margin

min
1

2
‖w′‖2

2 + C
n∑

i=1

ξi

s.t. yi · (
〈
w′, xi

〉
+ b′) > 1− ξi i ∈ {1, . . . , n}

ξi ≥ 0 i ∈ {1, . . . , n}

Supervised Methods Classification February 6, 2019 401



Soft Margin Optimization

Wolfe-Dual with Lagrange Multipliers

max
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαj yi yj 〈xi, xj〉

s.t.
n∑

i=1

αi yi = 0

0 ≤ αi ≤ C i ∈ {1, . . . , n}

I αi = 0: xi is not a support vector

I αi = C : xi is support vector with ξi > 0

I 0 < αi < C : xi is support vector with ξi = 0

Supervised Methods Classification February 6, 2019 402



Soft Margin SVM

Decision Rule

H(x) = sign

∑
xi∈SV

αi yi 〈xi, x〉+ b


where SV denotes the set of support vectors.
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SVM: Discussion

Pro

I generate classifiers with a high classification accuracy

I relatively weak tendency to overfitting (generalization theory)

I efficient classification of new objects due to often small number of support vectors

I compact models

Contra

I training times may be long (appropriate feature space may be very
high-dimensional)

I expensive implementation
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Non-Linearly Separable Data Sets

Problem

For real data sets, a linear separation with a high
classification accuracy often is not possible.

Idea

Transform the data non-linearly into a new space,
and try to separate the data in the new space
linearly (extension of the hypotheses space)

Example for quadratically
separable data set

1 0 1
x1

0.0

0.5

1.0

1.5

2.0

x
2

1 0 1
x1

0.0

0.5

1.0

1.5

2.0

x
2
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Extension of the Hypotheses Space

Principle

input space
φ→ extented feature space

 Try to linearly separate in the extended feature space.

Example

φ(x , y) =
(
1, x , y , x2, xy , y 2

)
Here: A hyperplane in the extended feature space is a polynomial of degree 2 in the
input space
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Extension of the Hypotheses Space: Example (1)

Input Space (2 attributes):
x = (x1, x2)

x2 = x2
1 + 0.5

1 0 1
x1

0.0

0.5

1.0

1.5

2.0

x
2

Extended Space (6 attributes):
φ(x) =

(
1, x , y , x2, xy , y 2

)
x2 = (x2

1 ) + 0.5

0 1

x21

0.0

0.5

1.0

1.5

2.0

x
2
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Extension of the Hypotheses Space: Example (2)

Input Space (2 attributes):
x = (x1, x2)

x2
1 + x2

2 = 0.25

1 0 1
x1

1.0

0.5

0.0

0.5

1.0

x
2

Extended Space (3 attributes):
φ(x) =

(
x2

1 , x
2
2 , x1x2

)
(x2

2 ) = −(x2
1 ) + 0.25

0.0 0.5 1.0

x21

0.00

0.25

0.50

0.75

1.00

x
2 2
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Extension of Linear Discriminant Function Classifier

I Linear classifier can be easily extended to non-linear spaces

I Recap: linear classifier KH(w ,w0)(x) = sign(w T x + w0)
I Extend to non-linear case:

I Transform all data points x to new feature space φ(x)
I Data Matrix X becomes a matrix Φ
I The optimal hyperplane vector becomes . . .

w̃opt,φ = (ΦT Φ)−1ΦT Y

I . . . and that’s all!

I New classification rule: KH(wφ,w0,φ)(x) = sign(w T
φ φ(x) + w0,φ)

I SVM can be extended in a similar way
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Non-linear Classification: Discussion

Pro

I By explicit feature transformation a much richer hypotheses space

I Simple extension of existing techniques

I Efficient evaluation, if transformed feature space not too high-dimensional

Contra

I Explicit mapping to other feature spaces can become problematic

I Meaningful transformation is usually not known a-priori

I Complex data distributions may require very high-dimensional features spaces  
High memory consumption, High computational costs
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Implicit Mappings: Kernel Methods

Explicit Mapping

Explicit mapping of the data into the new feature space:

I After transformation, any vector-based distance is applied

I Resulting feature space may be very high dimensional  Potential problems:
Inefficient calculation, storage overhead

Often, we do not need the transformed data points themselves, but just the distances
between them!
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Implicit Mappings: Kernel Methods

”Kernel Trick”

Just implicitly map the data to a feature space: Determine a function Kφ, which
computes the distance in the kernel space without explicitly computing φ(·)

Kφ(x , y) = 〈φ(x), φ(y)〉

Original Domain

x

y φ

Novel Space

φ(x)

φ(y)
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Kernel: Example

I Assume the original domain is X = R2

I We transform a point x = (x1, x2) to φ(x) =
(
x2

1 , x
2
2 , x1x2

)
, i.e. the novel feature

space is H = R3, and κ : X → H.

Input Space (2 attributes):
x = (x1, x2)

x2
1 + x2

2 = 0.25

1 0 1
x1

1.0

0.5

0.0

0.5

1.0

x
2

Extended Space (3 attributes):
φ(x) =

(
x2

1 , x
2
2 , x1x2

)
(x2

2 ) = −(x2
1 ) + 0.25

0.0 0.5 1.0

x21

0.00

0.25

0.50

0.75

1.00

x
2 2
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Kernel: Example

I Original point x = (x1, x2); transformed point φ(x) =
(
x2

1 , x
2
2 ,
√

2 · x1x2

)
I We want to calculate the dot product in the novel feature space H:

〈φ(x), φ(y)〉 =
〈(

x2
1 , x

2
2 ,
√

2 · x1x2

)
,
(

y 2
1 , y

2
2 ,
√

2 · y1y2

)〉
= x2

1 y 2
1 + x2

2 y 2
2 + 2x1x2y1y2

= (x1y1 + x2y2)2

= 〈x , y〉2

I We do not have to explicitly map the points to the feature space H!

I Simply calculate squared dot product in the original domain X !

I κ : X × X → R, (x , y) 7→ 〈x , y〉2 is called a (valid) kernel
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Why is the dot product useful?

I Kernels correspond to dot products in some feature space
I With the dot product we are able to compute:

I The norm/length of a vector ‖x‖ =
√
〈x , x〉

I The distance between two vectors:

‖x − y‖2 = 〈x − y , x − y〉 = 〈x , x〉+ 〈y , y〉 − 2 〈x , y〉

I The angle between two vectors:

∠(x , y) = arccos
〈x , y〉
‖x‖ · ‖y‖
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Formal Definitions

Definition: Kernel Function

A kernel function κ : X × X → R is a symmetric function, i.e., κ(x , y) = κ(y , x),
mapping pairs of objects x , y ∈ X to real numbers.

Definition: Mercer Kernel

For all finite {x1, . . . , xn} = X ⊆ X , let κ(X ) := (κ(xi , xj ))i ,j ∈ Rn×n. A kernel
function κ is called Mercer kernel, valid kernel, admissible kernel, or positive
semi-definite, if for all such finite X , the matrix κ(X ) is positive semi-definite, i.e. for
all c ∈ Rn, it holds

cTκ(X )c ≥ 0
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Formal Definitions (cont’d)

Definition: Dot Product

A dot product in a vector space H is a function 〈·, ·〉 : H×H → R satisfying:

I 〈x , x〉 = 0 for x = 0

I 〈x , x〉 > 0 for x 6= 0

I 〈x , y〉 = 〈y , x〉 (Symmetry)

I 〈αx + βy , z〉 = α 〈x , z〉+ β 〈y , z〉 (Bi-linearity)

Definition: Hilbert Space

A vector space H endowed with a dot product 〈·, ·〉 : H×H → R for which the
induced norm gives a complete metric space, is termed Hilbert Space.
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Interpretation of Kernel Functions

Theorem

Let κ : X ×X → R be a valid kernel on X . There exists a possibly infinite-dimensional
Hilbert space H and a mapping φ : X → H such that κ(x , y) = 〈φ(x), φ(y)〉H for all
x , y ∈ X where 〈·, ·〉H denotes the dot product in a Hilbert space H.

 every kernel κ can be seen as a dot product in some feature space H.

Advantages

I Feature space H can be infinite-dimensional

I Not really necessary to know which feature space H we have

I Computation of kernel is done in original domain X
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Kernel SVM

Wolfe-Dual Optimization Problem with Lagrange Multipliers

max
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαj yi yjκ(xi , xj )

s.t.
n∑

i=1

αi yi = 0

0 ≤ αi ≤ C i ∈ {1, . . . , n}

Decision Rule

H(x) = sign

 ∑
xi∈SV

αi yiκ(xi , x) + b
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Example for Mercer Kernels

Radial Basis Kernel Polynomial Kernel (degree 2)

κ(x , y) = exp
(
−γ‖x − y‖2

)
κ(x , y) = (〈x , y〉+ 1)d
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Discussion

Pro

I Kernel methods provide a simple method for dealing with non-linearity

I Implicit mapping allows for mapping to arbitrary-dimensional spaces:c
Computational effort depends on the number of training examples, but not on the
feature space dimensionality

Contra

I Resulting models rarely provide an intuition

I Choice of kernel can be difficult
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Decision Tree Classifiers

I Approximating discrete-valued target function
I Learned function is represented as a tree:

I A flow-chart-like tree structure
I Internal node denotes a test on an attribute
I Branch represents an outcome of the test
I Leaf nodes represent class labels or class

distribution

I Tree can be transformed into decision rules:
if age > 60 then risk = low
if age ≤ 60 and car type = truck then risk = low
if age ≤ 60 and car type 6= truck then risk = high

Advantages

I Decision trees represent explicit knowledge
I Decision trees are intuitive to most users

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low
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Decision Tree Classifier: Splits

Goal

I Each tree node defines an axis-parallel (d − 1)-dimensional hyperplane, that splits
the data space.

I Find such splits which lead to as homogenous groups as possible.
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Decision Tree Classifiers: Basics

I Decision tree generation (training phase) consists of two phases
1. Tree construction

I At start, all the training examples are at the root
I Partition examples recursively based on selected attributes

2. Tree pruning
I Identify and remove branches that reflect noise or outliers

I Use of decision tree: Classifying an unknown sample
I Traverse the tree and test the attribute values of the sample against the decision tree
I Assign the class label of the respective leaf to the query object
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Algorithm for Decision Tree Construction

I Basic algorithm (a greedy algorithm)
I Tree is created in a top-down recursive divide-and-conquer manner
I Attributes may be categorical or continuous-valued
I At the start, all the training examples are assigned to the root node
I Recursively partition examples at each node and push them down to the new nodes
I Select test attributes and determine split points or split sets for the respective values

based on a heuristic or statistical measure (split strategy, e.g., information gain)

I Conditions for stopping partitioning
I All samples for a given node belong to the same class
I There are no remaining attributes for further partitioning – majority voting is

employed for classifying the leaf
I There are no samples left
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Algorithm for Decision Tree Construction

I Most algorithms are versions of this basic algorithm (greedy, top-down)
I E.g.: ID3, or its successor C4.5

ID3 Algorithm

procedure ID3(Examples, TargetAttr , Attributes) . specialized to learn boolean-valued functions
Create Root node for the tree
if all Examples are positive then return Root with label = +
else if all Examples are negative then return Root with label = −
else if Attributes = ∅ then return Root with label = most common value of TargetAttr in Examples
else

A = ”best” decision attribute for next node . how to determine the ”best” attribute?
Assign A as decision attribute for Root
for each possible value vi of A do . how to split the possible values?

Generate branch corresponding to test A = vi

Examplesvi = examples that have value vi for A
if Examplesvi = ∅ then

Add leaf node with label = most common value of TargetAttr in Examples
else

Add subtree ID3(Examplesvi , TargetAttr , Attributes \ {A})
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Example: Decision for ”playing tennis”

I Query: How about playing tennis today?

I Training data:

I Build decision tree . . .
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Split Strategies: Quality of Splits

Given

I A set T of training objects
I A (disjoint, complete) partitioning T1, . . .Tm of T
I The relative frequencies pi of class ci in T and in the partitions T1, . . .Tm

Wanted

I A measure for the heterogeneity of a set S of training objects with respect to the class membership
I A split of T into partitions {T1, . . . ,Tm} such that the heterogeneity is minimized

 Proposals: Information gain, Gini index, Misclassification error
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Attribute Selection Measures: Information Gain

I Used in ID3/C4.5

Entropy

I Minimum number of bits to encode a message that
contains the class label of a random training object

I The entropy of a set T of training objects is defined as

entropy(T ) = −
k∑

i=1

pi log2 pi

for k classes with frequencies pi

I entropy(T ) = 0 if pi = 1 for any class ci

I entropy(T ) = 1 if pi = 1
k for all classes ci

k = 2
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Attribute Selection Measures: Information Gain

Information Gain

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The
information gain of attribute A w.r.t. T is defined as

information gain(T ,A) = entropy(T )−
m∑

i=1

|Ti |
|T |

entropy(Ti )
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Attribute Selection: Example (Information Gain)

information gain(T , forecast) = 0.94−
5

14
0.971−

4

14
0−

5

14
0.971 = 0.246

information gain(T , temperature) = 0.94−
4

14
0.811−

6

14
0.981−

4

14
1 = 0.029

information gain(T , humidity) = 0.94−
7

14
0.985−

7

14
0.592 = 0.151

information gain(T ,wind) = 0.94−
8

14
0.811−

6

14
1 = 0.048

Result: ”forecast” yields the highest information gain
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Example: Decision Tree for ”playing tennis”

Final decision tree:
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Attribute Selection Measures: Gini Index
I Used in IBM’s IntelligentMiner

Gini Index

The Gini index for a set T of training objects is defined as

gini(T ) = 1−
k∑

i=1

p2
i

I Small value of Gini index ≡ low heterogeneity

I Large value of Gini index ≡ high heterogeneity

Gini Index (of an attribute A)

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The Gini index of
attribute A w.r.t. T is defined as

giniA(T ) =
m∑

i=1

|Ti |
|T |

gini(Ti )
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Attribute Selection Measures: Misclassification Error

Misclassification Error

The Misclassification Error for a set T of training objects is defined as

Error(T ) = 1−max
ci

pi

I Small value of Error ≡ low heterogeneity

I Large value of Error ≡ high heterogeneity

Misclassification Error (of an attribute A)

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The
Misclassification Error of attribute A w.r.t. T is defined as

ErrorA(T ) =
m∑

i=1

|Ti |
|T |

Error(Ti )
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Attribute Selection Measures: Comparison
For two-class problems:
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Split Strategies: Types of Splits

I Categorical attributes
I Split criteria based on equality ”attribute = a”
I Based on subset relationships ”attribute ∈ set”
 many possible choices (subsets)
I Choose the best split according to, e.g., gini index

I Numerical attributes
I Split criteria of the form ”attribute < a”
 many possible choices for the split point
I One approach: Order test samples w.r.t. their

attribute value; consider every mean value between
two adjacent samples as possible split point; choose
best one according to, e.g., gini index

I Partition the attribute value into a discrete set of
intervals (Binning)
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Avoid Overfitting in Classification

I The generated tree may overfit the
training data
I Too many branches, some may

reflect anomalies due to noise or
outliers

I Result has poor accuracy for unseen
samples

I Two approaches to avoid overfitting for decision trees:

1. Post-pruning = pruning of overspecialized branches
2. Pre-pruning = halt tree construction early
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Avoid Overfitting in Classification

Post-pruning

Pruning of overspecialized branches:

I Remove branches from a ”fully grown” tree and get a sequence of progressively
pruned trees

I Use a set of data different from the training data to decide which is the “best
pruned tree”
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Avoid Overfitting in Classification

Pre-pruning

Halt tree construction early, do not split a node if this would result in the goodness
measure falling below a threshold.
I Choice of an appropriate value for minimum support

I Minimum support: minimum number of data objects a leaf node contains
I In general, minimum support � 1

I Choice of an appropriate value for minimum confidence
I Minimum confidence: minimum fraction of the majority class in a leaf node
I Typically, minimum confidence � 100%
I Leaf nodes can absorb errors or noise in data records

I Discussion
I With Pre-pruning it is difficult to choose appropriate thresholds
I Pre-pruning has less information for the pruning decision than post-pruning  can

be expected to produce decision trees with lower classification quality
I Tradeoff: tree construction time vs. classification quality
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Pruning of Decision Trees: Approach Post-pruning

Reduced-Error Pruning 1

I Decompose classified data into training set and test set

I Create a decision tree E for the training set
I Prune E using the test set T

I Determine the interior node v of E whose pruning reduces the number of
misclassified data points on T the most (i.e., replace the subtree S with root v by a
leaf. Determine the value of the leaf by majority voting)

I Prune
I Finish if no such interior node exists

I Only applicable if a sufficient number of classified data is available

1J.R. Quinlan. Rule induction with statistical data – a comparison with multiple regression. In
Journal of the Operational Research Society, 38, pages 347-352, 1987
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Pruning of Decision Trees: Approach Post-pruning

Minimal Cost Complexity Pruning 1

I Does not require a separate test set
I Applicable to small training sets as well

I Pruning of the decision tree by using the training set
I Classification error is no appropriate quality measure

I New quality measure for decision trees:
I Trade-off of classification error and tree size
I Weighted sum of classification error and tree size

I General observation
I The smaller decision trees yield the better generalization

1L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth International Group, 1984

Supervised Methods Classification February 6, 2019 441



Minimal Cost Complexity Pruning: Notions

I Size |E | of a decision tree E : number of leaf nodes

I Cost-complexity quality measure of E with respect to training set T , classification
error FT and complexity parameter α ≥ 0:

CCT (E , α) = FT (E ) + α|E |

I For the smallest minimal subtree E (α) of E w.r.t. α, it is true that:

1. There is no subtree of E with a smaller cost complexity
2. If E (α) and B both fulfill (1), then is E (α) a subtree of B

I α = 0: E (α) = E
I Only error matters

I α→∞: E (α) = root node of E
I Only tree size matters

I 0 < α <∞: E (α) is a proper substructure of E
I The root node or more than the root node
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Extracting Classification Rules from Trees

I Represent the knowledge in the form of IF-THEN rules

I One rule is created for each path from the root to a leaf

I Each attribute-value pair along a path forms a conjunction

I The leaf node holds the class prediction

I Rules are easier for humans to understand

Example

if forecast = ”overcast” then playing tennis = ”yes”
if forecast = ”sunny” and humidity = ”high” then playing tennis = ”no”
if forecast = ”sunny” and humidity = ”normal” then playing tennis = ”yes”
if forecast = ”rainy” and wind = ”strong” then playing tennis = ”no”
if forecast = ”rainy” and wind = ”weak” then playing tennis = ”yes”
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Enhancement: Handle Missing Attribute Values

I If node n tests attribute A:
I Assign most common value of A among other examples sorted to node n
I Assign the most common value of the attribute among other examples with the

same target value sorted to node n
I Assign probability pi to each of the possible values vi of attribute A among other

examples sorted to node n
I Assign fraction pi of example to each descendant in tree
I Classify new examples in the same fashion: Classification decision is the one with the

highest probability (sum over all instance fragments of each class decision)
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Decision Tree Classifiers: Summary

Pro

I Relatively fast learning speed (in comparison to other classification methods)

I Fast classification speed

I Convertible to simple and easy to understand classification rules

I Often comparable classification accuracy with other classification methods

Contra

I Not very stable, small changes of the data can lead to large changes of the tree
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Nearest Neighbor Classifiers

Motivation

I Assume data in a non-vector representation: graphs, forms, XML-files, etc.

I No simple way to use linear classifiers or decision trees

Solutions

I Use appropriate kernel function for kernel machines (e.g. kernel SVM)
 Not always clear how to define a kernel

I Transformation of objects to some vector space (e.g. representation learning)
 Difficult to determine appropriate transformation & vector space

I Here: Nearest neighbor classifier
 Direct usage of the similarity of objects for classification
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Nearest Neighbor Classifiers

Procedure

Assign query object q to the class cj of the closest training object x ∈ D:

class(q) = class(NN(q)) NN(q) = {x ∈ D | ∀x ′ ∈ D : d(q, x) ≤ d(q, x ′)}

 Instance-Based Learning

Example

q
dog

dog

dog wolf

wolfcat

cat

cat

cat

Classifier decides that query object q is a dog.
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Instance-Based Methods

Eager Evaluation

I Create models from data (training phase) and then use these models for
classification (test phase)

I Examples: Decision tree, Bayes classifier

Instance-Based Learning

I Store training examples and delay the processing (“lazy evaluation”) until a new
instance must be classified

I Typical Approaches: k-nearest neighbor approach:
I Instances represented as points in a metric space (e.g. Euclidean)
I Classification by label of NN  requires fast NN queries
I  Training phase = Index construction (e.g. R-tree)
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Nearest Neighbor Classifiers: Notions

Notions

I Distance Function: Defines the (dis-)similarity for pairs of objects

I Decision Set: The set of k nearest neighboring objects to be used in the decision
rule

Decision Rule

Given the class labels of the objects from the decision set, how to determine the class
label to be assigned to the query object?
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Decision Rules

Majority Vote (Default)

Choose majority class in the decision set, i.e. the class with the most representatives in
the decision set

Weighted Decision Rules

Choose weighted majority of decision set class labels. Weight variants:

I Reciprocal squared distance: d(q, x)−2

I Inverse A-Priori Probability: Use inverse frequency of classes in the training set
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Example: k = 5 – Influence of Weighting

Majority Vote
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Example: Majority Vote – Influence of k

k = 1
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NN Classifier: Parameter k

Choosing an appropriate k : Tradeoff between overfitting and generalization:

Influence of k

I k too small: High sensitivity against outliers

I k too large: Decision set contains many objects from other classes

Rules of Thumb

I Based on theoretical considerations: Choose k , such that it grows slowly with n,
e.g. k ≈

√
n or k ≈ log n

I Empirically, 1� k < 10 yields a high classification accuracy in many cases
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NN Classifier: Variants

I k-NN Classifier: Consider the k nearest neighbors for the class assignment decision

I Weighted k-NN Classifier: Use weights for the classes of the k nearest neighbors

I Mean-based NN Classifier: Determine mean vector mi for each class cj (in
training phase); Assign query object to the class cj of the nearest mean vector mi

I Generalization: Representative-based NN Classifier; Use more than one
representative per class
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NN Classifier: Discussion

Pro
I Applicability: Training data and distance function required only

I High classification accuracy in many applications

I Easy incremental adaptation to new training objects useful also for prediction

I Robust to noisy data by averaging k-nearest neighbors

Contra
I Näive implementation is inefficient: Requires k-nearest neighbor query processing  

support by database techniques may help to reduce from O(n) to O(log n)

I Does not produce explicit knowledge about classes, but provides some explanation
information

I Curse of dimensionality: Distance between neighbors could be dominated by irrelevant
attributes  Apply dimensionality reduction first
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Ensemble Classification

Problem

I No single classifier performs good on every problem

I For some techniques, small changes in the training set lead to very different
classifiers

Idea

Improve performance by combining different classifiers  ensemble classification.
Different possibilities exist. Discussed here:

I Bagging (Bootstrap aggregation)

I Boosting
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Bagging

How to obtain different classifiers?

Easiest way: Train the same classifier K on different datasets

Bagging (or Bootstrap Aggregation)

I Randomly select m different subsets from the training set

I On each subset, independently train a classifier Ki (i = 1, . . . ,m)

I Overall decision:

K (x) = sign

(
1

m

m∑
i=1

Ki (x)

)
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Boosting

Boosting

I Linear combination of several weak learners (different classifiers)

I Given m weak learners Ki and weights αi for i = 1, . . . ,m

I Overall decision

K (x) = sign

(
m∑

i=1

αi Ki (x)

)
I Important difference: classifiers are trained in sequence!

I Repeatedly misclassified points are weighted stronger
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AdaBoost

Widely used boosting method: AdaBoost 21: Meta-algorithm that iteratively generates
a chain of weak learners

General Idea

I Assume (t − 1) weak learners are already given. The tth learner should focus on
instances that were previously misclassified.

I Assign a weight wi to each instance xi to represent its importance

I Start with equal weight for each instance, adapt weights according to the
performance of previously trained classifiers

21
Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of

Computer and System Sciences, 55(1):119–139, 1996.
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AdaBoost – Algorithm
Given: n data points x1, . . . , xn, labels y1, . . . , yn

Initialize w1 = . . . = wn = 1
n

for i = 1, . . . ,m do
Fit a classifier Ki (x) to the training data by minimizing weighted error function

Ji =
n∑

j=1

wj I(Ki (xj ) 6= yj )

where I is the indicator function
Compute weighting coefficient

αi = ln

(
1− εi

εi

)
where εi =

Ji
n∑

j=1
wj

Update all data weights:
wj := wj exp

(
αi I(Ki (xj ) 6= yj )

)
Final Model

K(x) = sign

(
m∑

i=1

αi Ki (x)

)
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Classification: Summary
Model Compactness Model Interpretability Decision Interpretability

Linear Model hyperplane compact (# dims) medium/low
low

SVM hyperplane/non-
linear(kernel)

compact (# SV) medium/low
low

Decision Tree set of (axis-parallel)
hyperplanes

compact (pruned) good
good (rules)

kNN no model no model no model
medium/good (example)

Bayes statistical density
distribution

model dependent model dependent
medium/good (probabili-
ties)

Data Types Robustness Training Time Test Time

Linear Model arbitrary (kernel) low high
low/high (for high-dim)

SVM arbitrary (kernel) high medium
low/medium

Decision Tree categorical & vector low low/medium
low

kNN arbitrary (distance) high no training
low (index)/ very high

Bayes arbitrary (probabil-
ity distribution)

high model-dependent model-dependent; often low
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Classification: Conclusion

I Classification is an extensively studied problem (mainly in statistics and machine
learning)

I Classification is probably one of the most widely used data mining techniques with
a lot of extensions

I Scalability is an important issue for database applications: thus combining
classification with database techniques should be a promising topic

I Research directions: classification of complex data, e.g., text, spatial, multimedia,
etc.;
Example: kNN-classifiers rely on distances but do not require vector
representations of data

I Results can be improved by ensemble classification
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Numerical Prediction

I Related problem to classification: numerical prediction
I Determine the numerical value of an object
I Method: e.g., regression analysis
I Example: Prediction of flight delays

I Numerical prediction is different from classification
I Classification refers to predict categorical class label
I Numerical prediction models continuous-valued functions

I Numerical prediction is similar to classification
I First, construct a model
I Second, use model to predict unknown value
I Major method for numerical prediction is regression:

I Linear and multiple regression
I Non-linear regression
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Examples

Example: Housing values in suburbs of Boston

I Inputs:
I Number of rooms
I Median value of houses in the
I Neighborhood
I Weighted distance to five Boston employment centers
I Nitric oxides concentration
I Crime rate per capita
I . . .

I Goal: Compute a model of the housing values, which
can be used to predict the price for a house in that area.
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Examples

Control engineering

I Control the inputs of a system in order to lead
the outputs to a given reference value

I Required: A model of the process
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Examples

Fuel injection process

I Database of spray images

I Inputs: Settings in the pressure chamber

I Outputs: Spray features, e.g., penetration, depth, spray, width, spray area

I Goal: Compute a model which predicts the spray features, for input settings which
have not been measured.
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Numerical Prediction

Numerical Prediction

I Given: A set of observations

I Compute: A generalized model of the
data which enables the prediction of
the output as a continuous value

Numerical 
Prediction 

Model 
Inputs 

(Predictiors) 
Outputs 

(Responses) 

Quality Measures

I Accuracy of the model

I Compactness of the model

I Interpretability of the model

I Runtime efficiency (training, prediction)
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Linear Regression

I Given a set of N observations with inputs of the form x = (x1, . . . , xd )T ∈ Rd and
outputs y ∈ R

I Approach: Minimize the Sum of Squared Errors (SSE)

I Numerical Prediction: Describe the outputs y as a linear equation of the inputs

ŷ = f (x) = w0 +
d∑

i=1

wi xi = (1, x1, . . . , xd )T w

I Train the parameters w = (w0,w1, . . . ,wd )T

according to

min
w

1

2

N∑
i=1

(yi − f (xi ))2
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Linear Regression

I Matrix notation: Let X ∈ RN×(d+1) be the matrix containing the inputs, Y ∈ RN

the outputs, and w the resulting coefficients:

X =

1 x1,1 . . . x1,d
...

...
. . .

...
1 xN,1 . . . xN,d

 , Y =

y1
...

yN

 , w =

w0
...

wd


I Goal: Find the coefficients w , which minimize the SSE

min
w

1

2

N∑
i=1

(yi − f (xi ))2 = min
w

1

2
||Xw − Y ||22

= min
w

1

2
(Xw − Y )T (Xw − Y )
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Linear Regression

I The optimal coefficients can be derived by setting the first derivative to zero (cf.
classification with linear discriminant functions)

w = (X T X )−1X T Y

I For d = 1, the regression coefficients w0 and w1 can be computed as

w1 =
Cov(x , y)

Var(x)
=

x̃T ỹ

x̃T x̃
, w0 = ȳ − w1x̄

where x̃ = x − x̄ and ỹ = y − ȳ

I Note: If x̄ = ȳ = 0 (i.e., the data is centered), then w1 = xT y
xT x

and w0 = 0
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Polynomial Regression

I Second order polynomial for d = 1:

ŷ = f (x) = w0 + w1x1 + w2x2
2 = (1, x1, x

2
2 )T w

with

X =

1 x1,1 x2
1,1

...
...

...
1 xN,1 x2

N,1

 and w = (X T X )−1X T Y

I Second order polynomial for d = 2:

ŷ = f (x) = w0 + w1x1 + w2x2 + w3x2
1 + w4x2

2 + w5x1x2
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Polynomial Regression

I The number of coefficients increases exponentially with k and d

I Model building strategies: Forward selection, backward elimination

I The order of the polynomial should be as low as possible, high order polynomials
tend to overfit the data
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Nonlinear Regression

I Different nonlinear functions can be approximated

I Transform the data to a linear domain

ŷ = αeγx =⇒ ln ŷ = lnα + γx

=⇒ ŷ ′ = w0 + w1x

(for ŷ ′ = ln ŷ , w0 = lnα and w1 = γ )

I The parameters w0 and w1 are estimated with SSE

I The parameters α and γ are obtained, describing an exponential curve which
passes through the original observations

I Problem: SSE determines normally distributed errors in the transformed space
 skewed error distribution in the original space
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Nonlinear Regression

I Different nonlinear functions can be approximated

I Outputs are estimated by a function with nonlinear parameters, e.g., exponential,
trigonometric

I Example type of function:

ŷ = w0 + w1ew2x + sin(w3x)

I Approach: The type of nonlinear function is chosen and the corresponding
parameters are computed

I No closed form solution exists  numerical approximation:
I Gauss Newton, Gradient descent, Levenberg-Marquardt
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Linear and Nonlinear Regression

Problems

I Linear regression: Most of the real world data has a nonlinear behavior

I Polynomial regression: Limited, cannot describe arbitrary nonlinear behavior

I General nonlinear regression: The type of nonlinear function must be specified in
advance
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Piecewise Linear Functions

Piecewise Linear Functions

For a partitioning of the input space C = {C1, . . . ,Ck}, a piecewise linear function is
defined by coefficient vectors wi, and offset βi for i = 1, . . . , k.

f (x) =


wT

1 x + β1, x ∈ C1

...

wT
k x + βk , x ∈ Ck
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Piecewise Linear Functions

Properties

I Simple approach

I Can approximate any function

I Accuracy increases with increasing number of partitions

I Compactness & Interpretability decreases with increasing number of partitions

Challenge

Find an appropriate partitioning of the input space
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Regression Tree

Greedy divide and conquer: recursive partioning of the input space.
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Regression Tree

General Approach

I Given: Set of observations T = (X ,Y ) with X = {x1, . . . , xn}, and
Y = {y1, . . . , yn}

I Find a split of T into T1, T2 with minimal summed impurity imp(T1) + imp(T2).

I If the stopping criterion is not reached: repeat for T1 and T2

I If the stopping criterion is reached: undo the split
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Impurity Measure

y

x

Variance of the Residuals

imp(T ) =
1

|T |
∑

(x,y)∈T

(y − f (x))2

where f is the approximator function, i.e. here a linear function. For constant f , this
measure coincides with the variance of the output.
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Stopping Criterion: Impurity Ratio

Impurity Ratio Stopping Criterion

The recursive splitting is stopped if one of the following holds

I The sample size of a node is below some specified threshold

I The split is not significant for threshold τ0, when

τ =
imp(T1) + imp(T2)

imp(T )
≥ τ0

Choosing τ0

τ0 controls the overfitting/underfitting trade-off:

I τ0 too large =⇒ stopping too early =⇒ model not accurate enough

I τ0 too small =⇒ stopping too early =⇒ model overfits to observations
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Split Strategy

I The split strategy determines how the training samples
are partitioned, whether the split is actually performed
is decided by the stopping criterion.

I The most common splits are axis parallel:
I Split = a value in one input dimension
I Compute the impurity of all possible splits in all input

dimensions and choose at the end the split with the
lowest impurity

I For each possible split compute the two corresponding
models and their impurity  expensive to compute

Five axis-parallel splits to
separate red from blue

samples.
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Strategy for Oblique Splits

I More intuitive to use oblique splits

I An oblique split is a linear separator in the input space
instead of a split value in an input dimension

I The optimal split (with minimal impurity measure)
cannot be efficiently computed  Heuristic approach
required A single oblique split can

separate red from blue
samples.
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Strategy for Oblique Splits

Heuristic Approach

1. Compute a clustering in the full (input + output)
space, such that the samples are as well as possible
described by linear equations

2. Project the clusters onto the input space

3. Use the clusters to train a linear classifier in the input
space. Split = separating hyperplane in input space

4. Compute linear models for the two linearly separated
clusters

y

x1

x2

x1

x2

y

x1

x2
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Example: Oblique Splits
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Continuous Splits

Motivation

I At the boundaries of the partitions the prediction may be discontinuous.

I In some applications this might by undesirable, e.g. when using the prediction to
control engine speed, a rapid jump may cause damage to the engine

Solution

Hinging Hyperplane Models (not detailed in this lecture).

f (x) =
k∑

i=1

hi (x) hi (x) =

{〈
w(i ,+), x̃

〉
,
〈
w(i), x̃

〉
> 0 x̃ = (1, x1, . . . , xd )〈

w(i ,−), x̃
〉
,
〈
w(i), x̃

〉
≤ 0 w(i) = w(i ,+) −w(i ,−)
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Announcements

First Exam Inspection

I Time: Tu, 12.03.19, 10:00 - 11:30

I Place: Oettingenstr. 67, room 157

Second Exam

I Time: Mo, 18.03.19, 16:00 - 18:00

I Place: M218 A240 (HGB, Geschw.-Scholl-Pl. 1)

For further announcements, please check the course website:
http://www.dbs.ifi.lmu.de/cms/studium lehre/lehre master/kdd1819/index.html
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Motivation

ID Time Location Piece

12 14.01.2018 10:32 MUNICH 1

42 14.01.2018 11:40 MUNICH 2

5 14.01.2018 15:17 MUNICH 3

12 14.01.2018 22:12 LEIPZIG 1

. . .
a b

c

Process Model

supports/controls

log events
configures

model analyses

discovery

conformance

enhancement
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Notions

I Process: System of actions, movements (e.g. sign document, customer call,
financial transaction, delivery of goods)

I Different instances/cases should follow a common process description

I Each case contains actions as events (their sequence is called trace)
I An event is represented by at least

I A case identifier
I An activity label
I A timestamp

but may also comprise additional (meta-)information (e.g. involved (work)
resources)
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Petri Nets as Process Model

a b d

c

Places

Transitions

Start End
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Tasks

Main Tasks

1. Process Discovery:
Mine multiple sequences of actions to derive a workflow pattern

2. Conformance Checking:
Use previously mined model to judge the validity of a new case

3. Process Enhancement:
Evolve models with new data, find deviations
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Process Discovery

Input
# trace

2048 ace
1234 acdce

404 acdcdce
120 acdcdcdce

42 ab
5 acdb

Quality Measures

Fitness ability to replay the log
Simplicity simplified as much as possible
Generalization no underfitting of log
Precision no overfitting of log

Output

a

c bd

e
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Example Discovery Algorithm: α-Miner22

1. Scan the log for all activities

2. For each pair of activities and , we
define the relations
I a > b if for some case a is

immediately followed by b (direct
succession)

I a ‖ b if a > b and b > a (parallelism)
I a→ b if a > b and not b > a

(causality)
I a#b if not a > b and not b > a

3. All activities, having only # or → in
their row are starting activities. They
are collected in Tin.

4. Analogously, # or ← determine Tout .

Example: {abcd , acbd , acd}

a b c d

a → → #

b ← ‖ →
c ← ‖ →
d # ← ←

Tin = {a}, Tout = {d}

22
van der Aalst, Weijters, Maruster (2003). ”Workflow Mining: Discovering process models from event logs”, IEEE Transactions on Knowledge

and Data Engineering, vol 16
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Example Discovery Algorithm: α-Miner

1. Prepare a Petri net. The set of
transitions is equal to activities

2. A starting place is created and
connected to each node in Tin

3. Also, a final place is created and each
node in Tout is connected to it

4. Determine all pairs of sets A and B,
such that
I ∀a1, a2 ∈ A : a1#a2

I ∀b1, b2 ∈ B : b1#b2

I ∀a ∈ A, b ∈ B : a→ b

5. A place is added in between A and B
and connected accordingly

a

2.

d

3.

4. A = {a},B = {b, c}

a

b

c

5.
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Conformance Checking

Use previously mined model to judge the validity of a new case (similar to binary
classification: valid vs. invalid)

Input

I Model

I Trace

Aims

I Model reasoning

I auditing

I security (fraud detection)
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Example Conformance Checking Algorithm: Token-Replay

Replay the event in the model. Count:

I the number of produced tokens (p)

I the number of consumed tokens (c)

I the number of missing tokens (m)

I the number of remaining tokens (r)

Output a fitness value

f =
1

2

(
1− m

c

)
+

1

2

(
1− r

p

)
The fitness value ranges between 0 and 1, where 1 is a perfect match.
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Further Machine Learning Methods

Image Source: Taigman, et al. ”Deepface: Closing the gap to human-level performance in face verification.” CVPR’14.

I Graphical Models

I Generative Models

I Neural Networks

I Deep Learning

 Machine Learning (SS), Deep Learning and Artificial Intelligence (WS)
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Decision Making / Planning

I Setting:
I Agents are in some environment,

observe, and have to take actions
that influence the environment.

I Methods:
I Deterministic/Stochastic Planning
I A∗-Search
I Model-Free Reinforcement Learning
I Q-Learning
I Adversarial Search (e.g. Alpha-Beta

Pruning)

Environment

Agentobservation

action

reward

 Deep Learning (WS), Managing Massive Multiplayer Online Games (SS)
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High-Dimensional Data

I Challenges:
I Curse of dimensionality: distances

become more and more similar
I Datasets become sparse.
I Expensive distance measures
I Degeneration of index structures
I Unintuitive properties in high

dimensions.

I Tasks
I Feature Selection
I Feature Reduction / Metric Learning
I Clustering in High-Dimensional

Spaces

 Knowledge Discovery in Databases II (SS), Big Data Management and Analytics (WS)
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Graph Data

I Graphs are everywhere!
I Chemical data analysis, proteins
I Biological pathways/networks
I Program control flow, traffic flow
I Web graph, social network analysis

I Typical tasks
I Measure similarity between graphs
I Find frequent patterns in graphs
I Generate ”realistic” synthetic graphs
I Identify groups in social networks
I Integrate additional information

 Knowledge Discovery in Databases II (SS), Big Data Management and Analytics (WS)
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Spatial Data

I Mining spatial data
I Spatial clustering, outlier detection,

prediction, rule mining, ...

I Spatial data management
I Process spatial queries without

scanning the whole database
I Spatial index structures: BSP-tree,

R-tree, Quad-tree, ...

I Mining trajectory data
I Similarity models for trajectories
I Trajectory compression
I Mining patterns in trajectories

(encounters, flocks, ...)

 Managing Massive Multiplayer Online Games (SS)
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Big Data
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Big Data Management

I Vertical scaling limited and expensive
 Distributed storage

I NoSQL databases
I Redis
I MongoDB
I Cassandra
I Neo4J

I Distributed file systems
I GFS (Google)
I HDFS (Hadoop)
I S3 (Amazon)

 Big Data Management and Analytics (WS)
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Distributed Data Processing

I Processing and analyzing big data
I Map-Reduce: Programming model for

distributed processing of large datasets

I Algorithms are specified as sequences
of map and reduce functions

I Programs are automatically
parallelized and executed on a cluster

I System is tolerant to hardware faults

I Frameworks
I Apache Spark (batch processing)
I Apache Flink (stream processing)

 Big Data Management and Analytics (WS)
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Stream Data

I Data objects arrive over time
in a continuous data stream

I Challenges
I Infinite stream
I Limited time and memory
I Evolving distribution
I Varying data rates
I Concept drift

I Typical tasks
I Sampling and buffering
I Stream statistics
I Aging mechanisms

 Knowledge Discovery in Databases II (SS), Big Data Management and Analytics (WS)
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Seminars, Practicals, Theses

Dive deeper into specific topics and get hands-on experience:

I Master Seminar ”Recent Developments in Data Science” (SS)

I Master Practical ”Big Data Science” (SS)

I Master Practical ”Applied Reinforcement Learning” (SS)

I Individual Bachelor and Master Theses
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