Knowledge Discovery and Data Mining I

Winter Semester 2018/19
People

Lecturer

▶ Prof. Dr. Thomas Seidl

Assistants

▶ Max Berrendorf
▶ Julian Busch

Student Assistants

▶ Maximilian Hünemörder
▶ Florentin Schwarzer
Schedule

Lecture (begins: 16.10.2018)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tu</td>
<td>09:15-11:45</td>
<td>B U101 (Oettingenstraße. 67)</td>
</tr>
</tbody>
</table>

Tutorials (begin: 25.10.2018)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th</td>
<td>12:15-13:45</td>
<td>Lehrturm-VU107 (Prof.-Huber-Pl. 2)</td>
</tr>
<tr>
<td>Th</td>
<td>14:15-15:45</td>
<td>Lehrturm-VU107 (Prof.-Huber-Pl. 2)</td>
</tr>
<tr>
<td>Fr</td>
<td>12:15-13:45</td>
<td>Lehrturm-V005 (Prof.-Huber-Pl. 2)</td>
</tr>
<tr>
<td>Fr</td>
<td>14:15-15:45</td>
<td>C 111 (Theresienstr. 41)</td>
</tr>
</tbody>
</table>

Exam

1. Hauptklausur:

 Mo., 25.02.19, 14:00-16:00, **B 101 B 201** (Hauptgebäude)

2. Nachholklausur:

 tba
Material, Tutorials & Exam

Material (Slides, Exercises, etc.)

Available on course webpage:

http://www.dbs.ifi.lmu.de/cms/studium_lehre/lehre_master/kdd1819/index.html

Tutorial

- Python Introduction now available on website
- First exercise sheet available for download around 18.10.2018
- Prepare at home
- Presentation and discussion one week after

Exam

- Written exam at the end of semester
- All material discussed in the lecture and tutorials
- Registration via UniWorX
Content of this Course

1. Introduction
 1.1 Organisation
 1.2 Motivation
 1.3 Knowledge Discovery Process

2. Basics
 2.1 Data Representation
 2.2 Data Reduction
 2.3 Visualization
 2.4 Privacy

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection

4. Supervised Methods
 4.1 Classification
 4.2 Regression

5. Advanced Topics
 5.1 Process Mining
 5.2 Outlook
The slides used in this course are modified versions of the copyrighted original slides provided by the authors of the adopted textbooks:

- © Jiawei Han, Micheline Kamber, Jian Pei: *Data Mining – Concepts and Techniques*, 3rd ed., Morgan Kaufmann Publishers, 2011.
 http://www.cs.uiuc.edu/~hanj/bk3

Motivation

Data Mining = extraction of patterns from data

Patterns

- Regularities – examples: frequent itemsets, clusters
- Irregularities – examples: outliers

Not all patterns are useful

- "all mothers in our database are female" \(\leadsto\) trivial/known
- "bread, butter is frequent" given "bread, butter, salt is frequent" \(\leadsto\) redundant

Aggregation of data may help: Basic statistics
What is Data Mining?

Knowledge Discovery in Databases (Data Mining)

Extraction of interesting *(non-trivial, implicit, previously unknown and potentially useful)* information or patterns from data in *large databases*

Roots of Data Mining

- Statistics
- Machine Learning
- Database Systems
- Information Visualization
Data Mining: Motivation

”Necessity is the mother of invention”

Data Explosion Problem

Tremendous amounts of data caused by
- Automated data collection
- Mature database technology

”We are drowning in data, but starving for knowledge!”

Solution

- Data Warehousing and on-line analytical processing (OLAP)
- Data Mining: Extraction of interesting knowledge (rules, regularities, patterns, constraints) from data in large databases
Data Mining: Motivation

Stairs of Knowledge (K. North)¹

Data Mining: Potential Applications

- Database analysis and decision support
 - Market analysis and management:
 target marketing, customer relation management, market basket analysis, cross selling, market segmentation
 - Risk analysis and management:
 Forecasting, customer retention ("Kundenbindung"), improved underwriting, quality control, competitive analysis
 - Fraud detection and management

- Other Applications:
 - Text mining (news group, email, documents) and Web analysis.
 - Intelligent query answering
The Knowledge Discovery Process

- The KDD-Process (Knowledge Discovery in Databases)

Data Mining:
- Frequent Pattern Mining
- Clustering
- Classification
- Regression
- Process Mining
- ...
KDD Process: Data Cleaning & Integration

- ...may take 60% of effort
- Integration of data from different sources
 - Mapping of attribute names, e.g. $C_{Nr} \rightarrow O_{Id}$
 - Joining different tables, e.g. $Table1 = [C_{Nr}, Info1]$ and $Table2 = [O_{Id}, Info2]$
 \[\Rightarrow JoinedTable = [O_{Id}, Info1, Info2] \]
- Elimination of inconsistencies
- Elimination of noise
- Computation of missing values (if necessary and possible): Possible strategies e.g. default value, average value, or application specific computations
KDD Process: Focusing on Task-Relevant Data

Task

- Find useful features, dimensionality/variable reduction, invariant representation
- Creating a target data set

Selections

Select the relevant tuples/rows from the database tables, e.g., sales data for the year 2001
Projections

Select the relevant attributes/columns from the database tables, e.g., (id, name, date, location, amount) \(\rightsquigarrow\) (id, date, amount)

Transformations, e.g.:

- Discretization of numerical attributes, e.g.,
 amount: [0, 100] \(\rightsquigarrow\) d_amount: {low, medium, high}
- Computation of derived tuples/rows and derived attributes:
 - aggregation of sets of tuples, e.g., total amount per months
 - new attributes, e.g., diff = sales current month - sales previous month
KDD Process: Basic Data Mining Tasks

Goal
Find patterns of interest

Tasks
▶ Identify task: Are there labels (in the training data)?
 ▶ *Many* ⇨ Supervised learning (focus on given concepts)
 ▶ *Some few* ⇨ Semi-supervised learning (focus on few hidden concepts)
 ▶ *None* ⇨ Unsupervised learning (many hidden concepts)
▶ Choose fitting mining algorithm(s)
Basic Mining Tasks: Frequent Itemset Mining

Setting

Given a database of transactions, e.g.

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Items Bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>A, B, C</td>
</tr>
<tr>
<td>1000</td>
<td>A, C</td>
</tr>
<tr>
<td>4000</td>
<td>A, D</td>
</tr>
<tr>
<td>5000</td>
<td>B, E, F</td>
</tr>
</tbody>
</table>

Motivation

Frequently co-occurring items in the set of transactions indicate correlations or causalities.

Examples

- buys(x, "diapers") ⇒ buys(x, "beers") [supp: 0.5%, conf: 60%]
- major(x, "CS") ∧ takes(x, "DB") ⇒ grade(x, "A") [supp: 1.0%, conf: 75%]
Basic Mining Tasks: Frequent Itemset Mining

Applications

- Market-basket analysis
- Cross-marketing
- Catalogue design
- Also used as a basis for clustering, classification
- Association rule mining: Determine correlations between different itemsets
Basic Mining Tasks: Clustering

Setting
- Database of objects
- (Dis-)Similarity function between objects
- Unknown class labels

Task
Group objects into sub-groups (clusters) "maximizing" intra-class similarity and "minimizing" interclass similarity
Basic Mining Tasks: Clustering

Applications

- Customer profiling/segmentation
- Document or image collections
- Web access patterns
- ...
Basic Mining Tasks: Classification

Setting

Class labels are known for a small set of "training data".

Task

Find models/functions/rules (based on attribute values of the training examples) that

- describe and distinguish classes
- predict class membership for "new" objects
Basic Mining Tasks: Classification

Applications

- Classify disease type for tissue samples from gene expression values
- Automatic assignment of categories to large sets of newly observed celestial objects
- Predict unknown or missing values (cf. KDD data cleaning & integration)
- ...
Basic Mining Tasks: Regression

Setting

Numerical output values are known for a small set of “training data”

Task

Find models/functions/rules (based on attribute values of the training examples) that

- describe the numerical output values of the training data
- predict the numerical value for “new” objects
Basic Mining Tasks: Regression

Applications

- Build a model of the housing values, which can be used to predict the price for a house in a certain area
- Build a model of an engineering process as a basis to control a technical system
- ...
Basic Mining Tasks: Generalization Levels

- Generalize, summarize, and contrast data characteristics
- Based on attribute aggregation along concept hierarchies
 - Data cube approach (OLAP)
 - Attribute-oriented induction approach
Basic Mining Tasks: Other Methods

Outlier Detection
Find objects that do not comply with the general behaviour of the data (fraud detection, rare events analysis)

Trends and Evolution Analysis
Sequential patterns (find re-occurring sequences of events)

Methods for special data types, and applications
- Process Mining
- Spatial Data Mining
- Graphs
- ...
Pattern evaluation and knowledge presentation: Visualization, transformation, removing redundant patterns, etc.

Integration of visualization and data mining:
- *data* visualization
- data mining *result* visualization
- data mining *process* visualization
- *interactive* visual data mining

Different types of 2D/3D plots, charts and diagrams are used, e.g. box-plots, trees, scatterplots, parallel coordinates

Use of discovered knowledge
Summary

- Data mining = Discovering interesting patterns from large amounts of data
- A natural evolution of database technology, machine learning, statistics, visualization, in great demand, with wide applications
- A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.
References

<table>
<thead>
<tr>
<th>Data Mining and KDD</th>
<th>Conference</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDD, PKDD, SDM, PAKDD, ICDM, ...</td>
<td>Data Mining and Knowledge Discovery, ...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Database Field</th>
<th>Conference</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM-SIGMOD, ACM-PODS, VLDB, ICDE, EDBT, CIKM, ...</td>
<td>ACM-TODS, J. ACM, IEEE-TKDE, JIIS, VLDBJ, ...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AI and Machine Learning</th>
<th>Conference</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine learning, AAAI, IJCAI, ICLR, ...</td>
<td>Machine Learning, Artificial Intelligence, ...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Conference</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Stat. Meeting, ...</td>
<td>Annals of Statistics, ...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visualization</th>
<th>Conference</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHI (Comp. Human Interaction), ...</td>
<td>IEEE Trans. Visualization and Computer Graphics, ...</td>
<td></td>
</tr>
</tbody>
</table>
Agenda

1. Introduction

2. Basics
 2.1 Data Representation
 2.2 Data Reduction
 2.3 Visualization
 2.4 Privacy

3. Unsupervised Methods

4. Supervised Methods

5. Advanced Topics
Objects and Attributes

Entity-Relationship Diagram (ER)

Student

name

skills

semester

major

UML Class Diagram

Student

name

semester

major

skills

Data Tables (Relational Model)

<table>
<thead>
<tr>
<th>name</th>
<th>sem</th>
<th>major</th>
<th>skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>3</td>
<td>CS</td>
<td>Java, C, R</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>CS</td>
<td>Java, PHP</td>
</tr>
<tr>
<td>Charly</td>
<td>4</td>
<td>History</td>
<td>Piano</td>
</tr>
<tr>
<td>Debra</td>
<td>2</td>
<td>Arts</td>
<td>Painting</td>
</tr>
</tbody>
</table>
Overview of (Attribute) Data Types

Simple Data Types

- **Numeric/metric, Categorical/nominal, ordinal**

Composed Data Types

- **Sets, sequences, vectors**

Complex Data Types

- **Multimedia: Images, videos, audio, text, documents, web pages, etc.**
- **Spatial, geometric: Shapes, molecules, geography, etc.**
- **Structures: Graphs, networks, trees, etc.**
Simple Data Types: Numeric Data

Numeric Data

- Numbers: natural, integer, rational, real numbers
- Examples: age, income, shoe size, height, weight
- Comparison: difference
- Example: 3 is more similar to 30 than to 3,000
Simple Data Types: Categorical Data

- "Just identities"
- Examples:
 - occupation = \{ butcher, hairdresser, physicist, physician, ... \}
 - subjects = \{ physics, biology, math, music, literature, ... \}
- Comparison: How to compare values?
 - Trivial metric:
 \[
 d(p, q) = \begin{cases}
 0 & \text{if } p = q \\
 1 & \text{else}
 \end{cases}
 \]
- Generalization hierarchy: Use path length

```
biology physics math music literature civil eng. mech. eng. elec. eng.
```

Metric Space

Metric space \((O, d)\) consists of object set \(O\) and *metric distance* function \(d : O \times O \rightarrow \mathbb{R}^{\geq 0}\) which fulfills:

- **Symmetry:** \(\forall p, q \in O : d(p, q) = d(q, p)\)
- **Identity of Indiscernibles:** \(\forall p, q \in O : d(p, q) = 0 \iff p = q\)
- **Triangle Inequality:** \(\forall p, q, o \in O : d(p, q) \leq d(p, o) + d(o, q)\)

Example: Points in 2D space with Euclidean distance
Characteristics

There is a (total) order \leq on the set of possible data values O:

- **Transitivity:** $\forall p, q, o \in O : p \leq q \land q \leq o \implies p \leq o$
- **Antisymmetry:** $\forall p, q \in O : p \leq q \land q \leq p \implies p = q$
- **Totality:** $\forall p, q \in O : p \leq q \lor q \leq p$

Examples

- **Words & lexicographic ordering:** $high \leq highschool \leq highscore$
- **(Vague) sizes:** $tiny \leq small \leq medium \leq big \leq huge$
- **Frequencies:** $never \leq seldom \leq rarely \leq occasionally \leq sometimes \leq often \leq frequently \leq regularly \leq usually \leq always$
Composed Data Types: Sets

Characteristic
Unordered collection of individual values

Example
- skills = \{ Java, C, Python \}

Comparison
- Symmetric Set Difference:
 \[R \Delta S = (R - S) \cup (S - R) = (R \cup S) - (R \cap S) \]
- Jaccard Distance: \[d(R, S) = \frac{|R \Delta S|}{|R \cup S|} \]
Composed Data Types: Sets

Bitvector Representation

- Given a set S, an ordered base set $B = (b_1, \ldots, b_n)$, create binary vector $r \in \{0, 1\}^n$ with $r_i = 1 \iff b_i \in S$.
- Hamming distance: Sum of different entries (equals cardinality of symmetric set difference)

Example

- Base: $B = \text{(Math, Physics, Chemistry, Biology, Music, Arts, English)}$
- $S = \{ \text{Math, Music, English} \} = (1,0,0,0,1,0,1)$
- $R = \{ \text{Math, Physics, Arts, English} \} = (1,1,0,0,0,1,1)$
- $\text{Hamming}(R, S) = 3$
Composed Data Types: Sequences, Vectors

Characteristic

- Put \(n \) values of a domain \(D \) together
- Order does matter: \(I_n \to D \) for an index set \(I_n = \{1, \ldots, n\} \)

Examples

<table>
<thead>
<tr>
<th>Description</th>
<th>Formula</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Simple) sum</td>
<td>(d_1(o, q) = \sum_{i=1}^{n}</td>
<td>o_i - q_i</td>
</tr>
<tr>
<td>Root of sum of squares</td>
<td>(d_2(o, q) = \sqrt{\sum_{i=1}^{n} (o_i - q_i)^2})</td>
<td>(Euclidean)</td>
</tr>
<tr>
<td>Maximum</td>
<td>(d_3(o, q) = \max_{i=1}^{n}</td>
<td>o_i - q_i</td>
</tr>
<tr>
<td>General formula</td>
<td>(d_4(o, q) = \sqrt[p]{\sum_{i=1}^{n}</td>
<td>o_i - q_i</td>
</tr>
<tr>
<td>Weighting of dimensions</td>
<td>(d_5(o, q) = \sqrt[p]{\sum_{i=1}^{n} w_i \cdot</td>
<td>o_i - q_i</td>
</tr>
</tbody>
</table>
Complex Data Types

Components

▶ Structure: graphs, networks, trees
▶ Geometry: shapes/contours, routes/trajectories
▶ Multimedia: images, audio, text, etc.

Similarity models: Approaches

▶ Direct measures – highly data type dependent
▶ Feature engineering – explicit vector space embedding with hand-crafted features
▶ Feature learning – explicit vector space embedding learned by machine learning model, e.g. neural network
▶ Kernel trick – implicit vector space embedding
Examples for similarity models

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Feature engineering</th>
<th>Feature learning</th>
<th>Kernel-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td>Structural Alignment</td>
<td>Degree Histograms</td>
<td>Node embeddings</td>
<td>Label Sequence Kernel</td>
</tr>
<tr>
<td>Geometry</td>
<td>Hausdorff Distance</td>
<td>Shape Histograms</td>
<td>Spectral Neural Network</td>
<td>Spatial Pyramid Kernel</td>
</tr>
<tr>
<td>Sequences</td>
<td>Edit Distance</td>
<td>Symbol Histograms</td>
<td>Recurrent neural network (RNN)</td>
<td>Cosine Distance</td>
</tr>
</tbody>
</table>
Feature Extraction

- Objects from database DB are mapped to feature vectors

- Feature vector space
 - Points represent objects
 - Distance corresponds to (dis-)similarity
Similarity Queries

- Similarity queries are basic operations in (multimedia) databases
- Given: Universe \(O \), database \(DB \), distance function \(d \) and query object \(q \)

Range query

Range query for range parameter \(\epsilon \in \mathbb{R}^+_0 \):

\[
\text{range}(DB, q, d, \epsilon) = \{o \in DB \mid d(o, q) \leq \epsilon\}
\]

Nearest neighbor query

\[
\text{NN}(DB, q, d) = \{o \in DB \mid \forall o' \in DB : d(o, q) \leq d(o', q)\}
\]
Similarity Queries

k-nearest neighbor query

\[k \]-nearest neighbor query for parameter \(k \in \mathbb{N} \):

\[
NN(DB, q, d, k) \subset DB \text{ with } |NN(DB, q, d, k)| = k \text{ and }
\forall o \in NN(DB, q, d, k), o' \in DB - NN(DB, q, d, k) : d(o, q) \leq d(o', q)
\]

Ranking query

Ranking query (partial sorting query): "get next" functionality for picking database objects in an increasing order w.r.t. their distance to \(q \):

\[
\forall i \leq j : d(q, rank_{DB,q,d}(i)) \leq d(q, rank_{DB,q,d}(j))
\]
Similarity Search

- Example: Range query \(\text{range}(DB, q, d, \epsilon) = \{ o \in DB \mid d(o, q) \leq \epsilon \} \)
- Naive search by sequential scan
 - Fetch database objects from secondary storage (e.g. disk): \(O(n) \)
 - Check distances individually: \(O(n) \)
- Fast search by applying database techniques
 - Filter-refine architecture
 - Filter: Boil database \(DB \) down to (small) candidate set \(C \subseteq DB \)
 - Refine: Apply exact distance calculation to candidates from \(C \) only
 - Indexing structures
 - Avoid sequential scans by (hierarchical or other) indexing techniques
 - Data access in (fast) \(O(n), O(\log n) \) or even \(O(1) \)
Principle of multi-step search:
1. Fast filter step produces candidate set $C \subset DB$ (by approximate distance function d')
2. Exact distance function d is calculated on candidate set C only.

Example: Dimensionality reduction\(^a\)

ICES\(^b\) criteria for filter quality
- Indexable – Index enabled
- Complete – No false dismissals
- Efficient – Fast individual calculation
- Selective – Small candidate set

\(^a\)GEMINI: Faloutsos 1996; KNOP: Seidl & Kriegel 1998
\(^b\)Assent, Wenning, Seidl: ICDE 2006
Indexing

- Organize data in a way that allows for fast access to relevant objects, e.g. by heavy pruning.

- R-Tree as an example for spatial index structure:
 - Hierarchy of minimum bounding rectangles
 - Disregard subtrees which are not relevant for the current query region
Indexing

- Example: Phone book
- Indexed using alphabetical order of participants
- Instead of sequential search:
 - Estimate region of query object (interlocutor)
 - Check for correct branch
 - Use next identifier of query object
 - Repeat until query is finished

![Diagram of index structure]

Image source: hierher/flickr, Licence: CC BY 2.0
Agenda

1. Introduction

2. Basics
 2.1 Data Representation
 2.2 Data Reduction
 2.3 Visualization
 2.4 Privacy

3. Unsupervised Methods

4. Supervised Methods

5. Advanced Topics
Why data reduction?

- Better perception of patterns
 - Raw (tabular) data is hard to understand
 - Visualization is limited to (hundreds of) thousands of objects
 - Reduction of data may help to identify patterns
- Computational complexity
 - Big data sets cause prohibitively long runtime for data mining algorithms
 - Reduced data sets are useful the more the algorithms produce (almost) the same analytical results

How to approach data reduction?

- Data aggregation (basic statistics)
- Data generalization (abstraction to higher levels)
Data Reduction Strategies

Numerosity Reduction
- Reduce number of objects
 - Sampling (loss of data)
 - Aggregation (model parameters, e.g., center / spread)

Dimensionality Reduction
- Reduce number of attributes

Quantization, Discretization
- Reduce number of values per domain

Example Data Reduction

<table>
<thead>
<tr>
<th>ID</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54</td>
<td>56</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>12</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>63</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>86</td>
<td>23</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>A1</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>XS</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>XL</td>
<td>4</td>
</tr>
</tbody>
</table>
Data Reduction Strategies

Dimensionality reduction
Reduce number of attributes
▶ Linear methods: feature sub-selection, Principal Components Analysis, Random projections, Fourier transform, Wavelet transform
▶ Non-linear methods: Multidimensional scaling (force model)

Quantization, discretization
Reduce number of values per domain
▶ Binning (various types of histograms)
▶ Generalization along hierarchies (OLAP, attribute-oriented induction)
Data Generalization

- Quantization is a special case of generalization
 - E.g., group age (7 bits) to age_range (4 bits)
- Dimensionality reduction is degenerate quantization
 - Dropping age reduces 7 bits to zero bits
 - Corresponds to generalization of age to "all" = "any age" = no information

```
all
Teen
... 13 ...
Twen
19 ...
Mid-age
20 ...
30 ...
```
Data Aggregation

- Aggregation is numerosity reduction (= less tuples)
- Generalization yields duplicates: Merge duplicate tuples and introduce (additional) counter attribute

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>27</td>
<td>CS</td>
</tr>
<tr>
<td>Bob</td>
<td>26</td>
<td>CS</td>
</tr>
<tr>
<td>Eve</td>
<td>19</td>
<td>CS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>(any)</td>
<td>Twen</td>
<td>CS</td>
</tr>
<tr>
<td>(any)</td>
<td>Twen</td>
<td>CS</td>
</tr>
<tr>
<td>(any)</td>
<td>Teen</td>
<td>CS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>Major</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twen</td>
<td>CS</td>
<td>2</td>
</tr>
<tr>
<td>Teen</td>
<td>CS</td>
<td>1</td>
</tr>
</tbody>
</table>

Basics Data Reduction
Basic Aggregates

- **Central tendency**: Where is the data located? Where is it centered?
 - Examples: mean, median, mode, etc. (see below)
- **Variation, spread**: How much do the data deviate from the center?
 - Examples: variance / standard deviation, min-max-range, ...

Examples

- Age of students is around 20
- Shoe size is centered around 40
- Recent dates are around 2020
- Average income is in the thousands
Distributive Aggregate Measures

Distributive Measures

The result derived by applying the function to \(n \) aggregate values is the same as that derived by applying the function on all the data without partitioning.

Examples

- \(\text{count}(D_1 \cup D_2) = \text{count}(D_1) + \text{count}(D_2) \)
- \(\text{sum}(D_1 \cup D_2) = \text{sum}(D_1) + \text{sum}(D_2) \)
- \(\text{min}(D_1 \cup D_2) = \text{min}(\text{min}(D_1), \text{min}(D_2)) \)
- \(\text{max}(D_1 \cup D_2) = \text{max}(\text{max}(D_1), \text{max}(D_2)) \)
Algebraic Aggregate Measures

Can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function.

Examples

$\text{avg}(D_1 \cup D_2) = \frac{\text{sum}(D_1 \cup D_2)}{\text{count}(D_1 \cup D_2)} = \frac{\text{sum}(D_1) + \text{sum}(D_2)}{\text{count}(D_1) + \text{count}(D_2)}$

$\neq \text{avg}(\text{avg}(D_1), \text{avg}(D_2))$

$\text{standard deviation}(D_1 \cup D_2)$
Holistic Aggregate Measures

Holistic Measures

There is no constant bound on the storage size which is needed to determine/describe a sub-aggregate.

Examples

- **median**: value in the middle of a sorted series of values (=50% quantile)

 \[\text{median}(D_1 \cup D_2) \neq \text{simple_function}(\text{median}(D_1), \text{median}(D_2)) \]

- **mode**: value that appears most often in a set of values

- **rank**: \(k \)-smallest / \(k \)-largest value (cf. quantiles, percentiles)
Measuring the Central Tendency

Mean – (weighted) arithmetic mean

Well-known measure for central tendency ("average").

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \bar{x}_w = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}
\]

Mid-range

Average of the largest and the smallest values in a data set:

\[
\frac{(\text{max} + \text{min})}{2}
\]

Algebraic measures

- Applicable to numerical data only (sum, scalar multiplication)

What about categorical data?
Measuring the Central Tendency

Median

- Middle value if odd number of values
- For even number of values: average of the middle two values (numeric case), or one of the two middle values (non-numeric case)
- Applicable to ordinal data only (an ordering is required)
- Holistic measure

Examples

- never, never, never, rarely, rarely, often, usually, usually, always
- tiny, small, big, big, big, big, big, huge, huge
- tiny, tiny, small, medium, big, big, large, huge

What if there is no ordering?
Measuring the Central Tendency

Mode

- Value that occurs most frequently in the data
- Example: blue, red, blue, yellow, green, blue, red
- Unimodal, bimodal, trimodal, ...: There are 1, 2, 3, ... modes in the data (multi-modal in general), cf. mixture models
- There is no mode if each data value occurs only once
- Well suited for categorical (i.e., non-numerical) data
Measuring the Dispersion of Data

Variance

- Applicable to numerical data, scalable computation:

\[
\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \right]
\]

- Calculation by two passes: numerically much more stable
- Single pass: calculate sum of squares and square of sum in parallel
- Measures the spread around the mean
- It is zero if and only if all the values are equal
- Standard deviation: Square root of the variance
- Both the standard deviation and the variance are algebraic
Boxplot Analysis

Five-number summary of a distribution

▶ Minimum, Q1, Median, Q3, Maximum
▶ Represents 0%, 25%, 50%, 75%, 100%-quantile of the data
▶ Also called ”25-percentile”, etc.

Boxplot

▶ Boundaries: first and third quartiles
▶ Height: inter-quartile range (IQR)
▶ The median is marked by a line within the box
▶ Whiskers: minimum and maximum
▶ Outliers: usually values more than 1.5 · IQR below Q1 or above Q3
Boxplot Example

Iris Dataset

setosa versicolor virginica

class

4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

sepal length (cm)

setosa versuscolor virginica

Basics Data Reduction February 6, 2019 61
Data Generalization

- Which partitions of the data to aggregate?
 - All data
 - Overall mean, overall variance: too coarse (overgeneralized)
 - Different techniques to form groups for aggregation
 - Binning – histograms, based on value ranges
 - Generalization – abstraction based on generalization hierarchies
 - Clustering (see later) – based on object similarity
Histograms use binning to approximate data distributions

- Divide data into bins and store a representative (sum, average, median) for each bin
- Popular data reduction and analysis method
- Related to quantization problems
Equi-width Histograms

- Divide the range into N intervals of equal size: uniform grid
- If A and B are the lowest and highest values of the attribute, the width of intervals will be $(B - A)/N$

Positive
- Most straightforward

Negative
- Outliers may dominate presentation
- Skewed data is not handled well
Equi-width Histograms

Example

- Sorted data, 10 bins: 5, 7, 8, 8, 9, 11, 13, 13, 14, 14, 14, 15, 17, 17, 17, 18, 19, 23, 24, 25, 26, 26, 26, 27, 28, 32, 34, 36, 37, 38, 39, 97

- Insert 999
Equi-height Histograms

Divide the range into N intervals, each containing approx. the same number of samples (*quantile-based approach*)

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Good data scaling</td>
<td>▶ If any value occurs often, the equal frequency criterion might not be met (intervals have to be disjoint!)</td>
</tr>
</tbody>
</table>
Equi-height Histograms

Example

- Same data, 4 bins: 5, 7, 8, 8, 9, 11, 13, 13, 14, 14, 14, 15, 17, 17, 17, 18, 19, 23, 24, 25, 26, 26, 26, 27, 28, 32, 34, 36, 37, 38, 39, 97

- Median = 50%-quantile
 - More robust against outliers (cf. value 999 from above)
 - Four bin example is strongly related to boxplot
Concept Hierarchies: Examples

No (real) hierarchies

- Name: all
 - A. Abbeck
 - ... W. White

- Gender: all
 - male
 - female

- Phone: all
 - 158932
 - ... 98763

Set grouping hierarchies

- Age: all
 - 15-19
 - 15
 - ...
 - 19
 - ...
 - 20-24
 - ...
 - ...
 - 25
 - ...
 - 25-30
 - ...
 - ...
 - 30
Concept Hierarchies: Examples

Schema hierarchies

Place: all
- North America
 - Canada
 - Vancouver
 - Toronto
 - USA
- Asia
- Europe
 - Germany
 - France
 - Munich
 - Aachen

Major: all
- Science
 - CS
 - Math
 - Physics
- Business
 - ... (not specified)
- Engineering
 - EE
 - ... (not specified)
 - Civil Eng.
Concept Hierarchy for Categorical Data

- Concept hierarchies can be specified by experts or just by users.

- Heuristically generate a hierarchy for a set of (related) attributes:
 - based on the number of distinct values per attribute in the attribute set
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy

- Fails for counter examples: 20 distinct years, 12 months, 7 days_of_week, but not "year < month < days_of_week" with the latter on top.
Summarization-based Aggregation

Data Generalization

A process which abstracts a large set of task-relevant data in a database from low conceptual levels to higher ones.

conceptual levels

1
2
3
4
5

example:

all
federal states
states
countries
cities

Approaches:

▶ Data-cube approach (OLAP / Roll-up) – manual
▶ Attribute-oriented induction (AOI) – automated
Basic OLAP Operations

Roll up

Summarize data by climbing up hierarchy or by dimension reduction.

Drill down

Reverse of roll-up. From higher level summary to lower level summary or detailed data, or introducing new dimensions.

Slice and dice

Selection on one (slice) or more (dice) dimensions.

Pivot (rotate)

Reorient the cube, visualization, 3D to series of 2D planes.
Example: Roll up / Drill down

Query

```
SELECT *  
FROM business  
GROUP BY country, quarter  
```

Roll-Up

```
SELECT *  
FROM business  
GROUP BY continent, quarter  
```

```
SELECT *  
FROM business  
GROUP BY country  
```

Drill-Down

```
SELECT *  
FROM business  
GROUP BY city, quarter  
```

```
SELECT *  
FROM business  
GROUP BY country, quarter, product  
```
Example: Roll up in a Data Cube

Data Cube: Sales

<table>
<thead>
<tr>
<th>location (cities)</th>
<th>TV</th>
<th>computer</th>
<th>phone</th>
<th>security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago</td>
<td>605</td>
<td>825</td>
<td>14</td>
<td>400</td>
</tr>
<tr>
<td>New York</td>
<td>680</td>
<td>952</td>
<td>31</td>
<td>512</td>
</tr>
<tr>
<td>Toronto</td>
<td>812</td>
<td>31</td>
<td>30</td>
<td>501</td>
</tr>
<tr>
<td>Vancouver</td>
<td>927</td>
<td>512</td>
<td>38</td>
<td>580</td>
</tr>
</tbody>
</table>

Roll Up

Data Cube: Sales

<table>
<thead>
<tr>
<th>location (countries)</th>
<th>TV</th>
<th>computer</th>
<th>phone</th>
<th>security</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>605</td>
<td>825</td>
<td>14</td>
<td>400</td>
</tr>
<tr>
<td>Canada</td>
<td>680</td>
<td>952</td>
<td>31</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>812</td>
<td>31</td>
<td>30</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>927</td>
<td>38</td>
<td>38</td>
<td>580</td>
</tr>
</tbody>
</table>
Example: Slice Operation

```
SELECT income
FROM time t, product p, country c
WHERE p.name = 'VCR'
```

VCR dimension is chosen
Example: Dice Operation

```
SELECT income
FROM  time t, product p, country c
WHERE p.name = 'VCR' OR p.name = 'PC' AND t.quarter BETWEEN 2 AND 3
```

sub-data cube over PC, VCR and quarters 2 and 3 is extracted
Example: Pivot (rotate)

<table>
<thead>
<tr>
<th>year</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>product</td>
<td>TV</td>
<td>PC</td>
<td>VCR</td>
</tr>
</tbody>
</table>

↓ Pivot (rotate) ↓

<table>
<thead>
<tr>
<th>product</th>
<th>TV</th>
<th>PC</th>
<th>VCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

Basics Data Reduction February 6, 2019
Other operations

- *Drill across*: involving (across) more than one fact table
- *Drill through*: through the bottom level of the cube to its back-end relational tables (using SQL)
Specifying Generalization by a Star-Net

- Each circle is called a *footprint*
- Footprints represent the granularities available for OLAP operations
Discussion of OLAP-based Generalization

► Strength
 ▶ Efficient implementation of data generalization
 ▶ Computation of various kinds of measures, e.g., count, sum, average, max
 ▶ Generalization (and specialization) can be performed on a data cube by roll-up (and drill-down)

► Limitations
 ▶ Handles only dimensions of simple non-numeric data and measures of simple aggregated numeric values
 ▶ Lack of intelligent analysis, can’t tell which dimensions should be used and what levels the generalization should reach
Attribute-Oriented Induction (AOI)

- Apply aggregation by merging identical, generalized tuples and accumulating their respective counts.
- **Data focusing**: task-relevant data, including dimensions, and the result is the *initial relation*
- **Generalization Plan**: Perform generalization by either *attribute removal* or *attribute generalization*
Attribute-Oriented Induction (AOI)

Attribute Removal

Remove attribute A if:

- there is a large set of distinct values for A but there is no generalization operator (concept hierarchy) on A, or

- A's higher level concepts are expressed in terms of other attributes (e.g. street is covered by city, state, country).

Attribute Generalization

If there is a large set of distinct values for A, and there exists a set of generalization operators (i.e., a concept hierarchy) on A, then select an operator and generalize A.
Attribute Oriented Induction: Example

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Major</th>
<th>Birth place</th>
<th>Birth data</th>
<th>Residence</th>
<th>Phone</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Woodman</td>
<td>M</td>
<td>CS</td>
<td>Vancouver, BC, Canada</td>
<td>8-12-81</td>
<td>3511 Main St., Richmond</td>
<td>687-4598</td>
<td>3.67</td>
</tr>
<tr>
<td>Scott Lachance</td>
<td>M</td>
<td>CS</td>
<td>Montreal, Que, Canada</td>
<td>28-7-80</td>
<td>345 1st Ave., Richmond</td>
<td>253-9106</td>
<td>3.70</td>
</tr>
<tr>
<td>Laura Lee</td>
<td>F</td>
<td>Physics</td>
<td>Seattle, WA, USA</td>
<td>25-8-75</td>
<td>125 Austin Ave., Burnaby</td>
<td>420-5232</td>
<td>3.83</td>
</tr>
</tbody>
</table>

- **Name**: large number of distinct values, no hierarchy – **removed**
- **Gender**: only two distinct values – **retained**
- **Major**: many values, hierarchy exists – **generalized to Sci., Eng., Biz.**
- **Birth place**: many values, hierarchy – **generalized, e.g., to country**
- **Birth date**: many values – **generalized to age (or age_range)**
- **Residence**: many streets and numbers – **generalized to city**
- **Phone number**: many values, no hierarchy – **removed**
- **Grade_point_avg (GPA)**: hierarchy exists – **generalized to good, . . .**
- **Count**: additional attribute to aggregate base tuples
Attribute Oriented Induction: Example

Initial Relation:

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Major</th>
<th>Birth place</th>
<th>Birth data</th>
<th>Residence</th>
<th>Phone</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Woodman</td>
<td>M</td>
<td>CS</td>
<td>Vancouver, BC, Canada</td>
<td>8-12-81</td>
<td>3511 Main St., Richmond</td>
<td>687-4598</td>
<td>3.67</td>
</tr>
<tr>
<td>Scott Lachance</td>
<td>M</td>
<td>CS</td>
<td>Montreal, Que, Canada</td>
<td>28-7-80</td>
<td>345 1st Ave., Richmond</td>
<td>253-9106</td>
<td>3.70</td>
</tr>
<tr>
<td>Laura Lee</td>
<td>F</td>
<td>Physics</td>
<td>Seattle, WA, USA</td>
<td>25-8-75</td>
<td>125 Austin Ave., Burnaby</td>
<td>420-5232</td>
<td>3.83</td>
</tr>
</tbody>
</table>

Prime Generalized Relation:

<table>
<thead>
<tr>
<th>Gender</th>
<th>Major</th>
<th>Birth region</th>
<th>Age Range</th>
<th>Residence</th>
<th>GPA</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Science</td>
<td>Canada</td>
<td>20-25</td>
<td>Richmond</td>
<td>Very good</td>
<td>16</td>
</tr>
<tr>
<td>F</td>
<td>Science</td>
<td>Foreign</td>
<td>25-30</td>
<td>Burnaby</td>
<td>Excellent</td>
<td>22</td>
</tr>
</tbody>
</table>

Crosstab for generalized relation:

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>Foreign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>16</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>36</td>
<td>62</td>
</tr>
</tbody>
</table>
Problem: How many distinct values for an attribute?

- Overgeneralization: values are too high-level
- Undergeneralization: level not sufficiently high
 Both yield tuples of poor usefulness

Two common approaches

- Attribute-threshold control: default or user-specified, typically 2-8 values
- Generalized relation threshold control: control the size of the final relation/rule, e.g., 10-30
Next Attribute Selection Strategies for Generalization

- Aiming at *minimal degree of generalization*
 - Choose attribute that reduces the number of tuples the most
 - Useful heuristic: choose attribute with highest number of distinct values.
- Aiming at *similar degree of generalization* for all attributes
 - Choose the attribute currently having the least degree of generalization
- *User-controlled*
 - Domain experts may specify appropriate priorities for the selection of attributes
Agenda

1. Introduction

2. Basics
 - 2.1 Data Representation
 - 2.2 Data Reduction
 - 2.3 Visualization
 - 2.4 Privacy

3. Unsupervised Methods

4. Supervised Methods

5. Advanced Topics
Data Visualization

▶ Patterns in large data sets are hardly perceived from tabular numerical representations

▶ Data visualization transforms data in visually perceivable representations ("a picture is worth a thousand words")

▶ Combine capabilities:
 ▶ Computers are good in number crunching (and data visualization by means of computer graphics)
 ▶ Humans are good in visual pattern recognition

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mrz</th>
<th>Apr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Okt</th>
<th>Nov</th>
<th>Dez</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abu Dhabi</td>
<td>25</td>
<td>27</td>
<td>31</td>
<td>36</td>
<td>40</td>
<td>42</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>42</td>
<td>37</td>
<td>31</td>
</tr>
<tr>
<td>Acapulco</td>
<td>32</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Antalya</td>
<td>15</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>27</td>
<td>32</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>32</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>Atlanta</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>26</td>
<td>30</td>
<td>34</td>
<td>34</td>
<td>29</td>
<td>24</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>Annapolis</td>
<td>11</td>
<td>13</td>
<td>18</td>
<td>23</td>
<td>26</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>28</td>
<td>23</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Bangjkok</td>
<td>32</td>
<td>33</td>
<td>35</td>
<td>36</td>
<td>35</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Bogota</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>23</td>
<td>19</td>
<td>16</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>Caracas</td>
<td>30</td>
<td>28</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>Casablanca</td>
<td>18</td>
<td>18</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>26</td>
<td>24</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>Chicago</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>26</td>
<td>29</td>
<td>28</td>
<td>24</td>
<td>17</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Colombo (Sri Lanka)</td>
<td>31</td>
<td>31</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Dallas</td>
<td>13</td>
<td>16</td>
<td>21</td>
<td>25</td>
<td>29</td>
<td>33</td>
<td>36</td>
<td>36</td>
<td>32</td>
<td>26</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Denver</td>
<td>7</td>
<td>8</td>
<td>14</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>32</td>
<td>30</td>
<td>25</td>
<td>18</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Faro (Algarve)</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>21</td>
<td>23</td>
<td>27</td>
<td>29</td>
<td>29</td>
<td>26</td>
<td>23</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>Grand Canyon (Arizona)</td>
<td>6</td>
<td>8</td>
<td>13</td>
<td>15</td>
<td>21</td>
<td>27</td>
<td>29</td>
<td>27</td>
<td>25</td>
<td>18</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Harare</td>
<td>27</td>
<td>26</td>
<td>27</td>
<td>26</td>
<td>24</td>
<td>21</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>Helsinki</td>
<td>-3</td>
<td>-3</td>
<td>-2</td>
<td>2</td>
<td>9</td>
<td>15</td>
<td>20</td>
<td>23</td>
<td>21</td>
<td>17</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Heraklion (Kreta)</td>
<td>15</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Hongkong</td>
<td>19</td>
<td>20</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>32</td>
<td>30</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>Honolu</td>
<td>26</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>28</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Houston</td>
<td>16</td>
<td>19</td>
<td>23</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>32</td>
<td>28</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>Irkutsk</td>
<td>-14</td>
<td>-9</td>
<td>1</td>
<td>9</td>
<td>16</td>
<td>23</td>
<td>24</td>
<td>21</td>
<td>16</td>
<td>7</td>
<td>4</td>
<td>-13</td>
</tr>
<tr>
<td>Istanbul</td>
<td>9</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>23</td>
<td>27</td>
<td>30</td>
<td>30</td>
<td>26</td>
<td>20</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Jakarta (Nordostsibirien)</td>
<td>-35</td>
<td>-28</td>
<td>-10</td>
<td>3</td>
<td>14</td>
<td>23</td>
<td>26</td>
<td>21</td>
<td>11</td>
<td>-3</td>
<td>-25</td>
<td>-34</td>
</tr>
<tr>
<td>Johannesburg</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Kairo</td>
<td>19</td>
<td>20</td>
<td>24</td>
<td>27</td>
<td>32</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>34</td>
<td>30</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Kapstadt</td>
<td>27</td>
<td>27</td>
<td>26</td>
<td>24</td>
<td>21</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>22</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>Kathmandu</td>
<td>18</td>
<td>21</td>
<td>25</td>
<td>28</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>26</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>Larnaka (Zypern)</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>31</td>
<td>33</td>
<td>33</td>
<td>31</td>
<td>28</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>Las Palmas</td>
<td>21</td>
<td>20</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>27</td>
<td>28</td>
<td>28</td>
<td>27</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>15</td>
<td>16</td>
<td>23</td>
<td>26</td>
<td>31</td>
<td>38</td>
<td>40</td>
<td>39</td>
<td>35</td>
<td>27</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Lhasa</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>17</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Lima</td>
<td>26</td>
<td>26</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Lissabon</td>
<td>14</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>23</td>
<td>27</td>
<td>28</td>
<td>27</td>
<td>22</td>
<td>17</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
Data Visualization Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Idea</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric</td>
<td>Visualization of geometric transformations and projections of the data</td>
<td>Scatterplots, Parallel Coordinates</td>
</tr>
<tr>
<td>Icon-Based</td>
<td>Visualization of data as icons</td>
<td>Chernoff Faces, Stick Figures</td>
</tr>
<tr>
<td>Pixel-oriented</td>
<td>Visualize each attribute value of each data object by one coloured pixel</td>
<td>Recursive Patterns</td>
</tr>
<tr>
<td>Other</td>
<td>Hierarchical Techniques, Graph-based Techniques, Hybrid-Techniques, ...</td>
<td></td>
</tr>
</tbody>
</table>

Characteristic

The p-quantile x_p is the value for which the fraction p of all data is less than or equal to x_p.

Benefit

Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
Quantile-Quantile (Q-Q) Plot

Characteristic
Graphs the quantiles of one univariate distribution against the corresponding quantiles of another.

Benefit
Allows the user to compare to distributions against each other.
Scatter Plot

Characteristic

Each pair of values is treated as a pair of coordinates and plotted as points in the plane.

Benefit

Provides a first look at bivariate data to see clusters of points, outliers, etc.
Characteristic

Loess curve is fitted by setting two parameters: a smoothing parameter, and the degree of the polynomials that are fitted by the regression.

Benefit

Adds a smooth curve to a scatter plot in order to provide better perception of the pattern of dependence.
Scatterplot Matrix

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Ordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix of scatterplots for pairs of dimensions</td>
<td>Ordering of dimensions is important:</td>
</tr>
<tr>
<td></td>
<td>- Reordering improves understanding of structures and reduces clutter</td>
</tr>
<tr>
<td></td>
<td>- Interestingness of orderings can be evaluated with quality metrics (e.g. Peng et al.)</td>
</tr>
</tbody>
</table>

Parallel Coordinates

Characteristics

- d-dimensional data space is visualised by d parallel axes
- Each axis is scaled to min-max range
- Object = polygonal line intersecting axis at value in this dimension
Parallel Coordinates

Ordering

▶ Again, the ordering of the dimensions is important
▶ Quality metric for interestingness of ordering
▶ Quality or interestingness of orderings depends on what you want to visualize

▶ Visualize clusters
▶ Visualize correlations between dimensions

Bertini et al., Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization, Trans. on Vis. and Comp. Graph., 2011.
Spiderweb Model

Characteristics

- Illustrate any single object by a polygonal line
- Contract origins of all axes to a global origin point
- Works well for few objects only
Pixel-Oriented Techniques

Characteristics

▶ Each data value is mapped onto a colored pixel
▶ Each dimension is shown in a separate window

How to arrange the pixel ordering?

One strategy: Recursive Patterns iterated line and column-based arrangements

Chernoff Faces

Characteristics
Map d-dimensional space to facial expression, e.g. length of nose $= \text{dim } 6$; curvature of mouth $= \text{dim } 8$

Advantage
Humans can evaluate similarity between faces much more intuitively than between high-dimensional vectors

Disadvantages
- Without dimensionality reduction only applicable to data spaces with up to 18 dimensions
- Which dimension represents what part?

Chernoff Faces

Example: Weather Data

<table>
<thead>
<tr>
<th>City</th>
<th>Precip. average</th>
<th>Temp. average</th>
<th>Temp. max average</th>
<th>Temp. min average</th>
<th>Record max</th>
<th>Record min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athens</td>
<td>37</td>
<td>17</td>
<td>21</td>
<td>13</td>
<td>42</td>
<td>-3</td>
</tr>
<tr>
<td>Bucharest</td>
<td>58</td>
<td>11</td>
<td>16</td>
<td>5</td>
<td>49</td>
<td>-23</td>
</tr>
<tr>
<td>Canberra</td>
<td>62</td>
<td>12</td>
<td>19</td>
<td>6</td>
<td>42</td>
<td>-10</td>
</tr>
<tr>
<td>Dublin</td>
<td>74</td>
<td>10</td>
<td>12</td>
<td>6</td>
<td>28</td>
<td>-7</td>
</tr>
<tr>
<td>Helsinki</td>
<td>63</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>31</td>
<td>-36</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>218</td>
<td>23</td>
<td>25</td>
<td>21</td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>London</td>
<td>75</td>
<td>10</td>
<td>13</td>
<td>5</td>
<td>35</td>
<td>-13</td>
</tr>
<tr>
<td>Madrid</td>
<td>45</td>
<td>13</td>
<td>20</td>
<td>7</td>
<td>40</td>
<td>-10</td>
</tr>
<tr>
<td>Mexico City</td>
<td>63</td>
<td>17</td>
<td>23</td>
<td>11</td>
<td>32</td>
<td>-3</td>
</tr>
<tr>
<td>Moscow</td>
<td>59</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>35</td>
<td>-42</td>
</tr>
<tr>
<td>New York</td>
<td>118</td>
<td>12</td>
<td>17</td>
<td>8</td>
<td>40</td>
<td>-18</td>
</tr>
<tr>
<td>Porto</td>
<td>126</td>
<td>14</td>
<td>18</td>
<td>10</td>
<td>34</td>
<td>-2</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>109</td>
<td>25</td>
<td>30</td>
<td>20</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>Rome</td>
<td>80</td>
<td>15</td>
<td>20</td>
<td>11</td>
<td>37</td>
<td>-7</td>
</tr>
<tr>
<td>Tunis</td>
<td>44</td>
<td>18</td>
<td>23</td>
<td>13</td>
<td>46</td>
<td>-1</td>
</tr>
<tr>
<td>Zurich</td>
<td>107</td>
<td>9</td>
<td>12</td>
<td>6</td>
<td>35</td>
<td>-20</td>
</tr>
</tbody>
</table>

Table 4.1 Annual climatic values in Celsius of some world cities. Values from http://www.weatherbase.com.

Chernoff Faces

Example: Finance Data

FIGURE 3
Facial Representation of Financial Performance (1 to 5 Years Prior to Failure)

<table>
<thead>
<tr>
<th>Date Dimensions</th>
<th>5</th>
<th>4</th>
<th>Year to Failure</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Return on Assets</td>
<td>0.10</td>
<td>0.11</td>
<td>0.06</td>
<td>0.03</td>
<td>-0.16</td>
<td></td>
</tr>
<tr>
<td>2. Debt Service</td>
<td>3.66</td>
<td>3.79</td>
<td>1.55</td>
<td>0.78</td>
<td>-14.11</td>
<td></td>
</tr>
<tr>
<td>3. Cash Flows</td>
<td>1.53</td>
<td>1.48</td>
<td>1.39</td>
<td>1.35</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>4. Capitalization</td>
<td>0.22</td>
<td>0.20</td>
<td>0.18</td>
<td>0.16</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>5. Current Ratio</td>
<td>71.40</td>
<td>89.10</td>
<td>97.85</td>
<td>96.80</td>
<td>58.21</td>
<td></td>
</tr>
<tr>
<td>6. Cash Turnover</td>
<td>24.03</td>
<td>25.92</td>
<td>25.62</td>
<td>27.40</td>
<td>71.26</td>
<td></td>
</tr>
<tr>
<td>7. Receivables Turnover</td>
<td>5.25</td>
<td>4.46</td>
<td>4.26</td>
<td>4.36</td>
<td>9.56</td>
<td></td>
</tr>
<tr>
<td>8. Inventory Turnover</td>
<td>5.38</td>
<td>4.77</td>
<td>4.57</td>
<td>4.44</td>
<td>5.34</td>
<td></td>
</tr>
<tr>
<td>9. Sales per Dollar Working Capital</td>
<td>6.74</td>
<td>6.33</td>
<td>7.02</td>
<td>7.61</td>
<td>-45.77</td>
<td></td>
</tr>
<tr>
<td>10. Retained Earning/Total Assets</td>
<td>0.32</td>
<td>0.30</td>
<td>0.01</td>
<td>-0.01</td>
<td>-0.26</td>
<td></td>
</tr>
<tr>
<td>11. Total Assets</td>
<td>0.94</td>
<td>.76</td>
<td>0.39</td>
<td>0.45</td>
<td>0.43</td>
<td></td>
</tr>
</tbody>
</table>

Agenda

1. Introduction

2. Basics
 2.1 Data Representation
 2.2 Data Reduction
 2.3 Visualization
 2.4 Privacy

3. Unsupervised Methods

4. Supervised Methods

5. Advanced Topics
Data Privacy

Situation

- Huge volume of data is collected
- From a variety of devices and platforms (e.g. Smartphones, Wearables, Social Networks, Medical systems)
- Capturing human behaviors, locations, routines, activities and affiliations
- Providing an opportunity to perform data analytics

Data Abuse is inevitable

- It compromises individual’s privacy
- Or breaches the security of an institution
Data Privacy

- These privacy concerns need to be mitigated
- They have prompted huge research interest to *protect data*
- But,

 Strong Privacy Protection \(\implies\) Poor Data Utility
 Good Data Utility \(\implies\) Weak Privacy Protection

Challenge

Find a good trade-off between Data Utility and Privacy
Objectives of Privacy Preserving Data Mining

- Ensure data privacy
- Maintain a good trade-off between data utility and privacy

Paradigms

- k-Anonymity
- l-Diversity
- Differential Privacy
Linkage Attack

Method

Different public records can be linked to it to breach privacy

<table>
<thead>
<tr>
<th>Private</th>
<th>Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Sex</td>
</tr>
<tr>
<td>Alice</td>
<td>F</td>
</tr>
<tr>
<td>Janes</td>
<td>F</td>
</tr>
<tr>
<td>Jones</td>
<td>M</td>
</tr>
<tr>
<td>Frank</td>
<td>M</td>
</tr>
<tr>
<td>Ben</td>
<td>M</td>
</tr>
<tr>
<td>Betty</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Records from Sport Club</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Alice</td>
</tr>
<tr>
<td>Theo</td>
</tr>
<tr>
<td>John</td>
</tr>
<tr>
<td>Betty</td>
</tr>
<tr>
<td>James</td>
</tr>
</tbody>
</table>
Three kinds of attributes:

1. **Key Attributes**: Uniquely identifiable attributes (e.g., Name, Social Security Number, Telephone Number)

2. **Quasi-identifier**: Groups of attributes that can be combined with external data to uniquely re-identify an individual (e.g. (Date of Birth, Zip Code, Gender))

3. **Sensitive Attributes**: An attacker should not be able to combine these with the key attributes. (e.g. Disease, Salary, Habit, Location etc.)
Attention

Hiding key attributes alone does **not** guarantee privacy.

An attacker may be able to break the privacy by combining the quasi-identifiers from the data with those from publicly available information.

Definition: \(k \)-Anonymity

Given a set of quasi-identifiers in a database table, the database table is said to be \(k \)-Anonymous, if the sequence of records in each quasi-identifier exists at least \(k \) times.

Ensure privacy by *Suppression* or *Generalization* of quasi-identifiers.
Suppression

Accomplished by replacing a part or the entire attribute value by placeholder, e.g. “?” (= generalization)

Example

- Suppress Postal Code: 52062 \mapsto 52???
- Suppress Gender: Male \mapsto ?; Female \mapsto ?
k-Anonymity: Generalization

Generalization
Accomplished by aggregating values from fine levels to coarser resolution using generalisation hierarchy.

Example
Generalize exam grades:

- Not Available
- Passed
- Failed
- {Good, Average}
- Very Good
- Excellent
- Sick
- Poor
- Very Poor
Background Knowledge Attack

Lack of diversity of the sensitive attribute values (homogeneity)

Example

- **Background Knowledge**: Alice is (i) 29 years old and (ii) female.
- **Homogeneity**: All 2*-aged females have Breast Cancer.
 → Alice has BC!

<table>
<thead>
<tr>
<th>Release</th>
<th>Quasi Identifier</th>
<th>Sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Age</td>
<td>Zip</td>
</tr>
<tr>
<td>F</td>
<td>2?</td>
<td>520??</td>
</tr>
<tr>
<td>F</td>
<td>2?</td>
<td>520??</td>
</tr>
<tr>
<td>M</td>
<td>2?</td>
<td>520??</td>
</tr>
<tr>
<td>M</td>
<td>3?</td>
<td>520??</td>
</tr>
<tr>
<td>M</td>
<td>3?</td>
<td>520??</td>
</tr>
<tr>
<td>F</td>
<td>3?</td>
<td>520??</td>
</tr>
</tbody>
</table>

This led to the creation of a new privacy model called l-diversity.
Distinct l-Diversity

An quasi-identifier is l-diverse, if there are at least l different values. A dataset is l-diverse, if all QIs are l-diverse.

Example

```
<table>
<thead>
<tr>
<th>Quasi Identifier</th>
<th>Sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI 1</td>
<td>Headache</td>
</tr>
<tr>
<td>QI 1</td>
<td>Headache</td>
</tr>
<tr>
<td>QI 1</td>
<td>Headache</td>
</tr>
<tr>
<td>QI 2</td>
<td>Cancer</td>
</tr>
<tr>
<td>QI 2</td>
<td>Cancer</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Quasi Identifier</th>
<th>Sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI 1</td>
<td>Headache</td>
</tr>
<tr>
<td>QI 1</td>
<td>Cancer</td>
</tr>
<tr>
<td>QI 2</td>
<td>Headache</td>
</tr>
<tr>
<td>QI 2</td>
<td>Cancer</td>
</tr>
</tbody>
</table>
```
/Diversity

Other Variants

- **Entropy /Diversity**: For each equivalent class, the entropy of the distribution of its sensitive values must be at least \(l \)
- **Probabilistic /Diversity**: The most frequent sensitive value of an equivalent class must be at most \(1/l \)

Limitations

- Not necessary at times
- Difficult to achieve: For large record size, many equivalent classes will be needed to satisfy /Diversity
- Does not consider the distribution of sensitive attributes
Background Attack Assumption

- k-Anonymity and l-Diversity make assumptions about the adversary
- They at times fall short of their goal to prevent data disclosure
- There is another privacy paradigm which does not rely on background knowledge, called *Differential Privacy*
Core Idea

Privacy through data perturbation.

- The addition or removal of one record from a database should not reveal any information to an adversary, i.e. your presence or absence does not reveal or leak any information.

- Use a randomization mechanism to perturb query results of count, sum, mean functions, as well as other statistical query functions.
Definition

A randomized mechanism $R(x)$ provides ϵ-differential privacy if for any two databases D_1 and D_2 that differ on at most one element, and all outputs $S \subseteq \text{Range}(R)$

$$\frac{Pr[R(D_1) \in S]}{Pr[R(D_2) \in S]} \leq \exp(\epsilon)$$

ϵ is a parameter called privacy budget/level.
Data Perturbation

Data perturbation is achieved by noise addition.

Some Kinds of Noise

- Laplace noise
- Gaussian noise
- Exponential Mechanism
Agenda

1. Introduction
2. Basics
3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.1.1 Frequent Itemset Mining
 3.1.2 Association Rule Mining
 3.1.3 Sequential Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection
4. Supervised Methods
5. Advanced Topics
What is Frequent Pattern Mining?

Setting: Transaction Databases

A database of transactions, where each transaction comprises a set of items, e.g. one transaction is the basket of one customer in a grocery store.

Frequent Pattern Mining

Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.

Applications

Basket data analysis, cross-marketing, catalogue design, loss-leader analysis, clustering, classification, recommendation systems, etc.
What is Frequent Pattern Mining?

Task 1: Frequent Itemset Mining

Find all subsets of items that occur together in many transactions.

Example

Which items are bought together frequently?

\[D = \{ \{ \text{butter, bread, milk, sugar} \}, \{ \text{butter, flour, milk, sugar} \}, \{ \text{butter, eggs, milk, salt} \}, \{ \text{eggs} \}, \{ \text{butter, flour, milk, salt, sugar} \} \} \]

\(\Rightarrow \) 80% of transactions contain the itemset \{milk, butter\}
What is Frequent Pattern Mining?

Task 2: Association Rule Mining

Find all rules that correlate the presence of one set of items with that of another set of items in the transaction database.

Example

98% of people buying tires and auto accessories also get automotive service done
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.1.1 Frequent Itemset Mining
 3.1.2 Association Rule Mining
 3.1.3 Sequential Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
Mining Frequent Itemsets: Basic Notions

- **Items** \(I = \{ i_1, \ldots, i_m \} \): a set of literals (denoting items)
- **Itemset** \(X \): Set of items \(X \subseteq I \)
- **Database** \(D \): Set of transactions \(T \), each transaction is a set of items \(T \subseteq I \)
- **Transaction** \(T \) contains an itemset \(X \): \(X \subseteq T \)
- **Length** of an itemset \(X \) equals its cardinality \(|X| \)
- **k-itemset**: itemset of length \(k \)
- **(Relative) Support** of an itemset: \(supp(X) = \frac{|\{ T \in D | X \subseteq T \}|}{|D|} \)
- **\(X \)** is frequent if \(supp(X) \geq minSup \) for threshold \(minSup \).

Goal

Given a database \(D \) and a threshold \(minSup \), find all frequent itemsets \(X \in Pot(I) \).
Mining Frequent Itemsets: Basic Idea

Naïve Algorithm
Count the frequency of all possible subsets of \(I \) in the database \(D \).

Problem
Too expensive since there are \(2^m \) such itemsets for \(m \) items (for \(|I| = m, 2^m = \) cardinality of the powerset of \(I \)).
Mining Frequent Patterns: Apriori Principle

Apriori Principle (anti-monotonicity)

- Any non-empty subset of a frequent itemset is frequent, too!
 \[A \subseteq I : \text{supp}(A) \geq \text{minSup} \implies \forall \emptyset \neq A' \subset A : \text{supp}(A') \geq \text{minSup} \]

- Any superset of a non-frequent itemset is non-frequent, too!
 \[A \subseteq I : \text{supp}(A) < \text{minSup} \implies \forall A' \supset A : \text{supp}(A') < \text{minSup} \]
Apriori Algorithm

Idea

- First count the 1-itemsets, then the 2-itemsets, then the 3-itemsets, and so on.
- When counting \((k + 1)\)-itemsets, only consider those \((k + 1)\)-itemsets where all subsets of length \(k\) have been determined as frequent in the previous step.
Apriori Algorithm

variable C_k: candidate itemsets of size k

variable L_k: frequent itemsets of size k

$L_1 = \{\text{frequent items}\}$

for ($k = 1; L_k \neq \emptyset; k++$) do

produce candidates.

join L_k with itself to produce C_{k+1}

discard $(k + 1)$-itemsets from C_{k+1} that ...

... contain non-frequent k-itemsets as subsets

$C_{k+1} = \text{candidates generated from } L_k$

prune step

for each transaction $T \in D$ do

prove candidates.

increment the count of all candidates in C_{k+1} ...

... that are contained in T

$L_{k+1} = \text{candidates in } C_{k+1} \text{ with minSupp}$

return $\bigcup_k L_k$
Apriori Algorithm: Generating Candidates – Join Step

Requirements for Candidate \((k + 1)\)-itemsets

- **Completeness**: Must contain all frequent \((k + 1)\)-itemsets (superset property \(C_{k+1} \supseteq L_{k+1}\))
- **Selectiveness**: Significantly smaller than the set of all \((k + 1)\)-subsets

Suppose the itemsets are sorted by any order (e.g. lexicographic)

Step 1: Joining \((C_{k+1} = L_k \Join L_k)\)

- Consider frequent \(k\)-itemsets \(p\) and \(q\)
- \(p\) and \(q\) are joined if they share the same first \((k - 1)\) items.
<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 3 \ (\implies k + 1 = 4)</td>
</tr>
<tr>
<td>p = (a, c, f) \in L_k</td>
</tr>
<tr>
<td>q = (a, c, g) \in L_k</td>
</tr>
<tr>
<td>r = (a, c, f, g) \in C_{k+1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SQL example</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert into C_{k+1}</td>
</tr>
<tr>
<td>select p.i_1, p.i_2, \ldots, p.i_k, q.i_k</td>
</tr>
<tr>
<td>from L_k : p, L_k : q</td>
</tr>
<tr>
<td>where p.i_1 = q.i_1, \ldots, p.i_{k-1} = q.i_{k-1}, p.i_k < q.i_k</td>
</tr>
</tbody>
</table>
Apriori Algorithm: Generating Candidates – Prune Step

<table>
<thead>
<tr>
<th>Step 2: Pruning ($L_{k+1} = {X \in C_{k+1} \mid supp(X) \geq minSup}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Naïve: Check support of every itemset in C_{k+1} → inefficient for huge C_{k+1}</td>
</tr>
<tr>
<td>▶ Better: Apply Apriori principle first: Remove candidate $(k+1)$-itemsets which contain a non-frequent k-subset s, i.e., $s \notin L_k$</td>
</tr>
</tbody>
</table>

Pseudocode

```plaintext
for all $c \in C_{k+1}$ do
    for all $k$-subsets $s$ of $c$ do
        if $s \notin L_k$ then
            Delete $c$ from $C_{k+1}$
```

Unsupervised Methods Frequent Pattern Mining

February 6, 2019 126
Apriori Algorithm: Generating Candidates – Prune Step

Example

- $L_3 = \{acf, acg, afg, afh, cfg\}$
- Candidates after join step: $\{acfg, afgh\}$
- In the pruning step: delete $afgh$ because $fgh \notin L_3$, i.e. fgh is not a frequent 3-itemset (also $agh \notin L_3$)
- $C_4 = \{acfg\}$ \Rightarrow check the support to generate L_4
Apriori Algorithm: Full example

Database

<table>
<thead>
<tr>
<th>TID</th>
<th>items</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>acdf</td>
</tr>
<tr>
<td>1</td>
<td>bce</td>
</tr>
<tr>
<td>2</td>
<td>abce</td>
</tr>
<tr>
<td>3</td>
<td>aef</td>
</tr>
</tbody>
</table>

\[\text{minSup} = 0.5 \]

Alphabetic Ordering

<table>
<thead>
<tr>
<th>k candidate</th>
<th>prune</th>
<th>count threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>3</td>
<td>e</td>
</tr>
<tr>
<td>f</td>
<td>2</td>
<td>f</td>
</tr>
</tbody>
</table>

Frequency-Ascending Ordering

<table>
<thead>
<tr>
<th>k candidate</th>
<th>prune</th>
<th>count threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>f</td>
<td>2</td>
<td>f</td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>3</td>
<td>e</td>
</tr>
</tbody>
</table>

Unsupervised Methods

Frequent Pattern Mining
Counting Candidate Support

Motivation
Why is counting supports of candidates a problem?
- Huge number of candidates
- One transaction may contain many candidates

Solution
Store candidate itemsets in hash-tree
Counting Candidate Support: Hash Tree

Hash-Tree

- Leaves contain itemset lists with their support (e.g. counts)
- Interior nodes comprise hash tables
- *subset* function to find all candidates contained transaction

Example

3-itemsets; \(h(i) = i \mod 3 \)
Hash-Tree: Construction

Search

- Start at the root (level 1)
- At level d: Apply hash function h to d-th item in the itemset

Example

3-itemsets; $h(i) = i \mod 3$
Hash-Tree: Construction

Insertion

- Search for the corresponding leaf node
- Insert the itemset into leaf; if an overflow occurs:
 - Transform the leaf node into an internal node
 - Distribute the entries to the new leaf nodes according to the hash function h

Example

3-itemsets; $h(i) = i \mod 3$

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Hash Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3 6 7)</td>
<td>0</td>
</tr>
<tr>
<td>(3 5 11)</td>
<td>1</td>
</tr>
<tr>
<td>(7 9 12)</td>
<td>2</td>
</tr>
<tr>
<td>(1 4 11)</td>
<td>0</td>
</tr>
<tr>
<td>(1 7 9)</td>
<td>2</td>
</tr>
<tr>
<td>(7 8 9)</td>
<td>2</td>
</tr>
<tr>
<td>(1 11 12)</td>
<td>0</td>
</tr>
<tr>
<td>(2 3 8)</td>
<td>2</td>
</tr>
<tr>
<td>(5 6 7)</td>
<td>2</td>
</tr>
<tr>
<td>(2 5 6)</td>
<td>1</td>
</tr>
<tr>
<td>(2 5 7)</td>
<td>1</td>
</tr>
<tr>
<td>(5 8 11)</td>
<td>2</td>
</tr>
</tbody>
</table>

Unsupervised Methods Frequent Pattern Mining February 6, 2019 132
Hash-Tree: Counting

Search all candidates of length k in transaction $T = (t_1, \ldots, t_n)$

- **At root:**
 - Compute hash values for all items t_1, \ldots, t_{n-k+1}
 - Continue search in all resulting child nodes

- **At internal node at level d (reached after hashing of item t_i):**
 - Determine the hash values and continue the search for each item t_j with $i < j \leq n - k + d$

- **At leaf node:**
 - Check whether the itemsets in the leaf node are contained in transaction T

Example

3-itemsets; $h(i) = i \mod 3$

Transaction:

$\{1, 3, 7, 9, 12\}$
Huge Candidate Sets

- 10^4 frequent 1-itemsets will generate 10^7 candidate 2-itemsets
- To discover a frequent pattern of size 100, one needs to generate $2^{100} \approx 10^{30}$ candidates.

Multiple Database Scans

- Needs n or $n + 1$ scans, where n is the length of the longest pattern

Is it possible to mine the complete set of frequent itemsets without candidate generation?
Idea

- Compress large database into compact tree structure; complete for frequent pattern mining, but avoiding several costly database scans (called FP-tree)
- Divide compressed database into *conditional databases* associated with one frequent item
1. Scan DB once, find frequent 1-itemsets (single items); Order frequent items in frequency descending order

2. Scan DB again:
 2.1 Keep only freq. items; sort by descending freq.
 2.2 Does path with common prefix exist?
 Yes: Increment counter; append suffix;
 No: Create new branch
Benefits of the FP-Tree Structure

<table>
<thead>
<tr>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ never breaks a long pattern of any transaction</td>
</tr>
<tr>
<td>▶ preserves complete information for frequent pattern mining</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compactness</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ reduce irrelevant information – infrequent items are gone</td>
</tr>
<tr>
<td>▶ frequency descending ordering: more frequent items are more likely to be shared</td>
</tr>
<tr>
<td>▶ never be larger than the original database (if not count node-links and counts)</td>
</tr>
<tr>
<td>▶ Experiments demonstrate compression ratios over 100</td>
</tr>
</tbody>
</table>
Mining Frequent Patterns Using FP-Tree

General Idea: (Divide-and-Conquer)
Recursively grow frequent pattern path using the FP-tree

Method
1. Construct conditional pattern base for each node in the FP-tree
2. Construct conditional FP-tree from each conditional pattern-base
3. Recursively mine conditional FP-trees and grow frequent patterns obtained so far; If the conditional FP-tree contains a single path, simply enumerate all the patterns
Major Steps to Mine FP-Tree: Conditional Pattern Base

1. Start from header table
2. Visit all nodes for this item (following links)
3. Accumulate all transformed prefix paths to form conditional pattern base (the frequency can be read from the node).
Properties of FP-Tree for Conditional Pattern Bases

Node-Link Property

For any frequent item a_i, all the possible frequent patterns that contain a_i can be obtained by following a_i’s node-links, starting from a_i’s head in the FP-tree header.

Prefix Path Property

To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P needs to be accumulated, and its frequency count should carry the same count as node a_i.
Construct conditional FP-tree from each conditional pattern-base

- The prefix paths of a suffix represent the conditional basis can be regarded as transactions of a database.
- For each pattern-base:
 - Accumulate the count for each item in the base
 - Re-sort items within sets by frequency
 - Construct the FP-tree for the frequent items of the pattern base

<table>
<thead>
<tr>
<th>Conditional Pattern</th>
<th>Cond. Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>∅</td>
</tr>
<tr>
<td>c</td>
<td>b:3, ∅</td>
</tr>
<tr>
<td>d</td>
<td>bc:3, b:2, c:1</td>
</tr>
<tr>
<td>e</td>
<td>c:2, bd:1</td>
</tr>
<tr>
<td>f</td>
<td>ce:2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example: e-conditional FP-Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>d</td>
</tr>
</tbody>
</table>
Major Steps to Mine FP-Tree: Conditional FP-Tree

Build conditional FP-Trees for each item

<table>
<thead>
<tr>
<th>Item</th>
<th>Cond. Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>∅</td>
</tr>
<tr>
<td>c</td>
<td>b:3, ∅</td>
</tr>
<tr>
<td>d</td>
<td>bc:3, b:2, c:1</td>
</tr>
<tr>
<td>e</td>
<td>c:2, bd:1</td>
</tr>
<tr>
<td>f</td>
<td>ce:2</td>
</tr>
</tbody>
</table>

∅ | b = ∅ | ∅ | c | ∅ | d | ∅ | e | ∅ | f

∅ | b:3 | ∅ | c:1 | b:5 | c:2 | c:2

∅ | b:3 | ∅ | c:1 | b:5 | e:2 |
Base Case: Single Path

If the conditional FP-tree contains a single path, simply enumerate all the patterns (enumerate all combinations of sub-paths)

Example

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>All frequent patterns concerning f:</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>f</td>
<td>$c:2$</td>
<td>$e:2$</td>
<td>f, fc, fe, fce</td>
</tr>
</tbody>
</table>
Recursive Case: Non-degenerated Tree

If the conditional FP-tree is not just a single path, create conditional pattern base for this smaller tree, and recurse.

Example

<table>
<thead>
<tr>
<th>Item</th>
<th>Cond. Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>b:5</td>
<td>∅</td>
</tr>
<tr>
<td>c:1</td>
<td></td>
</tr>
<tr>
<td>c:3</td>
<td>b:3, ∅</td>
</tr>
<tr>
<td>b:3</td>
<td></td>
</tr>
</tbody>
</table>

\[
\emptyset | d \\
\emptyset | d b = \emptyset \\
\emptyset | d c \\
\]
Pattern Growth Property

Let X be a frequent itemset in D, B be X’s conditional pattern base, and Y be an itemset in B. Then $X \cup Y$ is a frequent itemset in D if and only if Y is frequent in B.

Example

"abcdef" is a frequent pattern, if and only if

- "abcde" is a frequent pattern, and
- "f" is frequent in the set of transactions containing "abcde"
Why Is Frequent Pattern Growth Fast?

Performance study\(^1\) shows: FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection.

Reasoning:

- No candidate generation, no candidate test (Apriori algorithm has to proceed breadth-first)
- Use compact data structure
- Eliminate repeated database scan
- Basic operation is counting and FP-tree building

Image Source: [1]

\(^1\) Han, Pei & Yin, *Mining frequent patterns without candidate generation*, SIGMOD’00
Maximal or Closed Frequent Itemsets

Challenge

Often, there is a huge number of frequent itemsets (especially if minSup is set too low), e.g. a frequent itemset of length 100 contains $2^{100} - 1$ many frequent subsets.

Closed Frequent Itemset

Itemset X is *closed* in dataset D if for all $Y \supseteq X : \text{supp}(Y) < \text{supp}(X)$.

⇒ The set of closed frequent itemsets contains complete information regarding its corresponding frequent itemsets.

Maximal Frequent Itemset

Itemset X is *maximal* in dataset D if for all $Y \supseteq X : \text{supp}(Y) < \text{minSup}$.

⇒ The set of maximal itemsets does not contain the complete support information

⇒ More compact representation
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.1.1 Frequent Itemset Mining
 3.1.2 Association Rule Mining
 3.1.3 Sequential Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
Simple Association Rules: Introduction

Example

Transaction database:

\[D = \{ \{ \text{butter, bread, milk, sugar} \}, \]
\[\{ \text{butter, flour, milk, sugar} \}, \]
\[\{ \text{butter, eggs, milk, salt} \}, \]
\[\{ \text{eggs} \}, \]
\[\{ \text{butter, flour, milk, salt, sugar} \} \} \]

Frequent itemsets:

<table>
<thead>
<tr>
<th>items</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{butter}</td>
<td>4</td>
</tr>
<tr>
<td>{milk}</td>
<td>4</td>
</tr>
<tr>
<td>{butter, milk}</td>
<td>4</td>
</tr>
<tr>
<td>{sugar}</td>
<td>3</td>
</tr>
<tr>
<td>{butter, sugar}</td>
<td>3</td>
</tr>
<tr>
<td>{milk, sugar}</td>
<td>3</td>
</tr>
<tr>
<td>{butter, milk, sugar}</td>
<td>3</td>
</tr>
</tbody>
</table>

Question of interest

▶ If milk and sugar are bought, will the customer always buy butter as well? milk, sugar \(\Rightarrow\) butter?

▶ In this case, what would be the probability of buying butter?
Simple Association Rules: Basic Notions

Let *Items*, *Itemset*, *Database*, *Transaction*, *Transaction Length*, *k-itemset*, *(relative) Support*, *Frequent Itemset* be defined as before. Additionally:

- The items in transactions and itemsets are **sorted** lexicographically: itemset $X = (x_1, \ldots, x_k)$, where $x_1 \leq, \ldots, \leq x_k$
- **Association rule**: An association rule is an implication of the form $X \Rightarrow Y$ where $X, Y \subseteq I$ are two itemsets with $X \cap Y = \emptyset$
- Note: simply enumerating all possible association rules is not reasonable!

What are the interesting association rules w.r.t. D?
Interestingness of Association Rules

Goal

Quantify the interestingness of an association rule with respect to a transaction database D.

Support

- Frequency (probability) of the entire rule with respect to D:

$$supp(X \Rightarrow Y) = P(X \cup Y) = \frac{|\{T \in D \mid X \cup Y \subseteq T\}|}{|D|} = supp(X \cup Y)$$

- "Probability that a transaction in D contains the itemset."
Interestingness of Association Rules

Confidence

- Indicates the strength of implication in the rule:

\[
\text{conf}(X \Rightarrow Y) = P(Y \mid X) = \frac{|\{T \in D \mid X \subseteq T\} \cap \{T \in D \mid Y \subseteq T\}|}{|\{T \in D \mid X \subseteq T\}|} = \frac{|\{T \in D \mid X \subseteq T \land Y \subseteq T\}|}{|\{T \in D \mid X \subseteq T\}|} = \frac{|\{T \in D \mid X \cup Y \subseteq T\}|}{|\{T \in D \mid X \subseteq T\}|} = \frac{\text{supp}(X \cup Y)}{\text{supp}(X)}
\]

- "Conditional probability that a transaction in \(D\) containing the itemset \(X\) also contains itemset \(Y\)."
Interestingness of Association Rules

Rule form

"Body ⇒ Head [support, confidence]"

Association rule examples

- buys diapers ⇒ buys beer [0.5 %, 60%]
- major in CS ∧ takes DB ⇒ avg. grade A [1%, 75%]
Task of mining association rules

Given a database D, determine all association rules having a $supp \geq minSup$ and a $conf \geq minConf$ (so-called strong association rules).

Key steps of mining association rules

1. Find frequent itemsets, i.e., itemsets that have $supp \geq minSup$ (e.g. Apriori, FP-growth)
2. Use the frequent itemsets to generate association rules
 ▶ For each itemset X and every nonempty subset $Y \subset X$ generate rule $Y \Rightarrow (X \setminus Y)$ if $minSup$ and $minConf$ are fulfilled
 ▶ We have $2^{|X|} - 2$ many association rule candidates for each itemset X
Mining of Association Rules

Example

Frequent itemsets:

<table>
<thead>
<tr>
<th>1-itemset</th>
<th>count</th>
<th>2-itemset</th>
<th>count</th>
<th>3-itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ a }</td>
<td>3</td>
<td>{ a,b }</td>
<td>3</td>
<td>{ a,b,c }</td>
<td>2</td>
</tr>
<tr>
<td>{ b }</td>
<td>4</td>
<td>{ a,c }</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{ c }</td>
<td>5</td>
<td>{ b,c }</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rule candidates

- From 1-itemsets: None
- From 2-itemsets: \(a \Rightarrow b;\) \(b \Rightarrow a;\) \(a \Rightarrow c;\) \(c \Rightarrow a;\) \(b \Rightarrow c;\) \(c \Rightarrow b \)
- From 3-itemsets: \(a, b \Rightarrow c;\) \(a, c \Rightarrow b;\) \(c, b \Rightarrow a;\) \(a \Rightarrow b, c;\) \(b \Rightarrow a, c;\) \(c \Rightarrow a, b \)
Generating Rules from Frequent Itemsets

Rule generation

- For each frequent itemset X:
 - For each nonempty subset Y of X, form a rule $Y \Rightarrow (X \setminus Y)$
 - Delete those rules that do not have minimum confidence

- Note:
 - Support always exceeds minSup
 - The support values of the frequent itemsets suffice to calculate the confidence

- Exploit anti-monotonicity for generating candidates for strong association rules!
 - $Y \Rightarrow Z$ not strong \Rightarrow for all $A \subseteq D$: $Y \Rightarrow Z \cup A$ not strong
 - $Y \Rightarrow Z$ not strong \Rightarrow for all $Y' \subseteq Y$: $(Y \setminus Y') \Rightarrow (Z \cup Y')$ not strong
Generating Rules from Frequent Itemsets

Example: \(\text{minConf} = 60\% \)

| Itemset | Confidence | Pruned?
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>{ a }</td>
<td>2/3</td>
<td>✔️</td>
</tr>
<tr>
<td>{ b }</td>
<td>3/4</td>
<td>✔️</td>
</tr>
<tr>
<td>{ c }</td>
<td>2/5</td>
<td>✔️</td>
</tr>
<tr>
<td>{ a, b }</td>
<td>1/2</td>
<td>✔️</td>
</tr>
<tr>
<td>{ a, c }</td>
<td>2/3</td>
<td>✔️</td>
</tr>
<tr>
<td>{ b, c }</td>
<td>2/3</td>
<td>✔️</td>
</tr>
<tr>
<td>{ a, b, c }</td>
<td>2/4</td>
<td>✔️ (pruned with { b, c } \Rightarrow a)</td>
</tr>
<tr>
<td>{ a, c }</td>
<td>2/5</td>
<td>✔️ (pruned with { b, c } \Rightarrow a)</td>
</tr>
</tbody>
</table>

Itemset count:
- \{ a \} = 3
- \{ b \} = 4
- \{ c \} = 5
- \{ a, b \} = 3
- \{ a, c \} = 2
- \{ b, c \} = 4
- \{ a, b, c \} = 2
Interestingness Measurements

Objective measures

Two popular measures:

- Support
- Confidence

Subjective measures [Silberschatz & Tuzhilin, KDD95]

A rule (pattern) is interesting if it is

- unexpected (surprising to the user) and/or
- actionable (the user can do something with it)
Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

- Among 5000 students
 - 3000 play basketball (=60%)
 - 3750 eat cereal (=75%)
 - 2000 both play basket ball and eat cereal (=40%)

- Rule ”play basketball ⇒ eat cereal [40%, 66.7%]” is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%

- Rule ”play basketball ⇒ not eat cereal [20%, 33.3%]” is far more accurate, although with lower support and confidence

- Observation: ”play basketball” and ”eat cereal” are negatively correlated

Not all strong association rules are interesting and some can be misleading.

- Augment the support and confidence values with interestingness measures such as the correlation: ”A ⇒ B [supp, conf, corr]”
Correlation

Correlation (sometimes called _Lift_) is a simple measure between two items _A_ and _B_:

\[
\text{corr}_{A,B} = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(B | A)}{P(B)} = \frac{\text{conf}(A \Rightarrow B)}{\text{supp}(B)}
\]

- The two rules _A \Rightarrow B_ and _B \Rightarrow A_ have the same correlation coefficient
- Takes both _P(A)_ and _P(B)_ in consideration
- \(\text{corr}_{A,B} > 1 \): The two items _A_ and _B_ are positively correlated
- \(\text{corr}_{A,B} = 1 \): There is no correlation between the two items _A_ and _B_
- \(\text{corr}_{A,B} < 1 \): The two items _A_ and _B_ are negatively correlated
Other Interestingness Measures: Correlation

Example 2

<table>
<thead>
<tr>
<th>item</th>
<th>transactions</th>
<th>rule</th>
<th>support</th>
<th>confidence</th>
<th>correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1 1 1 1 0 0 0 0 0</td>
<td>X ⇒ Y</td>
<td>25%</td>
<td>50%</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>1 1 0 0 0 0 0 0 0</td>
<td>X ⇒ Z</td>
<td>37.5%</td>
<td>75%</td>
<td>0.86</td>
</tr>
<tr>
<td>Z</td>
<td>0 1 1 1 1 1 1 1 1</td>
<td>Y ⇒ Z</td>
<td>12.5%</td>
<td>50%</td>
<td>0.57</td>
</tr>
</tbody>
</table>

- X and Y: positively correlated
- X and Z: negatively related
- Support and confidence of X ⇒ Z dominates
- But: items X and Z are negatively correlated
- Items X and Y are positively correlated
Hierarchical Association Rules: Motivation

Problem

- High minSup: apriori finds only few rules
- Low minSup: apriori finds unmanageably many rules

Solution

Exploit item taxonomies (generalizations, is-a hierarchies) which exist in many applications

Example

```
  clothes
   / \   \
  outerwear shirts
   /     / \
  jackets jeans
   \     /   |
       shoes
         /   |
        sport shoes boots
```
Hierarchical Association Rules

New Task

Find all generalized association rules between generalized items, i.e. Body and Head of a rule may have items of any level of the hierarchy

Generalized Association Rule

\[X \Rightarrow Y \text{ with } X, Y \subseteq I, X \cap Y = \emptyset \text{ and no item in } Y \text{ is an ancestor of any item in } X \]

Example

- Jeans \(\Rightarrow\) Boots; supp < minSup
- Jackets \(\Rightarrow\) Boots; supp < minSup
- Outerwear \(\Rightarrow\) Boots; supp > minSup
Hierarchical Association Rules: Characteristics

Let $Y = \bigcup_{i=1}^{k} X_i$ be a generalisation.

- For all $1 \leq i \leq k$ it holds $\text{supp}(Y \Rightarrow Z) \geq \text{supp}(X_i \Rightarrow Z)$

- In general, $\text{supp}(Y \Rightarrow Z) = \sum_{i=1}^{k} \text{supp}(X_i \Rightarrow Z)$ does not hold (a transaction might contain elements from multiple low-level concepts, e.g. boots and sport shoes).
Mining Multi-Level Associations

Top-Down, Progressive-Deepening Approach

1. First find high-level strong rules, e.g. milk ⇒ bread [20%, 60%]
2. Then find their lower-level ”weaker” rules, e.g. low-fat milk ⇒ wheat bread [6%, 50%].

Support Threshold Variants

Different minSup threshold across multi-levels lead to different algorithms:

- adopting the same minSup across multi-levels
- adopting reduced minSup at lower levels

![Diagram of multi-level associations](image-url)
Minimum Support for Multiple Levels

Uniform Support

- Search procedure is simplified (monotonicity)
- User only specifies one threshold

<table>
<thead>
<tr>
<th>Item</th>
<th>Support</th>
<th>minSup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>4%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Reduced Support (Variable Support)

- Takes into account lower frequency of items in lower levels

<table>
<thead>
<tr>
<th>Item</th>
<th>Support</th>
<th>minSup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>4%</td>
<td>3%</td>
</tr>
</tbody>
</table>
Multilevel Association Mining using Reduced Support

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-by-level independent method</td>
<td>Examine each node in the hierarchy, regardless of the frequency of its parent node.</td>
</tr>
<tr>
<td>Level-cross-filtering by single item</td>
<td>Examine a node only if its parent node at the preceding level is frequent.</td>
</tr>
<tr>
<td>Level-cross-filtering by k-itemset</td>
<td>Examine a k-itemset at a given level only if its parent k-itemset at the preceding level is frequent.</td>
</tr>
</tbody>
</table>
Multi-level Association: Redundancy Filtering

Some rules may be redundant due to “ancestor” relationships between items.

Example

- \(R_1: \text{milk} \Rightarrow \text{wheat bread} \ [8\%, \ 70\%] \)
- \(R_2: \ 1.5\% \text{ milk} \Rightarrow \text{wheat bread} \ [2\%, \ 72\%] \)

We say that rule 1 is an ancestor of rule 2.

Redundancy

A rule is redundant if its support is close to the ”expected” value, based on the rule’s ancestor.
Interestingness of Hierarchical Association Rules: Notions

Let $X, X', Y, Y' \subseteq I$ be itemsets.

- X' is ancestor of X iff there exists ancestors x'_1, \ldots, x'_k of $x_1, \ldots, x_k \in X$ and x_{k+1}, \ldots, x_n with $n = |X|$ such that $X' = \{x'_1, \ldots, x'_k, x_{k+1}, \ldots, x_n\}$.

- Let X' and Y' be ancestors of X and Y. Then we call the rules $X' \Rightarrow Y'$, $X \Rightarrow Y'$, and $X' \Rightarrow Y$ ancestors of the rule $X \Rightarrow Y$.

- The rule $X' \Rightarrow Y'$ is a direct ancestor of rule $X \Rightarrow Y$ in a set of rules if:
 1. Rule $X' \Rightarrow Y'$ is an ancestor of rule $X \Rightarrow Y$, and
 2. There is no rule $X'' \Rightarrow Y''$ being ancestor of $X \Rightarrow Y$ and $X' \Rightarrow Y'$ is an ancestor of $X'' \Rightarrow Y''$.
A hierarchical association rule $X \Rightarrow Y$ is called R-interesting if:

- There are no direct ancestors of $X \Rightarrow Y$ or
- The actual support is larger than R times the expected support or
- The actual confidence is larger than R times the expected confidence
Argentina

R-Interestingness: Expected Support

Given the rule for $X \Rightarrow Y$ and its ancestor rule $X' \Rightarrow Y'$ the expected support of $X \Rightarrow Y$ is defined as:

$$
E_{Z'}[P(Z)] = P(Z') \cdot \prod_{i=1}^{j} \frac{P(y_{i})}{P(y_{i})'}
$$

where $Z = X \cup Y = \{z_1, \ldots, z_n\}$, $Z' = X' \cup Y' = \{z'_1, \ldots, z'_j, z_{j+1}, \ldots, z_n\}$ and each $z'_i \in Z'$ is an ancestor of $z_i \in Z$.

Given the rule for $X \Rightarrow Y$ and its ancestor rule $X' \Rightarrow Y'$, then the expected confidence of $X \Rightarrow Y$ is defined as:

$$E_{X' \Rightarrow Y'}[P(Y|X)] = P(Y' | X') \cdot \prod_{i=1}^{j} \frac{P(y_i)}{P(y_i')}$$

where $Y = \{y_1, \ldots, y_n\}$ and $Y' = \{y'_1, \ldots, y'_j, y_{j+1}, \ldots, y_n\}$ and each $y'_i \in Y'$ is an ancestor of $y_i \in Y$.

R-Interestingness: Example

<table>
<thead>
<tr>
<th>Item</th>
<th>Support</th>
<th>Support</th>
<th>R-Interesting?</th>
</tr>
</thead>
<tbody>
<tr>
<td>clothes</td>
<td>20</td>
<td>Let $R = 1.6$</td>
<td></td>
</tr>
<tr>
<td>outerwear</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jackets</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| No | Rule | Support | yes: no ancestors | yes (wrt. rule 1): $\text{supp}(X \Rightarrow Y) = 9 > 1.6 \cdot \frac{10}{20} \cdot 10 = 8 = 1.6 \cdot \mathbb{E}(P(Z))$ | Not wrt. support:
$\mathbb{E}(P(\text{jackets} \cup \text{shoes})) = 3.2$ (wrt rule 1)
$\mathbb{E}(P(\text{jackets} \cup \text{shoes})) = 5.75$ (wrt rule 2) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>clothes ⇒ shoes</td>
<td>10</td>
<td></td>
<td>$\mathbb{E}(P(\text{jackets} \cup \text{shoes})) = 3.2$ (wrt rule 1)</td>
</tr>
<tr>
<td>2</td>
<td>outerwear ⇒ shoes</td>
<td>9</td>
<td></td>
<td>$\mathbb{E}(P(\text{jackets} \cup \text{shoes})) = 5.75$ (wrt rule 2)</td>
</tr>
<tr>
<td>3</td>
<td>jackets ⇒ shoes</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary Frequent Itemset & Association Rule Mining

- **Frequent Itemsets**
 -Mining: Apriori algorithm, hash trees, FP-tree
 -support, confidence

- **Simple Association Rules**
 -Mining: (Apriori)
 -Interestingness measures: support, confidence, correlation

- **Hierarchical Association Rules**
 -Mining: Top-Down Progressive Deepening
 -Multilevel support thresholds, redundancy, R-interestingness

- **Further Topics (not covered)**
 -Quantitative Association Rules (for numerical attributes)
 -Multi-dimensional association rule mining
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.1.1 Frequent Itemset Mining
 3.1.2 Association Rule Mining
 3.1.3 Sequential Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
Motivation

In many applications the order matters, e.g. because the ordering encodes spatial or temporal aspects.

In an ordered sequence, items are allowed to occur more than one time.

Applications

Bioinformatics (DNA/protein sequences), Web mining, text mining, sensor data mining, process mining, ...
Sequential Pattern Mining: Basic Notions I

We now consider transactions having an order of the items. Define:

- **Alphabet** Σ is set symbols or characters (denoting items)
- **Sequence** $S = s_1 s_2 \ldots s_k$ is an ordered list of a length $|S| = k$ items where $s_i \in \Sigma$ is an item at position i also denoted as $S[i]$
- A k-sequence is a sequence of length k
- **Consecutive subsequence** $R = r_1 r_2 \ldots r_m$ of $S = s_1 s_2 \ldots s_n$ is also a sequence in Σ such that $r_1 r_2 \ldots r_m = s_j s_{j+1} \ldots s_{j+m-1}$ with $1 \leq j \leq n - m + 1$. We say S contains R and denote this by $R \subseteq S$
- In a more general subsequence R of S we allow for gaps between the items of R, i.e. the items of the subsequence $R \subseteq S$ must have the same order of the ones in S but there can be some other items between them
- A prefix of a sequence S is any consecutive subsequence of the form $S[1 : i] = s_1 s_2 \ldots s_i$ with $0 \leq i \leq n$, $S[1 : 0]$ is the empty prefix
A suffix of a sequence S is any consecutive subsequence of the form $S[i : n] = s_is_{i+1}\ldots s_n$ with $1 \leq i \leq n + 1$, $S[n+1 : n]$ is the empty suffix.

(Relative) support of a sequence R in D: $\text{supp}(R) = \vert \{S \in D \mid R \subseteq S\} \vert / \vert D \vert$

S is frequent (or sequential) if $\text{supp}(S) \geq \text{minSup}$ for threshold minSup.

A frequent sequence is maximal if it is not a subsequence of any other frequent sequence

A frequent sequence is closed if it is not a subsequence of any other frequent sequence with the same support
Sequential Pattern Mining

Task

Find all frequent subsequences occurring in many transactions.

Difficulty

The number of possible patterns is even larger than for frequent itemset mining!

Example

There are $|\Sigma|^k$ different k-sequences, where $k > |\Sigma|$ is possible and often encountered, e.g. when dealing with DNA sequences where the alphabet only comprises four symbols.
Sequential Pattern Mining Algorithms

Breadth-First Search Based

- GSP (Generalized Sequential Pattern) algorithm\(^2\)
- SPADE\(^3\)
- ...

Depth-First Search Based

- PrefixSpan\(^4\)
- SPAM\(^5\)
- ...

\(^4\)Pei at. al.: *Mining sequential patterns by pattern-growth: PrefixSpan approach*. TKDE 2004

GSP (Generalized Sequential Pattern) algorithm

- Breadth-first search: Generate frequent sequences ascending by length
- Given the set of frequent sequences at level k, generate all possible sequence extensions or candidates at level $k + 1$
- Uses the Apriori principle (anti-monotonicity)
- Next compute the support of each candidate and prune the ones with $supp(c) < minSup$
- Stop the search when no more frequent extensions are possible
The sequence search space can be organized in a prefix search tree.

The root (level 0) contains the empty sequence with each item $x \in \Sigma$ as one of its children.

A node labelled with sequence: $S = s_1 s_2 \ldots s_k$ at level k has children of the form $S' = s_1 s_2 \ldots s_k s_{k+1}$ at level $k + 1$ (i.e. S is a prefix of S' or S' is an extension of S).
Prefix Search Tree: Example

<table>
<thead>
<tr>
<th>ID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>CAGAAGT</td>
</tr>
<tr>
<td>S_2</td>
<td>TGACAG</td>
</tr>
<tr>
<td>S_3</td>
<td>GAG</td>
</tr>
<tr>
<td>S_4</td>
<td>AGTT</td>
</tr>
<tr>
<td>S_5</td>
<td>ATAG</td>
</tr>
</tbody>
</table>

\[\text{minSup} = .8 \]

The prefix search tree example shows the generation and pruning of frequent patterns based on the ID sequences provided. The tree structure illustrates how sequences are matched and pruned based on their frequency count, with arrows indicating the generation and pruning of subsequences.
Projected Database

For a database D and an item $s \in \Sigma$, the projected database w.r.t. s is denoted D_s and is found as follows: For each sequence $S_i \in D$ do

- Find the first occurrence of s in S_i, say at position p
- $\text{suff}_{S_i,s} \leftarrow \text{suffix}(S_i)$ starting at position $p + 1$
- Remove infrequent items from $\text{suff}_{S_i,s}$
- $D_s = D_s \cup \text{suff}_{S_i,s}$

Example

$\text{minSup} = .8$ (i.e. 4 transactions)

<table>
<thead>
<tr>
<th>ID</th>
<th>Sequence</th>
<th>D_A</th>
<th>D_G</th>
<th>D_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>CAGAAGT</td>
<td>GAAGT</td>
<td>AAGT</td>
<td>\emptyset</td>
</tr>
<tr>
<td>S_2</td>
<td>TGACAG</td>
<td>AG</td>
<td>AAG</td>
<td>GAAG</td>
</tr>
<tr>
<td>S_3</td>
<td>GAG</td>
<td>G</td>
<td>AG</td>
<td>-</td>
</tr>
<tr>
<td>S_4</td>
<td>AGTT</td>
<td>GTT</td>
<td>TT</td>
<td>T</td>
</tr>
<tr>
<td>S_5</td>
<td>ATAG</td>
<td>TAG</td>
<td>\emptyset</td>
<td>AG</td>
</tr>
</tbody>
</table>
The PrefixSpan algorithm computes the support for only the individual items in the projected database D_s

Then performs recursive projections on the frequent items in a depth-first manner

1: Initialization: $D_R \leftarrow D$, $R \leftarrow \emptyset$, $\mathcal{F} \leftarrow \emptyset$
2: procedure PrefixSpan(D_R, R, $minSup$, \mathcal{F})
3: for all $s \in \Sigma$ such that $supp(s, D_R) \geq minSup$ do
4: $R_s \leftarrow R + s$ \hspace{1cm} \triangleright append s to the end of R
5: $\mathcal{F} \leftarrow \mathcal{F} \cup \{(R_s, sup(s, D_R))\}$ \hspace{1cm} \triangleright calculate support of s for each R_s within D_R
6: $D_s \leftarrow \emptyset$
7: for all $S_i \in D_R$ do
8: $S'_i \leftarrow$ projection of S_i w.r.t. item s
9: Remove all infrequent symbols from S'_i
10: if $S' \neq \emptyset$ then
11: $D_s \leftarrow D_s \cup S'_i$
12: if $D_s \neq \emptyset$ then
13: PrefixSpan(D_s, R_s, $minSup$, \mathcal{F})
PrefixSpan: Example

\(\text{minSup} = 0.8 \) (i.e. 4 transactions)

<table>
<thead>
<tr>
<th>ID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAGAAGT</td>
</tr>
<tr>
<td>2</td>
<td>TGACAG</td>
</tr>
<tr>
<td>3</td>
<td>GAG</td>
</tr>
<tr>
<td>4</td>
<td>AGTT</td>
</tr>
<tr>
<td>5</td>
<td>ATAG</td>
</tr>
</tbody>
</table>

\(D_\emptyset \) |
<table>
<thead>
<tr>
<th>ID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAGAAGT</td>
</tr>
<tr>
<td>2</td>
<td>TGACAG</td>
</tr>
<tr>
<td>3</td>
<td>GAG</td>
</tr>
<tr>
<td>4</td>
<td>AGTT</td>
</tr>
<tr>
<td>5</td>
<td>ATAG</td>
</tr>
</tbody>
</table>

\(D_G \) |
<table>
<thead>
<tr>
<th>ID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AAGT</td>
</tr>
<tr>
<td>2</td>
<td>AAG</td>
</tr>
<tr>
<td>3</td>
<td>AG</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
</tr>
</tbody>
</table>

\(D_T \) |
<table>
<thead>
<tr>
<th>ID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>GAAG</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>GTT</td>
</tr>
<tr>
<td>5</td>
<td>AG</td>
</tr>
</tbody>
</table>

\(D_A \) |
<table>
<thead>
<tr>
<th>ID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GAAGT</td>
</tr>
<tr>
<td>2</td>
<td>AG</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>GTT</td>
</tr>
<tr>
<td>5</td>
<td>TAG</td>
</tr>
</tbody>
</table>

\(D_{AG} \) |
<table>
<thead>
<tr>
<th>ID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
</tr>
<tr>
<td>4</td>
<td>\emptyset</td>
</tr>
<tr>
<td>5</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

Hence, the frequent sequences are: \(\emptyset, A, G, T, AG \)
Interval-based Sequential Pattern Mining

Interval-Based Representation

- Deals with the more common interval-based items s (or events).
- Each event has a starting t_s^+ and an ending time point t_s^-, where $t_s^+ < t_s^-$

Application

Health data analysis, Stock market data analysis, etc.

Relationships

Predefined relationships between items are more complex.

- Point-based relationships: before, after, same time.
- Interval-based relationships: Allen’s relations\(^6\), End point representation\(^7\), etc.

\(^6\) Allen: Maintaining knowledge about temporal intervals. In Communications of the ACM 1983

\(^7\) Wu, Shin-Yi, and Yen-Liang Chen: Mining nonambiguous temporal patterns for interval-based events. TKDE 2007
Allen’s Relations

<table>
<thead>
<tr>
<th>Allen’s Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
</tr>
<tr>
<td>Overlaps-By</td>
</tr>
<tr>
<td>Contains</td>
</tr>
<tr>
<td>Starts-By</td>
</tr>
<tr>
<td>Finished-By</td>
</tr>
<tr>
<td>Meets</td>
</tr>
<tr>
<td>Equal</td>
</tr>
</tbody>
</table>

Problem

- Allen’s relationships only describe the relation between two intervals.
- Describing the relationship between k intervals unambiguously requires $O(k^2)$ comparisons.
Interval-based Sequential Pattern Mining

- **TPrefixSpan**\(^8\) converts interval-based sequences into point-based sequences:
 - \(\{A^+\}, \{A^-\}, \{B^+\}, \{B^-\}\)
 - \(\{A^+\}, \{B^+\}, \{A^-\}, \{B^-\}\)
 - \(\{A^+\}, \{A^-, B^+\}, \{B^-\}\)

- Similar prefix projection mining approach as PrefixSpan algorithm.
- Validation checking is necessary in each expanding iteration to make sure that the appended time point can form an interval with a time point in the prefix.

\(^8\)Wu, Shin-Yi, and Yen-Liang Chen: Mining nonambiguous temporal patterns for interval-based events. TKDE 2007
An Open Issue: Considering Timing Information

Idea

Learn pattern from data by clustering, e.g. QTempIntMiner9, Event Space Miner10, PIVOTMiner11

9 Guyet, T., & Quiniou, R.: \textit{Mining temporal patterns with quantitative intervals}. ICDMW 2008

10 Ruan, G., Zhang, H., & Plale, B.: \textit{Parallel and quantitative sequential pattern mining for large-scale interval-based temporal data}. IEEE Big Data 2014

11 Hassani M., Lu Y. & Seidl T.: \textit{A Geometric Approach for Mining Sequential Patterns in Interval-Based Data Streams}. FUZZ-IEEE 2016
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.2.1 Partitioning Methods
 3.2.2 Probabilistic Model-Based Methods
 3.2.3 Density-Based Methods
 3.2.4 Mean-Shift
 3.2.5 Spectral Clustering
 3.2.6 Hierarchical Methods
 3.2.7 Evaluation
 3.2.8 Ensemble Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
What is Clustering?

Clustering

Grouping a set of data objects into clusters (collections of data objects).

- Similar to one another within the same cluster
- Dissimilar to the objects in other clusters

Typical Usage

- As a stand-alone tool to get insight into data distribution
- As a preprocessing step for other algorithms
General Applications of Clustering

- Preprocessing – as a data reduction (instead of sampling)
 - Image data bases (color histograms for filter distances)
 - Stream clustering (handle endless data sets for offline clustering)

- Pattern Recognition and Image Processing

- Spatial Data Analysis:
 - create thematic maps in Geographic Information Systems by clustering feature spaces
 - detect spatial clusters and explain them in spatial data mining

- Business Intelligence (especially market research)

- WWW
 - Documents (Web Content Mining)
 - Web-logs (Web Usage Mining)

- Biology, e.g. Clustering of gene expression data
Application Example: Downsampling Images

- Reassign color values to k distinct colors
- Cluster pixels using color difference, not spatial data

65536 256 16
8 4 2

Unsupervised Methods Clustering
Major Clustering Approaches

▶ Partitioning algorithms: Find k partitions, minimizing some objective function
▶ Probabilistic Model-Based Clustering (EM)
▶ Density-based: Find clusters based on connectivity and density functions
▶ Hierarchical algorithms: Create a hierarchical decomposition of the set of objects
▶ Other methods:
 ▶ Grid-based
 ▶ Neural networks (SOMs)
 ▶ Graph-theoretical methods
 ▶ Subspace Clustering
1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.2.1 Partitioning Methods
 3.2.2 Probabilistic Model-Based Methods
 3.2.3 Density-Based Methods
 3.2.4 Mean-Shift
 3.2.5 Spectral Clustering
 3.2.6 Hierarchical Methods
 3.2.7 Evaluation
 3.2.8 Ensemble Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
Partitioning Algorithms: Basic Concept

Partition

Given a set D, a partitioning $C = \{C_1, \ldots, C_k\}$ of D fulfils:

- $C_i \subseteq D$ for all $1 \leq i \leq k$
- $C_i \cap C_j = \emptyset \iff i \neq j$
- $\bigcup C_i = D$

(i.e. each element of D is in exactly one set C_i)

Goal

Construct a partitioning of a database D of n objects into a set of k ($k \leq n$) clusters minimizing an objective function.

Exhaustively enumerating all possible partitionings into k sets in order to find the global minimum is too expensive.
Popular Heuristic Methods

▶ Choose \(k \) representatives for clusters, e.g., randomly
▶ Improve these initial representatives iteratively:
 ▶ Assign each object to the cluster it “fits best” in the current clustering
 ▶ Compute new cluster representatives based on these assignments
 ▶ Repeat until the change in the objective function from one iteration to the next drops below a threshold

Example

▶ \(k \)-means: Each cluster is represented by the center of the cluster
▶ \(k \)-medoid: Each cluster is represented by one of its objects
k-Means Clustering: Basic Idea

Idea
Find a clustering such that the within-cluster variation of each cluster is small and use the centroid of a cluster as representative.

Objective
For a given k, form k groups so that the sum of the (squared) distances between the mean of the groups and their elements is minimal.

1. S.P. Lloyd: Least squares quantization in PCM. In IEEE Information Theory, 1982 (original version: technical report, Bell Labs, 1957)
Objects $p = (p_1, \ldots, p_d)$ are points in a d-dimensional vector space (the mean μ_S of a set of points S must be defined: $\mu_S = \frac{1}{|S|} \sum_{p \in S} p$)

Measure for the compactness of a cluster C_j (sum of squared distances):
$$SSE(C_j) = \sum_{p \in C_j} ||p - \mu_{C_j}||_2^2$$

Measure for the compactness of a clustering C:
$$SSE(C) = \sum_{C_j \in C} SSE(C_j) = \sum_{p \in D} ||p - \mu_{C(p)}||_2^2$$

Optimal Partitioning: $\arg\min_C SSE(C)$

Optimizing the within-cluster variation is computationally challenging (NP-hard) \Rightarrow use efficient heuristic algorithms
k-Means Clustering: Algorithm

k-Means Algorithm: Lloyd’s algorithm

1: Given: \(k \)
2: Initialization: Choose \(k \) arbitrary representatives
3: \textbf{repeat}
4: Assign each object to the cluster with the nearest representative.
5: Compute the centroids of the clusters of the current partitioning.
6: \textbf{until} representatives do not change

Example

<table>
<thead>
<tr>
<th>Start</th>
<th>Update</th>
<th>Reassign</th>
<th>Update</th>
<th>Reassign</th>
</tr>
</thead>
</table>

Unsupervised Methods: Clustering

February 6, 2019
Voronoi Diagram

- For a given set of points $P = \{p_1, \ldots, p_k\}$ (here: cluster representatives), a Voronoi diagram partitions the data space into Voronoi cells, one cell per point.
- The cell of a point $p \in P$ covers all points in the data space for which p is the nearest neighbors among the points from P.

Observations

- The Voronoi cells of two neighboring points $p_i, p_j \in P$ are separated by the perpendicular hyperplane (“Mittelsenkrechte”) between p_i and p_j.
- Voronoi cells are intersections of half spaces and thus convex regions.
k-Means: Discussion

Strength

- Relatively efficient: $O(tkn)$ (n: #obj., k: #clus., t: #it.; typically: $k, t \ll n$)
- Easy implementation

Weaknesses

- Applicable only when mean is defined
- Need to specify k, the number of clusters, in advance
- Sensitive to noisy data and outliers
- Clusters are forced to convex space partitions (Voronoi Cells)
- Result and runtime strongly depend on the initial partition; often terminates at a local optimum – however: methods for a good initialization exist
Variants: Basic Idea

One Problem of k-Means

Applicable only when mean is defined (vector space)

Alternatives for Mean representatives

- Median: (Artificial) Representative object "in the middle"
- Mode: Value that appears most often
- Medoid: Representative object "in the middle"

Objective

Find k representatives so that the sum of total distances (TD) between objects and their closest representative is minimal (more robust against outliers).
If there is an ordering on the data use median instead of mean.
Compute median separately per dimension (efficient computation)
k-Mode

Given: categorical data $D \subseteq \Omega = A_1 \times \cdots \times A_d$ where A_i are categorical attributes.

A mode of D is a vector $M = (m_1, \ldots, m_d) \in \Omega$ that minimizes $d(M, D) = \sum_{p \in D} d(p, M)$ where d is a distance function for categorical values (e.g. Hamming distance).

Note: M is not necessarily an element of D.

Mode

- Given: categorical data $D \subseteq \Omega = A_1 \times \cdots \times A_d$ where A_i are categorical attributes.
- A *mode* of D is a vector $M = (m_1, \ldots, m_d) \in \Omega$ that minimizes $d(M, D) = \sum_{p \in D} d(p, M)$ where d is a distance function for categorical values (e.g. Hamming distance).
- Note: M is not necessarily an element of D.

Unsupervised Methods
Clustering
February 6, 2019
202
Theorem to determine a mode

Let \(f(c,j,D) = \frac{1}{n}|\{p \in D \mid p[j] = c\}| \) be the relative frequency of category \(c \) of attribute \(A_j \) in the data, then:

\[
d(M,D) \text{ is minimal } \iff \forall j \in \{1, \ldots, d\} \forall c \in A_j : f(m_j,j,D) \geq f(c,j,D)
\]

- This allows to use the \(k \)-Means paradigm to cluster categorical data without losing its efficiency
- \(k \)-Modes algorithm\(^1\) proceeds similar to \(k \)-Means algorithm
- Note: The mode of a dataset might be not unique

\(^1\)Huang, Z. "A Fast Clustering Algorithm to Cluster very Large Categorical Data Sets in Data Mining" DMKD (1997)
k-Medoid

Potential problems with previous methods:

▶ Artificial centroid object might not make sense (e.g. education=”high school” and occupation=”professor”)

▶ There might only be a distance function available but no explicit attribute-based data representations (e.g. Edit Distance on strings)

Partitioning Around Medoids ¹: Initialization

Given k, the k-medoid algorithm is initialized as follows:

▶ Select k objects arbitrarily as initial medoids (representatives)

▶ Assign each remaining (non-medoid) object to the cluster with the nearest representative

▶ Compute current $TD_{current}$

¹Kaufman, Leonard, and Peter Rousseeuw. ”Clustering by means of medoids.” (1987)
\textbf{Partitioning Around Medoids (PAM) Algorithm}

\begin{verbatim}
procedure PAM(Set D, Integer k)
 Initialize k medoids
 $\Delta_{TD} = -\infty$
 \textbf{while} $\Delta_{TD} < 0 \textbf{ do}$
 Compute $TD_{N\leftrightarrow M}$ for each pair (medoid M, non-medoid N), i.e., TD after swapping M with N
 Choose pair (M, N) with minimal $\Delta_{TD} = TD_{N\leftrightarrow M} - TD_{current}$
 \textbf{if} $\Delta_{TD} < 0$ \textbf{ then}
 Replace medoid M with non-medoid N
 $TD_{current} \leftarrow TD_{N\leftrightarrow M}$
 Store current medoids and assignments as best partitioning so far
 \textbf{return} medoids
\end{verbatim}

- Problem with PAM: high complexity $O\left(tk(n - k)^2 \right)$
- Several heuristics can be employed, e.g. CLARANS \(^1\): randomly select (medoid, non-medoid)-pairs instead of considering all pairs

\(^1\) Ng, Raymond T., and Jiawei Han. "CLARANS: A method for clustering objects for spatial data mining." IEEE TKDE (2002)
K-Means/Median/Mode/Medoid Clustering: Discussion

<table>
<thead>
<tr>
<th></th>
<th>k-Means</th>
<th>k-Median</th>
<th>k-Mode</th>
<th>k-Medoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>numerical (mean)</td>
<td>ordinal</td>
<td>categorical</td>
<td>metric</td>
</tr>
<tr>
<td>efficiency</td>
<td>high $O(tkn)$</td>
<td></td>
<td></td>
<td>low $O(tk(n - k)^2)$</td>
</tr>
<tr>
<td>sensitivity to outliers</td>
<td>high</td>
<td></td>
<td>low</td>
<td></td>
</tr>
</tbody>
</table>

- **Strength**: Easy implementation (many variations and optimizations exist)
- **Weaknesses**
 - Need to specify k in advance
 - Clusters are forced to convex space partitions (Voronoi Cells)
 - Result and runtime strongly depend on the initial partition; often terminates at a local optimum – however: methods for good initialization exist
Initialization of Partitioning Clustering Methods

- **Naive**
 - Choose sample A of the dataset
 - Cluster A and use centers as initialization

- k-means++1
 - Select first center uniformly at random
 - Choose next point with probability proportional to the squared distance to the nearest center already chosen
 - Repeat until k centers have been selected
 - Guarantees an approximation ratio of $O(\log k)$ (standard k-means can generate arbitrarily bad clusterings)

- In general: Repeat with different initial centers and choose result with lowest clustering error

Choice of the Parameter k

- **Idea for a method:**
 - Determine a clustering for each $k = 2, \ldots, n - 1$
 - Choose the "best" clustering

- **But how to measure the quality of a clustering?**
 - A measure should not be monotonic over k
 - The measures for the compactness of a clustering SSE and TD are monotonously decreasing with increasing value of k.

Silhouette-Coefficient

Quality measure for k-means or k-medoid clusterings that is not monotonic over k.

1Rousseeuw, P. "Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics (1987)
The Silhouette Coefficient

Basic idea

- How good is the clustering = how appropriate is the mapping of objects to clusters
- Elements in cluster should be "similar" to their representative
 - Measure the average distance of objects to their representative: $a(o)$
- Elements in different clusters should be "dissimilar"
 - Measure the average distance of objects to alternative clusters (i.e. second closest cluster): $b(o)$
The Silhouette Coefficient

- $a(o) =$ "Avg. distance between o and objects in its cluster A.”

$$a(o) = \frac{1}{|C(o)|} \sum_{p \in C(o)} d(o, p)$$

- $b(o) =$ "Smallest avg. distance between o and objects in other cluster.”

$$b(o) = \min_{C_i \neq C(o)} \left\{ \frac{1}{|C_i|} \sum_{p \in C_i} d(o, p) \right\}$$
The Silhouette Coefficient

- The silhouette of \(o \) is then defined as

\[
s(o) = \begin{cases}
0 & \text{if } a(o) = 0, \text{ e.g. } |C_i| = 1 \\
\frac{b(o) - a(o)}{\max(a(o), b(o))} & \text{else}
\end{cases}
\]

- The value range of the silhouette coefficient is \([-1, 1]\)

- The silhouette of a cluster \(C_i \) is defined as

\[
s(C_i) = \frac{1}{|C_i|} \sum_{o \in C_i} s(o)
\]

- The silhouette of a clustering \(C = (C_1, \ldots, C_k) \) is defined as

\[
s(C) = \frac{1}{|D|} \sum_{o \in D} s(o)
\]

where \(D \) denotes the whole dataset
The Silhouette Coefficient

”Reading” the silhouette coefficient: Let $a(o) \neq 0$

- $b(o) \gg a(o) \implies s(o) \approx 1$: good assignment of o to its cluster A
- $b(o) \approx a(o) \implies s(o) \approx 0$: o is in-between A and B
- $b(o) \ll a(o) \implies s(o) \approx -1$: bad, on average o is closer to members of B

Silhouette coefficient $s(C)$ of a clustering: Average silhouette of all objects

- $0.7 < s(C) \leq 1.0$: strong structure
- $0.5 < s(C) \leq 0.7$: medium structure
- $0.25 < s(C) \leq 0.5$: weak structure
- $s(C) \leq 0.25$: no structure
Silhouette Coefficient: Example

dataset with 10 clusters

Image from Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.2.1 Partitioning Methods
 3.2.2 Probabilistic Model-Based Methods
 3.2.3 Density-Based Methods
 3.2.4 Mean-Shift
 3.2.5 Spectral Clustering
 3.2.6 Hierarchical Methods
 3.2.7 Evaluation
 3.2.8 Ensemble Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
Expectation Maximization (EM)

- Statistical approach for finding maximum likelihood estimates of parameters in probabilistic models.
- Here: Using EM as clustering algorithm
- Approach: Observations are drawn from one of several components of a mixture distribution.
- Main idea:
 - Define clusters as probability distributions → each object has a certain probability of belonging to each cluster
 - Iteratively improve the parameters of each distribution (e.g. center, ”width” and ”height” of a Gaussian distribution) until some quality threshold is reached

Excursus: Gaussian Mixture Distributions

Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

Gaussian Distribution

- **Univariate**: single variable $x \in \mathbb{R}$:
 \[
 p(x \mid \mu, \sigma^2) = \mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{1}{2\sigma^2} (x - \mu)^2 \right)
 \]
 with **mean** $\mu \in \mathbb{R}$ and **variance** $\sigma^2 \in \mathbb{R}$

- **Multivariate**: d-dimensional vector $x \in \mathbb{R}^d$:
 \[
 p(x \mid \mu, \Sigma) = \mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right)
 \]
 with **mean vector** $\mu \in \mathbb{R}^d$ and **covariance matrix** $\Sigma \in \mathbb{R}^{d \times d}$
Excursus: Gaussian Mixture Distributions

Gaussian mixture distribution with \(k \) components

For \(d \)-dimensional vector \(x \in \mathbb{R}^d \):

\[
p(x) = \sum_{l=1}^{k} \pi_l \cdot \mathcal{N}(x | \mu_l, \Sigma_l)
\]

with mixing coefficients \(\pi_l \in \mathbb{R} \), \(\sum_l \pi_l = 1 \) and \(0 \leq \pi_l \leq 1 \)
EM: Exemplary Application

Example taken from: C. M. Bishop "Pattern Recognition and Machine Learning", 2009
A clustering $\mathcal{M} = (C_1, \ldots, C_k)$ is represented by a mixture distribution with parameters $\theta = (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_k, \mu_k, \Sigma_k)$:

$$p(x \mid \theta) = \sum_{l=1}^{k} \pi_l \cdot \mathcal{N}(x \mid \mu_l, \Sigma_l)$$

Each cluster is represented by one component of the mixture distribution:

$$p(x \mid \mu_l, \Sigma_l) = \mathcal{N}(x \mid \mu_l, \Sigma_l)$$
EM: Maximum Likelihood Estimation

Given a dataset $X = \{x_1, \ldots, x_n\} \subseteq \mathbb{R}^d$, the likelihood that all data points $x_i \in X$ are generated (independently) by the mixture model with parameters θ is given as:

$$p(X \mid \theta) = \prod_{i=1}^{n} p(x_i \mid \theta)$$

Goal

Find the maximum likelihood estimate (MLE), i.e., the parameters θ_{ML} with maximal likelihood:

$$\theta_{ML} = \arg\max_{\theta} \{p(X \mid \theta)\}$$
Goal: Find MLE. For convenience, we use the log-likelihood:

\[\theta_{ML} = \arg\max \{ p(X \mid \theta) \} \]

\[= \arg\max \{ \log p(X \mid \theta) \} \]

The log-likelihood can be written as

\[\log p(X \mid \theta) = \log \prod_{i=1}^{n} \sum_{l=1}^{k} \pi_l \cdot p(x_i \mid \mu_l, \Sigma_l) \]

\[= \sum_{i=1}^{n} \log \sum_{l=1}^{k} \pi_l \cdot p(x_i \mid \mu_l, \Sigma_l) \]
EM: Maximum Likelihood Estimation

Maximization w.r.t. the means:

$$\frac{\partial \log p(X | \theta)}{\partial \mu_j} = \sum_{i=1}^{n} \frac{\partial \log p(x_i | \theta)}{\partial \mu_j} = \sum_{i=1}^{n} \frac{\partial \log p(x_i | \theta)}{\partial \mu_j} \frac{p(x_i | \theta)}{p(x_i | \theta)} = \sum_{i=1}^{n} \sum_{l=1}^{k} \frac{\partial \log p(x_i | \theta)}{\partial \mu_j} p(x_i | \mu_l, \Sigma_l)
$$

$$= \sum_{i=1}^{n} \frac{\pi_j \cdot \Sigma_j^{-1}(x_i - \mu_j) \cdot N(x_i | \mu_j, \Sigma_j)}{\sum_{l=1}^{k} p(x_i | \mu_l, \Sigma_l)}$$

$$= \Sigma_j^{-1} \sum_{i=1}^{n} (x_i - \mu_j) \frac{\pi_j \cdot N(x_i | \mu_j, \Sigma_j)}{\sum_{l=1}^{k} \pi_l \cdot N(x_i | \mu_l, \Sigma_l)} \overset{!}{=} 0$$

Use $$\frac{\partial}{\partial \mu_j} N(x_i | \mu_j, \Sigma_j) = \Sigma_j^{-1}(x_i - \mu_j) \cdot N(x_i | \mu_j, \Sigma_j)$$

Define $$\gamma_j(x_i) := \pi_j \cdot N(x_i | \mu_j, \Sigma_j)$$: Probability that component j generated x_i
EM: Maximum Likelihood Estimation

Maximization w.r.t. the means yields

\[\mu_j = \frac{\sum_{i=1}^{n} \gamma_j(x_i)x_i}{\sum_{i=1}^{n} \gamma_j(x_i)} \]

Maximization w.r.t. the covariance matrices yields

\[\Sigma_j = \frac{\sum_{i=1}^{n} \gamma_j(x_i)(x_i - \mu_j)(x_i - \mu_j)^T}{\sum_{i=1}^{n} \gamma_j(x_i)} \]

Maximization w.r.t. the mixing coefficients yields

\[\pi_j = \frac{\sum_{i=1}^{n} \gamma_j(x_i)}{\sum_{l=1}^{k} \sum_{i=1}^{n} \gamma_l(x_i)} \]
EM: Maximum Likelihood Estimation

Problem with finding the optimal parameters θ_{ML}:

$$
\mu_j = \frac{\sum_{i=1}^{n} \gamma_j(x_i)x_i}{\sum_{i=1}^{n} \gamma_j(x_i)} \quad \text{and} \quad \gamma_j(x_i) = \frac{\pi_j \cdot \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_{l=1}^{k} \pi_j \cdot \mathcal{N}(x_i \mid \mu_l, \Sigma_k)}
$$

- Non-linear mutual dependencies
- Optimizing the Gaussian of cluster j depends on all other Gaussians.
- There is no closed-form solution!
- Approximation through iterative optimization procedures
- Break the mutual dependencies by optimizing μ_j and $\gamma_j(x_i)$ independently
Iterative Optimization

1. Initialize means μ_j, covariances Σ_j, and mixing coefficients π_j and evaluate the initial log-likelihood.

2. **E-step**: Evaluate the responsibilities using the current parameter values:

 $$
 \gamma_j^{new}(x_i) = \frac{\pi_j \cdot \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_{l=1}^{k} \pi_l \cdot \mathcal{N}(x_i \mid \mu_l, \Sigma_l)}
 $$

3. **M-step**: Re-estimate the parameters using the current responsibilities:

 $$
 \mu_j^{new} = \frac{\sum_{i=1}^{n} \gamma_j^{new}(x_i)x_i}{\sum_{i=1}^{n} \gamma_j^{new}(x_i)}
 $$

 ::
EM: Iterative Optimization

Iterative Optimization

\[
\Sigma_j^{\text{new}} = \frac{\sum_{i=1}^{n} \gamma_j^{\text{new}} (x_i - \mu_j^{\text{new}}) (x_i - \mu_j^{\text{new}})^T}{\sum_{i=1}^{n} \gamma_j^{\text{new}} (x_i)}
\]

\[
\pi_j^{\text{new}} = \frac{\sum_{i=1}^{n} \gamma_j^{\text{new}} (x_i)}{\sum_{i=1}^{k} \sum_{i=1}^{n} \gamma_i^{\text{new}} (x_i)}
\]

4. Evaluate the new log-likelihood \(\log p(X | \theta^{\text{new}}) \) and check for convergence of parameters or log-likelihood \(| \log p(X | \theta^{\text{new}}) - \log p(X | \theta) | \leq \epsilon \). If the convergence criterion is not satisfied, set \(\theta = \theta^{\text{new}} \) and go to step 2.
EM: Turning the Soft Clustering into a Partitioning

- EM obtains a soft clustering (each object belongs to each cluster with a certain probability) reflecting the uncertainty of the most appropriate assignment.

- Modification to obtain a partitioning variant: Assign each object to the cluster to which it belongs with the highest probability.

\[
C(x_i) = \arg\max_{l \in \{1, \ldots, k\}} \{\gamma_l(x_i)\}
\]

Example taken from: C. M. Bishop "Pattern Recognition and Machine Learning", 2009

Unsupervised Methods

Clustering

February 6, 2019

226
EM: Discussion

- Superior to k-Means for clusters of varying size or clusters having differing variances
 - More accurate data representation
- Convergence to (possibly local) maximum
- Computational effort for t iterations: $O(tnk)$
 - t is quite high in many cases
- Both, result and runtime, strongly depend on
 - the initial assignment
 - Do multiple random starts and choose the final estimate with highest likelihood
 - Initialize with clustering algorithms (e.g., k-Means): usually converges much faster
 - Local maxima and initialization issues have been addressed in various extensions of EM
 - a proper choice of k (next slide)
EM: Model Selection for Determining Parameter k

Problem

Classical trade-off problem for selecting the proper number of components k:

- If k is too high, the mixture may overfit the data
- If k is too low, the mixture may not be flexible enough to approximate the data

Idea

Determine candidate models θ_k for $k \in \{k_{\text{min}}, \ldots, k_{\text{max}}\}$ and select the model according to some quality measure $qual$:

$$\theta_{k^*} = \max_{k \in \{k_{\text{min}}, \ldots, k_{\text{max}}\}} \{qual(\theta_k)\}$$

- Silhouette Coefficient (as for k-Means) only works for partitioning approaches
- The likelihood is nondecreasing in k
Solution

Deterministic or stochastic model selection methods¹ which try to balance the goodness of fit with simplicity.

- Deterministic:

 \[\text{qual}(\theta_k) = \log p(X \mid \theta_k) + \mathcal{P}(k) \]

 where \(\mathcal{P}(k) \) is an increasing function penalizing higher values of \(k \)

- Stochastic: Based on Markov Chain Monte Carlo (MCMC)

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.2.1 Partitioning Methods
 3.2.2 Probabilistic Model-Based Methods
 3.2.3 Density-Based Methods
 3.2.4 Mean-Shift
 3.2.5 Spectral Clustering
 3.2.6 Hierarchical Methods
 3.2.7 Evaluation
 3.2.8 Ensemble Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
Density-Based Clustering

Basic Idea
Clusters are dense regions in the data space, separated by regions of lower density

Results of a k-medoid algorithm for $k = 4$:
Density-Based Clustering: Basic Concept

Note

Different density-based approaches exist in the literature. Here we discuss the ideas underlying the DBSCAN algorithm.

Intuition for Formalization

- For any point in a cluster, the local point density around that point has to exceed some threshold
- The set of points from one cluster is spatially connected
Local Point Density

Local point density at a point q defined by two parameters:

- ϵ-radius for the neighborhood of point q

\[N_\epsilon(q) = \{ p \in D \mid \text{dist}(p, q) \leq \epsilon \} \] \hspace{1cm} (1)

In this chapter, we assume that $q \in N_\epsilon(q)$!

- MinPts: minimum number of points in the given neighbourhood $N_\epsilon(q)$.

Density-Based Clustering: Basic Concept

Core Point

q is called a core object (or core point) w.r.t. ϵ, $MinPts$ if $|N_\epsilon(q)| \geq minPts$
(Directly) Density-Reachable

p directly density-reachable from q w.r.t. ϵ, $MinPts$ if:

1. $p \in N_\epsilon(q)$ and
2. q is core object w.r.t. ϵ, $MinPts$

Density-reachable is the transitive closure of directly density-reachable
Density-Based Clustering: Basic Definitions

Density-Connected

p is density-connected to a point q w.r.t. ϵ, $MinPts$ if there is a point o such that both, p and q are density-reachable from o w.r.t. ϵ, $MinPts$
Density-Based Clustering: Basic Definitions

Density-Based Cluster

\(\emptyset \subset C \subseteq D \) with database \(D \) satisfying:

Maximality: If \(q \in C \) and \(p \) is density-reachable from \(q \) then \(p \in C \)

Connectivity: Each object in \(C \) is density-connected to all other objects in \(C \)
Density-Based Clustering: Basic Definitions

A partitioning \(\{C_1, \ldots, C_k, N\} \) of the database \(D \) where

- \(C_1, \ldots, C_k \) are all density-based clusters
- \(N = D \setminus (C_1 \cup \ldots \cup C_k) \) is called the noise (objects not in any cluster)
Basic Theorem

- Each object in a density-based cluster C is density-reachable from any of its core-objects.
- Nothing else is density-reachable from core objects.
Density-Based Clustering: DBSCAN Algorithm

Density-Based Spatial Clustering of Applications with Noise\(^\text{12}\)

1: \textbf{for all } \(o \in D\) \textbf{ do}
2: \hskip1em \textbf{if } \(o\) is not yet classified \textbf{ then}
3: \hskip2em \textbf{if } \(o\) is a core-object \textbf{ then}
4: \hskip3em Collect all objects density-reachable from \(o\) and assign them to a new cluster.
5: \hskip1em \textbf{else}
6: \hskip2em Assign \(o\) to noise \(N\)

Note

Density-reachable objects are collected by performing successive \(\epsilon\)-neighborhood queries.

DBSCAN: Example

Parameters: $\epsilon = 1.75$, $minPts = 3$. Clusters: C_1, C_2; Noise: N
Determining the Parameters ϵ and $MinPts$

Recap

Cluster: Point density higher than specified by ϵ and $MinPts$

Idea

Use the point density of the least dense cluster in the data set as parameters.

Problem

How to determine this?
Determining the Parameters ϵ and $MinPts$

Heuristic

1. Fix a value for $MinPts$ (default: $2d - 1$ where d is the dimension of the data space)
2. Compute the k-distance for all points $p \in D$ (distance from p to its k-nearest neighbor), with $k = minPts$.
3. Create a k-distance plot, showing the k-distances of all objects, sorted in decreasing order.
4. The user selects "border object" o from the $MinPts$-distance plot: ϵ is set to $MinPts$-distance(o).
Determining the Parameters ϵ and $MinPts$: Problematic Example

[Diagram of a clustering problem with points and clusters labeled A, B, C, D, E, F, G, D1, D2, G1, G2, G3.]

Objects: A, B, C, B, D, E, D1, D2, G1, G2, G3, D, F, G

Unsupervised Methods Clustering

February 6, 2019 243
Database Support for Density-Based Clustering

Standard DBSCAN evaluation is based on recursive database traversal. Böhm et al.13 observed that DBSCAN, among other clustering algorithms, may be efficiently built on top of similarity join operations.

\textbf{\(\epsilon\)-Similarity Join}

An \textit{\(\epsilon\)-similarity join} yields all pairs of \(\epsilon\)-similar objects from two data sets \(Q, P\):

\[
Q \bowtie_{\epsilon} P = \{(q, p) \in Q \times P \mid \text{dist}(q, p) \leq \epsilon\}
\]

\textbf{SQL Query}

SELECT * FROM \(Q, P\) WHERE \text{dist}(Q, P) \leq \epsilon

ϵ-Similarity Self-Join

An ϵ-similarity self join yields all pairs of ϵ-similar objects from a database D.

$$D \bowtie_\epsilon D = \{(q, p) \in D \times D \mid \text{dist}(q, p) \leq \epsilon\}$$

SQL Query

```
SELECT * FROM D q, D p WHERE dist(q, p) \leq \epsilon
```
Database Support for Density-Based Clustering

The relation "directly ϵ, MinPts-density reachable" may be expressed in terms of an ϵ-similarity self join (abbreviate minPts with μ):

$$
\text{ddr}_{\epsilon,\mu} = \{(q, p) \in D \times D \mid q \text{ is } \epsilon, \mu\text{-core-point} \land p \in N_{\epsilon}(q)\}
$$

$$
= \{(q, p) \in D \times D \mid \text{dist}(q, p) \leq \epsilon \land \exists_{\geq \mu} p' \in D : \text{dist}(q, p') \leq \epsilon\}
$$

$$
= \{(q, p) \in D \times D \mid (q, p) \in D \Join_{\epsilon} D \land \exists_{\geq \mu} p'(q, p') \in D \Join_{\epsilon} D\}
$$

$$
= \sigma_{\pi_q(D \Join_{\epsilon} D)\mid_{\geq \mu}}(D \Join_{\epsilon} D) =: D \Join_{\epsilon,\mu} D
$$

SQL Query

```sql
SELECT * FROM D q, D p WHERE dist(q, p) \leq \epsilon GROUP BY q.id HAVING count(q.id) \geq \mu
```

Afterwards, DBSCAN computes the connected components of $D \Join_{\epsilon,\mu} D$.
Efficient Similarity Join Processing

For very large databases, efficient join techniques are available

- Block nested loop or index-based nested loop joins exploit secondary storage structure of large databases.
- Dedicated similarity join, distance join, or spatial join methods based on spatial indexing structures (e.g., R-Tree) apply particularly well. They may traverse their hierarchical directories in parallel (see illustration below).
- Other join techniques including sort-merge join or hash join are not applicable.
DBSCAN: Discussion

Advantages

- Clusters can have arbitrary shape and size; no restriction to convex shapes
- Number of clusters is determined automatically
- Can separate clusters from surrounding noise
- Complexity: \(N_\epsilon \)-query: \(\mathcal{O}(n) \), DBSCAN: \(\mathcal{O}(n^2) \).
- Can be supported by spatial index structures (\(\sim N_\epsilon \)-query: \(\mathcal{O}(\log n) \))

Disadvantages

- Input parameters may be difficult to determine
- In some situations very sensitive to input parameter setting
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.2.1 Partitioning Methods
 3.2.2 Probabilistic Model-Based Methods
 3.2.3 Density-Based Methods
 3.2.4 Mean-Shift
 3.2.5 Spectral Clustering
 3.2.6 Hierarchical Methods
 3.2.7 Evaluation
 3.2.8 Ensemble Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
Iterative Mode Search

Idea

Find modes in the point density.

Algorithm

1. Select a window size ϵ, starting position m
2. Calculate the mean of all points inside the window $W(m)$.
3. Shift the window to that position
4. Repeat until convergence.

Iterative Mode Search: Example
Mean Shift: Core Algorithm

Algorithm

Apply iterative mode search for each data point. Group those that converge to the same mode (called Basin of Attraction).

Mean Shift: Extensions

Weighted Mean

Use different weights for the points in the window calculated by some kernel κ

$$m^{(i+1)} = \frac{\sum_{x \in W(m^{(i)})} \kappa(x) x}{\sum_{x \in W(m^{(i)})} \kappa(x)}$$

Binning

First quantise data points to grid. Apply iterative mode seeking only once per bin.
Mean Shift: Discussion

Disadvantages

- Relatively high complexity: N_ϵ-query (≈windowing): $O(n)$. Algorithm: $O(tn^2)$

Advantages

- Clusters can have arbitrary shape and size; no restriction to convex shapes
- Number of clusters is determined automatically
- Robust to outliers
- Easy implementation and parallelisation
- Single parameter: ϵ
- Support by spatial index: N_ϵ-query (≈windowing): $O(\log n)$. Algorithm: $O(tn \log n)$
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.2.1 Partitioning Methods
 3.2.2 Probabilistic Model-Based Methods
 3.2.3 Density-Based Methods
 3.2.4 Mean-Shift
 3.2.5 Spectral Clustering
 3.2.6 Hierarchical Methods
 3.2.7 Evaluation
 3.2.8 Ensemble Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
Clustering as Graph Partitioning

Approach

▷ Data is modeled by a similarity graph \(G = (V, E) \)
 ▷ Vertices \(v \in V \): Data objects
 ▷ Weighted edges \(\{v_i, v_j\} \in E \): Similarity of \(v_i \) and \(v_j \)
 ▷ Common variants: \(\epsilon \)-neighborhood graph, \(k \)-nearest neighbor graph, fully connected graph

▷ Cluster the data by partitioning the similarity graph
 ▷ Idea: Find global minimum cut
 ▷ Only considers inter-cluster edges, tends to cut small vertex sets from the graph
 ▷ Partitions graph into two clusters
 ▷ Instead, we want a balanced multi-way partitioning
 ▷ Such problems are NP-hard, use approximations
Spectral Clustering

Given

Undirected graph G with weighted edges

- Let W be the (weighted) adjacency matrix of the graph
- And D its degree matrix with $D_{ii} = \sum_{j=1}^{n} W_{ij}$; other entries are 0

Aim

Partition G into k subsets, minimizing a function of the edge weights between/within the partitions.
Spectral Clustering

Idea

- Consider the indicator vector f_C for the cluster C, i.e.

$$f_{Ci} = \begin{cases} 1 & \text{if } v_i \in C \\ 0 & \text{else} \end{cases}$$

and the Laplacian matrix $L = D - W$

- Further, consider the function $fLf^T = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}(f_i - f_j)^2$ (derivation on next slide)

 - Small if f corresponds to a good partitioning
 - Given an indicator vector f_C, the function $f_C L f_C^T$ measures the weight of the inter-cluster edges!
 - Since L is positive semi-definite we have $fLf^T \geq 0$
 - Try to minimize fLf^T
Spectral Clustering

\[fLf^T = fDf^T - fWf^T \]

\[= \sum_i d_i f_i^2 - \sum_{ij} w_{ij} f_i f_j \]

\[= \frac{1}{2} \left(\sum_i (\sum_j w_{ij} f_i^2) - 2 \sum_{ij} w_{ij} f_i f_j + \sum_j (\sum_i w_{ij}) f_j^2 \right) \]

\[= \frac{1}{2} \left(\sum_{ij} w_{ij} f_i^2 - 2 \sum_{ij} w_{ij} f_i f_j + \sum_{ij} w_{ij} f_j^2 \right) \]

\[= \frac{1}{2} \sum_{ij} w_{ij} (f_i^2 - 2f_i f_j + f_j^2) \]

\[= \frac{1}{2} \sum_{ij} w_{ij} (f_i - f_j)^2 \]
Spectral Clustering: Example for Special Case

▶ Special case: The graph consists of k connected components (here: $k = 3$)

▶ The k components yield a ”perfect” clustering (no edges between clusters), i.e. optimal clustering by indicator vectors $f_{C_1} = (1, 1, 1, 0, 0, 0, 0, 0, 0)$, $f_{C_2} = (0, 0, 0, 1, 1, 1, 0, 0, 0)$ and $f_{C_1} = (0, 0, 0, 0, 0, 1, 1, 1)$

\[
\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 3 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\end{array}
\]

Adjacency matrix W

\[
\begin{array}{cccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\end{array}
\]

Degree matrix D

\[
\begin{array}{cccccccc}
2 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 3 & -2 & 0 & 0 \\
0 & 0 & 0 & -1 & -2 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & -3 & -1 \\
0 & 0 & 0 & 0 & 0 & 4 & -3 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & -2 \\
\end{array}
\]

Laplacian matrix $L = D - W$

▶ Because of the block form of L, we get $f_C L f_C^T = 0$ for each component C
Connected Components and Eigenvectors

- General goal: find indicator vectors minimizing function fLf^T besides the trivial indicator vector $f_C = (1, \ldots, 1)$
- Problem: Finding solution is NP-hard (cf. graph cut problems)
- How can we relax the problem to find a (good) solution more efficiently?
- Observation: For the special case with k connected components, the k indicator vectors fulfilling $f_C L f_C^T = 0$ yield the perfect clustering
 - The indicator vector for each component is an eigenvector of L with eigenvalue 0
 - The k indicator vectors are orthogonal to each other (linearly independent)

Lemma

The number of linearly independent eigenvectors with eigenvalue 0 for L equals the number of connected components in the graph.
Spectral Clustering: General Case

- In general: L does not have zero-eigenvectors
 - One large connected component, no perfect clustering
 - Determine the (linear independent) eigenvectors with the k smallest eigenvalues!

- Example: The 3 clusters are now connected by additional edges

Smallest eigenvalues of L: (0.23, 0.70, 3.43)
Spectral Clustering: Data Transformation

- How to find the clusters based on the eigenvectors?
 - Easy in special setting: 0-1 values; now: arbitrary real numbers
- Data transformation: Represent each vertex by a vector of its corresponding components in the eigenvectors
 - In the special case, the representations of vertices from the same connected component are equal, e.g. \(v_1, v_2, v_3 \) are transformed to \((1, 0, 0)\)
 - In general case only similar eigenvector representations
- Clustering (e.g. \(k \)-Means) on transformed data points yields final result

![Diagram showing eigenvectors for special and general cases, along with results of k-Means clustering.](image-url)
Illustration: Embedding of Vertices to a Vector Space

Spectral layout of previous example
Spectral Clustering: Discussion

Advantages

- No assumptions on the shape of the clusters
- Easy to implement

Disadvantages

- May be sensitive to construction of the similarity graph
- Runtime: k smallest eigenvectors can be computed in $O(n^3)$ (worst case)
 - However: Much faster on sparse graphs, faster variants have been developed

- Several variations of spectral clustering exist, using different Laplacian matrices which can be related to different graph cut problems

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.2.1 Partitioning Methods
 3.2.2 Probabilistic Model-Based Methods
 3.2.3 Density-Based Methods
 3.2.4 Mean-Shift
 3.2.5 Spectral Clustering
 3.2.6 Hierarchical Methods
 3.2.7 Evaluation
 3.2.8 Ensemble Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
From Partitioning to Hierarchical Clustering

Global parameters to separate all clusters with a partitioning clustering method may not exist:

- hierarchical cluster structure
- largely differing densities and sizes

Need a hierarchical clustering algorithm in these situations
Hierarchical Clustering: Basic Notions

- Hierarchical decomposition of the data set (with respect to a given similarity measure) into a set of nested clusters
- Result represented by a so called *dendrogram* (greek \(\delta \epsilon \nu \delta \rho o = \text{tree} \))
 - Nodes in the dendrogram represent possible clusters
 - Dendrogram can be constructed bottom-up (agglomerative approach) or top down (divisive approach)
Hierarchical Clustering: Example

- Interpretation of the dendrogram
 - The root represents the whole data set
 - A leaf represents a single object in the data set
 - An internal node represents the union of all objects in its sub-tree
 - The height of an internal node represents the distance between its two child nodes
Generic Algorithm

1. Initially, each object forms its own cluster
2. Consider all pairwise distances between the initial clusters (objects)
3. Merge the closest pair \((A, B)\) in the set of the current clusters into a new cluster \(C = A \cup B\)
4. Remove \(A\) and \(B\) from the set of current clusters; insert \(C\) into the set of current clusters
5. If the set of current clusters contains only \(C\) (i.e., if \(C\) represents all objects from the database): STOP
6. Else: determine the distance between the new cluster \(C\) and all other clusters in the set of current clusters and go to step 3.
Agglomerative hierarchical clustering requires a distance function for clusters

Given: a distance function \(\text{dist}(p, q) \) for database objects

The following distance functions for clusters (i.e., sets of objects) \(X \) and \(Y \) are commonly used for hierarchical clustering:

- **Single-Link**: \(\text{dist}_{sl}(X, Y) = \min_{x \in X, y \in Y} \text{dist}(x, y) \)
- **Complete-Link**: \(\text{dist}_{cl}(X, Y) = \max_{x \in X, y \in Y} \text{dist}(x, y) \)
- **Average-Link**: \(\text{dist}_{al}(X, Y) = \frac{1}{|X| \cdot |Y|} \sum_{x \in X, y \in Y} \text{dist}(x, y) \)
Divisive Hierarchical Clustering

General Approach: Top Down

- Initially, all objects form one cluster
- Repeat until all clusters are singletons
 - Choose a cluster to split → how?
 - Replace the chosen cluster with the sub-clusters and split into two → how to split?

Example solution: DIANA

- Select the cluster \(C \) with largest diameter for splitting
- Search the most disparate object \(o \) in \(C \) (highest average dissimilarity)
 - Splinter group \(S = \{o\} \)
 - Iteratively assign the \(o' \notin S \) with the highest \(D(o') > 0 \) to the splinter group until \(D(o') \leq 0 \) for all \(o' \notin S \), where

\[
D(o') = \sum_{o_j \in C \setminus S} \frac{d(o', o_j)}{|C \setminus S|} - \sum_{o_i \in S} \frac{d(o', o_i)}{|S|}
\]
Discussion Agglomerative vs. Divisive HC

- Divisive and Agglomerative HC need $n - 1$ steps
 - Agglomerative HC has to consider $\frac{n(n-1)}{2} = \binom{n}{2}$ combinations in the first step
 - Divisive HC potentially has $2^{n-1} - 1$ many possibilities to split the data in its first step. Not every possibility has to be considered (DIANA)
- Divisive HC is conceptually more complex since it needs a second "flat" clustering algorithm (splitting procedure)
- Agglomerative HC decides based on local patterns
- Divisive HC uses complete information about the global data distribution \(\rightsquigarrow\) able to provide better clusterings than Agglomerative HC?
Density-Based Hierarchical Clustering

- **Observation:** Dense clusters are completely contained by less dense clusters

- **Idea:** Process objects in the "right" order and keep track of point density in their neighborhood

![Diagram of dense and less dense clusters](image)
Core Distance and Reachability Distance

Parameters: "generating" distance ϵ, fixed value $MinPts$

$core-dist_{\epsilon, MinPts}(o)$
- "smallest distance such that o is a core object"
- if $core-dist > \epsilon$: undefined

$reach-dist_{\epsilon, MinPts}(p, o)$
- "smallest dist. s.t. p is directly density-reachable from o"
- if $reach-dist > \epsilon$: ∞

$$reach-dist(p, o) = \begin{cases}
 dist(p, o) & , dist(p, o) \geq core-dist(o) \\
 core-dist(o) & , dist(p, o) < core-dist(o) \\
 \infty & , dist(p, o) > \epsilon
\end{cases}$$

$MinPts = 5$
The Algorithm OPTICS

OPTICS1: Main Idea

"Ordering Points To Identify the Clustering Structure"

- Maintain two data structures
 - \textit{seedList}: Stores all objects with shortest reachability distance seen so far ("distance of a jump to that point") in ascending order; organized as a heap
 - \textit{clusterOrder}: Resulting cluster order is constructed sequentially (order of objects + reachability-distances)
- Visit each point
 - Always make a shortest jump

1 Ankerst M., Breunig M., Kriegel H.-P., Sander J. "OPTICS: Ordering Points To Identify the Clustering Structure". SIGMOD (1999)
The Algorithm OPTICS

1: \textit{seedList} = ∅
2: \textbf{while} there are unprocessed objects in \textit{DB} \textbf{do}
3: \hspace{0.5em} \textbf{if} \textit{seedList} = ∅ \textbf{then}
4: \hspace{1em} insert arbitrary unprocessed object into \textit{clusterOrder} with reach-dist = ∞
5: \textbf{else}
6: \hspace{1em} remove first object from \textit{seedList} and insert into \textit{clusterOrder} with its current reach-dist
7: \hspace{0.5em} \textit{// Let } o \textit{ be the last object inserted into } \textit{clusterOrder}
8: \hspace{1em} mark } o \textit{ as processed}
9: \hspace{0.5em} \textbf{for} } p \in \textit{range}(o, ε) \textbf{ do}
10: \hspace{1em} \textit{// Insert/update } p \textit{ in } \textit{seedList}
11: \hspace{1em} compute reach-dist(p, o)
12: \hspace{1em} \textit{seedList}.update(p, reach-dist(p, o))
OPTICS: Example

$\epsilon = 44$, $MinPts = 3$

seed list:
OPTICS: The Reachability Plot
OPTICS: The Reachability Plot

- Plot the points together with their reachability-distances. Use the order in which they were returned by the algorithm.
 - Represents the density-based clustering structure
 - Easy to analyze
 - Independent of the dimensionality of the data
OPTICS: Parameter Sensitivity

- Relatively insensitive to parameter settings
- Good result if parameters are just "large enough"

MinPts = 10, $\varepsilon = 10$

MinPts = 10, $\varepsilon = 5$

MinPts = 2, $\varepsilon = 10$
Hierarchical Clustering: Discussion

Advantages

▶ Does not require the number of clusters to be known in advance
▶ No (standard methods) or very robust parameters (OPTICS)
▶ Computes a complete hierarchy of clusters
▶ Good result visualizations integrated into the methods
▶ A "flat" partition can be derived afterwards (e.g. via a cut through the dendrogram or the reachability plot)

Disadvantages

▶ May not scale well
 ▶ Runtime for the standard methods: $O(n^2 \log n^2)$
 ▶ Runtime for OPTICS: without index support $O(n^2)$
▶ User has to choose the final clustering
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.2.1 Partitioning Methods
 3.2.2 Probabilistic Model-Based Methods
 3.2.3 Density-Based Methods
 3.2.4 Mean-Shift
 3.2.5 Spectral Clustering
 3.2.6 Hierarchical Methods
 3.2.7 Evaluation
 3.2.8 Ensemble Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
Evaluation of Clustering Results

<table>
<thead>
<tr>
<th>Type</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert’s Opinion</td>
<td>may reveal new insight into the data</td>
<td>very expensive, results are not comparable</td>
</tr>
<tr>
<td>External Measures</td>
<td>objective evaluation</td>
<td>needs ”ground truth”</td>
</tr>
<tr>
<td>Internal Measures</td>
<td>no additional information needed</td>
<td>approaches optimizing the evaluation criteria will always be preferred</td>
</tr>
</tbody>
</table>

Expert’s Opinion

- Ground truth
- Found clustering

External Measure

Internal Measure
External Measures

Notation
Given a data set D, a clustering $C = \{C_1, \ldots, C_k\}$ and ground truth $G = \{G_1, \ldots, G_l\}$.

Problem
Since the cluster labels are "artificial", permuting them should not change the score.

Solution
Instead of comparing cluster and ground truth labels directly, consider all pairs of objects. Check whether they have the same label in G and if they have the same in C.
Formalisation as Retrieval Problem

With $P = \{(o, p) \in D \times D \mid o \neq p\}$ define:

- Same cluster label: $S_C = \{(o, p) \in P \mid \exists C_i \in \mathcal{C} : \{o, p\} \subseteq C_i\}$
- Different cluster label: $\overline{S_C} = P \setminus S_C$

and analogously for \mathcal{G}.
Formalisation as Retrieval Problem

Define

- $TP = |S_C \cap S_G|$ (same cluster in both, "true positives")
- $FP = |S_C \cap S_G|$ (same cluster in C, different cluster in G, "false positives")
- $TN = |\overline{S_C} \cap \overline{S_G}|$ (different cluster in both, "true negatives")
- $FN = |\overline{S_C} \cap S_G|$ (different cluster in C, same cluster in G, "false negatives")
External Measures

- **Recall** (0 ≤ rec ≤ 1, larger is better)
 \[
 rec = \frac{TP}{TP + FN} = \frac{|S_c \cap S_g|}{|S_g|}
 \]

- **Precision** (0 ≤ prec ≤ 1, larger is better)
 \[
 prec = \frac{TP}{TP + FP} = \frac{|S_c \cap S_g|}{|S_c|}
 \]

- **F$_1$-Measure** (0 ≤ F$_1$ ≤ 1, larger is better)
 \[
 F_1 = \frac{2 \cdot rec \cdot prec}{rec + prec} = \frac{2|S_c \cap S_g|}{|S_c| + |S_g|}
 \]
External Measures

- **Rand Index** ($0 \leq RI \leq 1$, larger is better):

 \[
 RI(C \mid G) = \frac{TP + TN}{TP + TN + FP + FN} = \frac{|S_C \cap S_G| + |\overline{S_C} \cap \overline{S_G}|}{|P|}
 \]

- **Adjusted Rand Index** (ARI): Compares $RI(C, G)$ against expected (R, G) of random cluster assignment R.

- **Jaccard Coefficient** ($0 \leq JC \leq 1$, larger is better):

 \[
 JC = \frac{TP}{TP + FP + FN} = \frac{|S_C \cap S_G|}{|P| - |\overline{S_C} \cap \overline{S_G}|}
 \]
External Measures

- **Confusion Matrix / Contingency Table** $N \in \mathbb{N}^{k \times l}$ with $N_{ij} = |C_i \cap G_j|

<table>
<thead>
<tr>
<th></th>
<th>G_1</th>
<th>\ldots</th>
<th>G_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>$</td>
<td>C_1 \cap G_1</td>
<td>$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\vdots</td>
</tr>
<tr>
<td>C_k</td>
<td>$</td>
<td>C_k \cap G_1</td>
<td>$</td>
</tr>
</tbody>
</table>

- Define $N_i = \sum_{j=1}^{l} N_{ij}$ (i.e. $N_i = |C_i|$)

- Define $N = \sum_{i=1}^{k} N_i$ (i.e. $N = |D|$)
External Measures

▶ (Shannon) Entropy:

\[
H(C) = - \sum_{C_i \in C} p(C_i) \log p(C_i) = - \sum_{C_i \in C} \frac{|C_i|}{|D|} \log \frac{|C_i|}{|D|} = - \sum_{i=1}^{k} \frac{N_i}{N} \log \frac{N_i}{N}
\]

▶ Mutual Entropy:

\[
H(C | G) = - \sum_{C_i \in C} p(C_i) \sum_{G_j \in G} p(G_j | C_i) \log p(G_j | C_i)
\]

\[
= - \sum_{C_i \in C} \frac{|C_i|}{|D|} \sum_{G_j \in G} \frac{|C_i \cap G_j|}{|C_i|} \log \frac{|C_i \cap G_j|}{|C_i|}
\]

\[
= - \sum_{i=1}^{k} \frac{N_i}{N} \sum_{j=1}^{l} \frac{N_{ij}}{N_i} \log \frac{N_{ij}}{N_i}
\]
External Measures

- Mutual Information:
 \[I(C, G) = H(C) - H(C | G) = H(G) - H(G | C) \]

- Normalized Mutual Information (NMI) (0 ≤ NMI ≤ 1, larger is better):
 \[\text{NMI}(C, G) = \frac{I(C, G)}{\sqrt{H(C)H(G)}} \]

- Adjusted Mutual Information (AMI): Compares \(MI(C, G) \) against expected \(MI(\mathcal{R}, G) \) of random cluster assignment \(\mathcal{R} \).
Internal Measures: Cohesion

Notation

Let D be a set of size $n = |D|$, and let $C = \{C_1, \ldots, C_k\}$ be a partitioning of D.

Cohesion

Average distance between objects of the same cluster.

$$coh(C_i) = \left(\frac{|C_i|}{2}\right)^{-1} \sum_{o,p \in C_i, o \neq p} d(o, p)$$

Cohesion of clustering is equal to weighted mean of the clusters’ cohesions.

$$coh(C) = \sum_{i=1}^{k} \frac{|C_i|}{n} coh(C_i)$$
Internal Measures: Separation

Separation

Separation between to clusters: Average distance between pairs

\[sep(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{o \in C_i, p \in C_j} d(o, p) \]

Separation of one cluster: Minimum separation to another cluster:

\[sep(C_i) = \min_{j \neq i} sep(C_i, C_j) \]

Separation of clustering is equal to weighted mean of the clusters' separations.

\[sep(C) = \sum_{i=1}^{k} \frac{|C_i|}{n} sep(C_i) \]
Evaluating the Distance Matrix

dataset
(well separated)

Distance matrix
(sorted by \(k\)-means cluster label)

after: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
Evaluating the Distance Matrix

Distance matrices differ for different clustering approaches (here on random data)

- **k-means**
- **EM**
- **DBSCAN**
- **Complete Link**

after: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
Cohesion and Separation

Problem

Suitable for convex cluster, but not for stretched clusters (cf. silhouette coefficient).
Ambiguity of Clusterings

- Clustering according to color of shirt
- Alternative clustering according to direction of view

- Clustering according to: Color of shirt, direction of view, glasses, . . .
Ambiguity of Clusterings

(a) Original points.
(b) Two clusters.
(c) Four clusters.
(d) Six clusters.

Figure 8.1. Different ways of clustering the same set of points.

from: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
Ambiguity of Clusterings

"Philosophical" Problem

“What is a correct clustering?”

- Most approaches find clusters in every dataset, even in uniformly distributed objects
- Are there clusters?
 - Apply clustering algorithm
 - Check for reasonability of clusters
- Problem: No clusters found ≠ no clusters existing
 - Maybe clusters exists only in certain models, but can not be found by used clustering approach
Hopkins Statistics

\[H = \frac{\sum_{i=1}^{m} u_i}{\sum_{i=1}^{m} u_i + \sum_{i=1}^{m} w_i} \]

- \(w_i \): distance of selected objects to the next neighbor in dataset
- \(u_i \): distances of uniformly distributed objects to next neighbor in dataset
- \(0 \leq H \leq 1; \)
 - \(H \approx 0 \): very regular data (e.g. grid);
 - \(H \approx 0.5 \): uniformly distributed data;
 - \(H \approx 1 \): strongly clustered objects
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.2.1 Partitioning Methods
 3.2.2 Probabilistic Model-Based Methods
 3.2.3 Density-Based Methods
 3.2.4 Mean-Shift
 3.2.5 Spectral Clustering
 3.2.6 Hierarchical Methods
 3.2.7 Evaluation
 3.2.8 Ensemble Clustering
 3.3 Outlier Detection

4. Supervised Methods

5. Advanced Topics
Ensemble Clustering

Problem

- Many differing clustering models
- Different parameter choices, usually highly influences the result

What is a "good" clustering?

Idea

Find a consensus solution (also ensemble clustering) that consolidates multiple clustering solutions.
Ensemble Clustering: Benefits

- **Knowledge Reuse**: Possibility to integrate the knowledge of multiple known, good clusterings
- **Improved Quality**: Often ensemble clustering leads to “better” results than its individual base solutions.
- **Improved Robustness**: Combining several clustering approaches with differing data modeling assumptions leads to an increased robustness across a wide range of datasets.
- **Model Selection**: Novel approach for determining the final number of clusters
- **Distributed Clustering**: if data is inherently distributed (either feature-wise or object-wise) and each clusterer has only access to a subset of objects and/or features, ensemble methods can be used to compute a unifying result
Ensemble Clustering: Basic Notions

Given

A set of L clusterings $\mathcal{C} = C_1, \ldots, C_L$ for dataset $D = \{x_1, \ldots, x_n\} \in \mathbb{R}^d$.

Goal

Find a consensus clustering C^*.

How to define a consensus clustering?

Two categories:

- Approaches based on pairwise similarity: Find a consensus clustering C^* for which the similarity function $\Phi(\mathcal{C}, C^*) = \sum_{C \in \mathcal{C}} \phi(C, C^*)$ (ϕ is basically an external measure).

- Probabilistic approaches: Assume that the L labels for the objects $x_i \in D$ follow a certain distribution.
Similarity-Based Approaches

Goal
Find a consensus clustering C^* for which the similarity function $\Phi(C, C^*) = \sum_{C \in \mathcal{C}} \phi(C, C^*)$ is maximal.

Choices for ϕ

- Pair counting-based measures: Rand Index (RI), Adjusted RI, Probabilistic RI
- Information theoretic measures: Mutual Information (I), Normalized Mutual Information (NMI), Variation of Information (VI)

Problem
Minimising the objective for the above mentioned choices of ϕ in intractable.
Similarity-Based Approaches

<table>
<thead>
<tr>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Methods based on the co-association matrix (related to RI)</td>
</tr>
<tr>
<td>▶ Methods using cluster labels without co-association matrix (often related to NMI)</td>
</tr>
<tr>
<td>▶ Mostly graph partitioning</td>
</tr>
<tr>
<td>▶ Cumulative voting</td>
</tr>
</tbody>
</table>
Ensemble Clustering: Co-Association Matrix

Co-Association Matrix

The *co-association matrix* $S^c \in \mathbb{R}^{n \times n}$ represents the label similarity of object pairs:

$$S^c_{ij} = \sum_{C \in C} I[x_i \in C \land x_j \in C]$$

where I is the indicator function with $I[False] = 0$, and $I[True] = 1$.

Example

$D = \{1, 2, 3, 4, 5\}$ (i.e. $n = 5$),
$C = \{C_1, C_2\}$,
$C_1 = \{\{1, 2, 3\}, \{4, 5\}\}$,
$C_2 = \{\{1, 2\}, \{3, 4, 5\}\}$.

$$S = \begin{pmatrix}
2 & 2 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 \\
1 & 1 & 2 & 1 & 1 \\
0 & 0 & 1 & 2 & 2 \\
0 & 0 & 1 & 2 & 2 \\
\end{pmatrix}$$
Ensemble Clustering: Co-Association Matrix

Usage of Co-Association Matrix

- Use S^c as similarity matrix to apply traditional clustering approach.
- By interpreting S^c as weighted adjacency matrix, graph partitioning methods can be applied.

Co-Association Matrix and Rand Index

In 16 a connection of consensus clustering based on the co-association matrix and the optimization of the pairwise similarity based on the Rand Index has been proven:

$$C_{\text{best}} = \arg\max_{C^*} \sum_{C \in C} RI(C, C^*)$$

Information-Theoretic Approaches

Setting

Find a consensus clustering C^* for which the similarity function $\Phi(C, C^*) = \sum_{C \in \mathcal{C}} \phi(C, C^*)$ is maximal, with ϕ chosen as (Normalised) Mutual Information.

Problem

Usually a hard optimization problem!

Solution 1

Use meaningful optimization approaches (e.g. gradient descent) or heuristics to approximate the best clustering solution (e.g. 17)

Information-Theoretic Approaches

Solution 2

▶ Use a similar but solvable objective, e.g.\(^1\):

▶ Use as objective

\[C_{best} = \arg\max_{C^*} \sum_{C \in \mathcal{C}} I^s(C, C^*) \]

where \(I^s \) is the mutual information based on the generalized entropy of degree \(s \):

\[H^s(X) = (2^{1-s} - 1)^{-1} \sum_{x_i \in X} (p_i^s - 1) \]

For \(s = 2 \), \(I^s(C, C^*) \) is equal to the category utility function whose maximization is proven to be equivalent to the minimization of the square-error clustering criterion. \(\implies \) Apply a simple label transformation and use e.g. K-Means

Probabilistic Approach

Assumptions

- All clusterings $C \in \mathcal{C}$ are partitionings of the dataset D.
- There are K^* consensus clusters.
- With $C(x)$ denoting the cluster label assigned to x in clustering C, the following dataset Y given by

\[Y = \{ y_i \in \mathbb{N}_0^L \mid x_i \in D, \forall 1 \leq j \leq L : (y_i)_j = C_i(x_i) \} \]

(labels of base clusterings) follows a multivariate mixture distribution:

\[
p(Y \mid \Theta) = \prod_{i=1}^{n} \sum_{k=1}^{K^*} \alpha_k p_k(y_i \mid \theta_k) \overset{\text{cond. ind.}}{=} \prod_{i=1}^{n} \sum_{k=1}^{K^*} \alpha_k \prod_{j=1}^{L} p_{kl}(y_{ij} \mid \theta_{kl})
\]

with $p_{kl}(y_{ij} \mid \theta_{kl}) \sim M(1, (p_{kl1}, \ldots, p_{kl|C_i|}))$, i.e. $p_{kl}(y_{ij} \mid \theta_{kl}) = \prod_{k'=1}^{\frac{|C_i|}{k'}} p_{klk'}$.
Probabilistic Approach

Goal

Find the parameters $\Theta = (\alpha_1, \theta_1, \ldots, \alpha_{K^*}, \theta_{K^*})$ such that the likelihood $p(Y | \Theta)$ is maximized.

Solution

Optimize the parameters via the EM approach

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection
 3.3.1 Clustering-based Outliers
 3.3.2 Statistical Outliers
 3.3.3 Distance-based Outliers
 3.3.4 Density-based Outliers
 3.3.5 Angle-based Outliers
 3.3.6 Summary

4. Supervised Methods

5. Advanced Topics
What is an outlier?

Hawkins (1980) "An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism."

Statistics-based intuition:

- Normal data objects follow a “generating mechanism”, e.g. some given statistical process
- Abnormal objects deviate from this generating mechanism
Example: Hadlum vs. Hadlum (1949) [Barnett 1978]

- The birth of a child to Mrs. Hadlum happened 349 days after Mr. Hadlum left for military service.
- Average human gestation period is 280 days (40 weeks).
- Statistically, 349 days is an outlier.
Introduction

Example: Hadlum vs. Hadlum (1949) [Barnett 1978]

- Blue: statistical basis (13634 observations of gestation periods)
- Green: assumed underlying Gaussian process
 - Very low probability for the birth of Mrs. Hadlum's child being generated by this process
- Red: assumption of Mr. Hadlum (another Gaussian process responsible for the observed birth, where the gestation period starts later)
Applications

- **Fraud detection**
 - Purchasing behavior of a credit card owner usually changes when the card is stolen
 - Abnormal buying patterns can characterize credit card abuse

- **Medicine**
 - Whether a particular test result is abnormal may depend on other characteristics of the patients (e.g. gender, age, ...)
 - Unusual symptoms or test results may indicate potential health problems of a patient

- **Public health**
 - The occurrence of a particular disease, e.g. tetanus, scattered across various hospitals of a city indicate problems with the corresponding vaccination program in that city
 - Whether an occurrence is abnormal depends on different aspects like frequency, spatial correlation, etc.
Applications (cont’d)

▶ Sports statistics
 ▶ In many sports, various parameters are recorded for players in order to evaluate the players’ performances
 ▶ Outstanding (in a positive as well as a negative sense) players may be identified as having abnormal parameter values
 ▶ Sometimes, players show abnormal values only on a subset or a special combination of the recorded parameters

▶ Detecting measurement errors
 ▶ Data derived from sensors (e.g. in a given scientific experiment) may contain measurement errors
 ▶ Abnormal values could provide an indication of a measurement error
 ▶ Removing such errors can be important in other data mining and data analysis tasks
 ▶ "One person’s noise could be another person’s signal."
Introduction

Important Properties of Outlier Models

- Global vs. local approach
 - "Outlierness" regarding whole dataset (global) or regarding a subset of data (local)?
- Labeling vs. Scoring
 - Binary decision or outlier degree score?
- Assumptions about "Outlierness"
 - What are the characteristics of an outlier object?
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection
 3.3.1 Clustering-based Outliers
 3.3.2 Statistical Outliers
 3.3.3 Distance-based Outliers
 3.3.4 Density-based Outliers
 3.3.5 Angle-based Outliers
 3.3.6 Summary

4. Supervised Methods

5. Advanced Topics
Clustering-based Outliers

An object is a cluster-based outlier if it does not strongly belong to any cluster.

Basic Idea

- Cluster the data into groups
- Choose points in small clusters as candidate outliers.
- Compute the distance between candidate points and non-candidate clusters.
- If candidate points are far from all other non-candidate points and clusters, they are outliers.
Clustering-based Outliers

More Systematic Approaches

- Find clusters and then assess the degree to which a point belongs to any cluster
 - E.g. for k-Means, use distance to the centroid
- If eliminating a point results in substantial improvement of the objective function, we could classify it as an outlier
 - Clustering creates a model of the data and the outliers distort that model.
 - Applicable to clustering algorithms optimizing some objective function (e.g. k-means)
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection
 3.3.1 Clustering-based Outliers
 3.3.2 Statistical Outliers
 3.3.3 Distance-based Outliers
 3.3.4 Density-based Outliers
 3.3.5 Angle-based Outliers
 3.3.6 Summary

4. Supervised Methods

5. Advanced Topics
Statistical Tests

General Idea

▶ Given a certain kind of statistical distribution (e.g., Gaussian)
▶ Compute the parameters assuming all data points have been generated by such a statistical distribution (e.g., mean and standard deviation)
▶ Outliers are points that have a low probability to be generated by the overall distribution (e.g., deviate more than 3 times the standard deviation from the mean)
Statistical Tests

Basic Assumption

- Normal data objects follow a (known) distribution and occur in a high probability region of this model
- Outliers deviate strongly from this distribution
Statistical Tests

A huge number of different tests are available differing in

▶ Type of data distribution (e.g. Gaussian)
▶ Number of variables, i.e., dimensions of the data objects (univariate/multivariate)
▶ Number of distributions (mixture models)
▶ Parametric versus non-parametric (e.g. histogram-based)

Example on the Following Slides

▶ Gaussian distribution
▶ Multivariate
▶ Single model
▶ Parametric
Statistical Outliers: Gaussian Distribution

Probability Density Function of a Multivariate Normal Distribution

\[\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right) \]

- \(\mu \) is the mean value of all points (usually data are normalized such that \(\mu = 0 \))
- \(\Sigma \) is the covariance matrix from the mean
Mahalanobis Distance

Statistical Outliers: Mahalanobis Distance

Mahalanobis distance of point x to μ

$$MDist(x, \mu) = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)}$$

- $MDist$ follows a χ^2-distribution with d degrees of freedom ($d = \text{data dimensionality}$)
- Outliers: All points x, with $MDist(x, \mu) > \chi^2(0.975)$ $(\approx 3\sigma)$
Curse of dimensionality: The larger the degree of freedom, the more similar the $MDist$ values for all points.

- x-axis = observed $MDist$ values
- y-axis = frequency of observation
Robustness

- Mean and standard deviation are very sensitive to outliers
- These values are computed for the complete data set (including potential outliers)
- The $MDist$ is used to determine outliers although the $MDist$ values are influenced by these outliers
Statistical Outliers: Problems

Problems (cont'd)

- Data distribution is fixed
- Low flexibility (if no mixture models)
- Global method
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection
 3.3.1 Clustering-based Outliers
 3.3.2 Statistical Outliers
 3.3.3 Distance-based Outliers
 3.3.4 Density-based Outliers
 3.3.5 Angle-based Outliers
 3.3.6 Summary

4. Supervised Methods

5. Advanced Topics
Distance-Based Approaches

General Idea
Judge a point based on the distance(s) to its neighbors (Several variants proposed)

Basic Assumption
- Normal data objects have a dense neighborhood
- Outliers are far apart from their neighbors, i.e., have a less dense neighborhood
Distance-Based Approaches

D(ε, π) Outliers

- **Given:** radius ϵ, percentage π
- **A point** p is considered an outlier if at most π percent of all points (including p) have a distance to p less than ϵ.

$$\text{OutlierSet}(\epsilon, \pi) = \left\{ p \in D \mid \frac{|\{ q \in D \mid \text{dist}(p, q) < \epsilon \}|}{|D|} \leq \pi \right\}$$

20 E. Knorr, R. Ng. *A Unified Notion of Outliers: Properties and Computation*. KDD’97
Distance-Based Approaches: $D(\epsilon, \pi)$ Example

Score ($\epsilon = 0.3$)

Decision ($\pi = 0.02$)
Distance-Based Approaches: \(kNN \)

Outlier scoring based on \(kNN \) distances

General models: Take the \(kNN \) distance of a point as its outlier score

Decision

\(k \)-distance above some threshold \(\tau \) \(\iff \) Outlier.
Distance-Based Approaches: kNN Example

Score ($k = 1$)

Decision ($\tau = 0.3$)
Distance-Based Approaches: \(k\)NN Example

Score \((k = 5)\):

<table>
<thead>
<tr>
<th>Score (4.5)</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
<th>7.0</th>
<th>7.5</th>
<th>8.0</th>
</tr>
</thead>
</table>
| Decision \((\tau = 0.3)\):

<table>
<thead>
<tr>
<th>Decision (4.5)</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
<th>7.0</th>
<th>7.5</th>
<th>8.0</th>
</tr>
</thead>
</table>

Unsupervised Methods Outlier Detection February 6, 2019 330
kNN: Problems

- **Problems**

 - Highly sensitive towards k:
 - Too small k: small number of close neighbors can cause low outlier scores.
 - Too large: all objects in a cluster with less than k objects might become outliers.
 - cannot handle datasets with regions of widely different densities due to the global threshold

Figure 10.7. Outlier score based on the distance to the fifth nearest neighbor. Clusters of differing density.

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection
 3.3.1 Clustering-based Outliers
 3.3.2 Statistical Outliers
 3.3.3 Distance-based Outliers
 3.3.4 Density-based Outliers
 3.3.5 Angle-based Outliers
 3.3.6 Summary

4. Supervised Methods

5. Advanced Topics
Density-Based Approaches

General Idea

▶ Compare the density around a point with the density around its local neighbors.
▶ The relative density of a point compared to its neighbors is computed as an outlier score.
▶ Approaches also differ in how to estimate density.

Basic Assumption

▶ The density around a normal data object is similar to the density around its neighbors.
▶ The density around an outlier is considerably different to the density around its neighbors.
Density-Based Approaches

Problems

- Different definitions of density: e.g., number of points within a specified distance ε from the given object
- The choice of ε is critical (too small \Rightarrow normal points considered as outliers; too big \Rightarrow outliers considered normal)
- A global notion of density is problematic (as it is in clustering); fails when data contain regions of different densities

Figure 10.7. Outlier score based on the distance to the fifth nearest neighbor. Clusters of differing density.

D has a higher absolute density than A but compared to its neighborhood, D's density is lower.
Density-Based Approaches

Failure Case of Distance-Based

- $D(\epsilon, \pi)$: parameters ϵ, π cannot be chosen s.t. o_2 is outlier, but none of the points in C_1 (e.g. q)
- kNN-distance: kNN-distance of objects in C_1 (e.g. q) larger than the kNN-distance of o_2.
Density-Based Approaches

Solution

Consider the relative density w.r.t. to the neighbourhood.

Model

- Local Density (ld) of point p (inverse of avg. distance of kNNs of p)

\[ld_k(p) = \left(\frac{1}{k} \sum_{o \in kNN(p)} dist(p, o) \right)^{-1} \]

- Local Outlier Factor (LOF) of p (avg. ratio of lds of kNNs of p and ld of p)

\[LOF_k(p) = \frac{1}{k} \sum_{o \in kNN(p)} \frac{ld_k(o)}{ld_k(p)} \]
Density-Based Approaches

Score ($k = 7$)

Decision ($LOF_k(o) > 2$)
Density-Based Approaches

Extension (Smoothing factor)

- Reachability "distance"

\[rd_k(p, o) = \max\{kdist(o), dist(p, o)\} \]

- Local reachability distance \(lrd_k \)

\[lrd_k(p) = \left(\frac{1}{k} \sum_{o \in kNN(p)} rd(p, o) \right)^{-1} \]

- Replace \(ld \) by \(lrd \)

\[LOF_k(p) = \frac{1}{k} \sum_{o \in kNN(p)} \frac{lrd_k(o)}{lrd_k(p)} \]
Density-Based Approaches

Discussion

- $LOF \approx 1 \implies$ point in cluster
- $LOF \gg 1 \implies$ outlier.
- Choice of k defines the reference set
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection
 3.3.1 Clustering-based Outliers
 3.3.2 Statistical Outliers
 3.3.3 Distance-based Outliers
 3.3.4 Density-based Outliers
 3.3.5 Angle-based Outliers
 3.3.6 Summary

4. Supervised Methods

5. Advanced Topics
Angle-Based Approach

General Idea

▶ Angles are more stable than distances in high dimensional spaces
▶ *outlier* if most other objects are located in similar directions
▶ *no outlier* if many other objects are located in varying directions

Basic Assumption

▶ Outliers are at the border of the data distribution
▶ Normal points are in the center of the data distribution
Angle-Based Approach

Model

- Consider for a given point p the angle between \vec{p}_x and \vec{p}_y for any two x, y from the database
- Measure the variance of the angle spectrum
Angle-Based Approach

Model (cont’d)

- Weighted by the corresponding distances (for lower dimensional data sets where angles are less reliable)

\[
ABOD(p) = \text{VAR}_{x,y \in D} \left(\frac{1}{\|x\|_2 \|y\|_2} \cos \langle \vec{x}, \vec{y} \rangle \right) = \text{VAR}_{x,y \in D} \left(\frac{\langle \vec{x}, \vec{y} \rangle}{\|x\|_2^2 \|y\|_2^2} \right)
\]

- Small ABOD ⇔ outlier
Angle-Based Approaches

Score (all pairs)

Decision ($ABOD(o) < 0.2$)
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods
 3.1 Frequent Pattern Mining
 3.2 Clustering
 3.3 Outlier Detection
 3.3.1 Clustering-based Outliers
 3.3.2 Statistical Outliers
 3.3.3 Distance-based Outliers
 3.3.4 Density-based Outliers
 3.3.5 Angle-based Outliers
 3.3.6 Summary

4. Supervised Methods

5. Advanced Topics
Properties: global vs. local, labeling vs. scoring

- *Clustering-Based* Outliers: Identification as non-(cluster-members)
- *Statistical* Outliers: Assume probability distribution; outliers = unlikely to be generated by distribution
- *Distance-Based* Outliers: Distance to neighbors as outlier metric
- *Density-Based* Outliers: Relative density around the point as outlier metric
- *Angle-Based* Outliers: Angles between outliers and random point pairs vary only slightly
1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods
 4.1 Classification
 4.1.1 Bayesian Classifiers
 4.1.2 Linear Discriminant Functions
 4.1.3 Support Vector Machines
 4.1.4 Kernel Methods
 4.1.5 Decision Tree Classifiers
 4.1.6 Nearest Neighbor Classifiers
 4.1.7 Ensemble Classification

4.2 Regression

5. Advanced Topics
Additional Literature for this Chapter

Introduction: Example

![Training data](image)

<table>
<thead>
<tr>
<th>age</th>
<th>car_type</th>
<th>max_speed</th>
<th>risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>family</td>
<td>180</td>
<td>high</td>
</tr>
<tr>
<td>17</td>
<td>sportive</td>
<td>240</td>
<td>high</td>
</tr>
<tr>
<td>43</td>
<td>sportive</td>
<td>246</td>
<td>high</td>
</tr>
<tr>
<td>68</td>
<td>family</td>
<td>183</td>
<td>low</td>
</tr>
<tr>
<td>32</td>
<td>truck</td>
<td>110</td>
<td>low</td>
</tr>
</tbody>
</table>

![Simple classifier](image)

\[
\begin{align*}
\text{if } \text{age} & > 50 \text{ then risk} = \text{low} \\
\text{if } \text{age} & \leq 50 \text{ and car type} = \text{truck} \text{ then risk} = \text{low} \\
\text{if } \text{age} & \leq 50 \text{ and car type} \neq \text{truck} \text{ then risk} = \text{high}
\end{align*}
\]
Classification: Training Phase (Model Construction)

<table>
<thead>
<tr>
<th>ID</th>
<th>age</th>
<th>car type</th>
<th>risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>family</td>
<td>high</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>sportive</td>
<td>high</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>sportive</td>
<td>high</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>family</td>
<td>low</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>truck</td>
<td>low</td>
</tr>
</tbody>
</table>

Training Data

If age > 50 then risk = low;
If age ≤ 50 and car type = truck then risk = low;
If age ≤ 50 and car type ≠ truck then risk = high
Classification: Prediction Phase (Application)

<table>
<thead>
<tr>
<th>ID</th>
<th>age</th>
<th>car type</th>
<th>risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>family</td>
<td>high</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>sportive</td>
<td>high</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>sportive</td>
<td>high</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>family</td>
<td>low</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>truck</td>
<td>low</td>
</tr>
</tbody>
</table>

Training data

unknown data

(age=60, family)

if age > 50 then risk = low;
if age ≤ 50 and car type = truck then risk = low;
if age ≤ 50 and car type ≠ truck then risk = high

classifier

class label

risk = low
The systematic assignment of new observations to known categories according to criteria learned from a training set.

Formal Setup

- **A classifier** K for a model $M(\theta)$ is a function $K_{M(\theta)} : D \rightarrow Y$, where
 - D: data space
 - Often d-dim. space with attributes a_1, \ldots, a_d (not necessarily a vector space)
 - Some other space, e.g. metric space
 - $Y = \{y_1, \ldots, y_k\}$: set of k distinct class labels
 - $O \subseteq D$: set of training objects o with known class labels $y \in Y$

- **Classification**: Application of classifier K on objects from $D \setminus O$

- **Model** $M(\theta)$ is the "type" of the classifier, and θ are the model parameters

- **Supervised learning**: find/learn optimal parameters θ for $M(\theta)$ given $O
Supervised vs. Unsupervised Learning

Unsupervised Learning (clustering)

- The class labels of training data are unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data
 - Classes (=clusters) are to be determined

Supervised Learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - Classes are known in advance (a priori)
- New data is classified based on information extracted from the training set
Numerical Prediction

- Related problem to classification: numerical prediction
 - Determine the numerical value of an object
 - Method: e.g., regression analysis
 - Example: Prediction of flight delays

- Numerical prediction is *different* from classification
 - Classification refers to predict categorical class label
 - Numerical prediction models continuous-valued functions

- Numerical prediction is *similar* to classification
 - First, construct a model
 - Second, use model to predict unknown value
 - Major method for numerical prediction is regression:
 - Linear and multiple regression
 - Non-linear regression
Goals for this Section

1. Introduction of different classification models
2. Learning techniques for these models

<table>
<thead>
<tr>
<th>age</th>
<th>car_type</th>
<th>max_speed</th>
<th>risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>family</td>
<td>180</td>
<td>high</td>
</tr>
<tr>
<td>17</td>
<td>sportive</td>
<td>240</td>
<td>high</td>
</tr>
<tr>
<td>43</td>
<td>sportive</td>
<td>246</td>
<td>high</td>
</tr>
<tr>
<td>68</td>
<td>family</td>
<td>183</td>
<td>low</td>
</tr>
<tr>
<td>32</td>
<td>truck</td>
<td>110</td>
<td>low</td>
</tr>
</tbody>
</table>

Bayes classifier
Linear classifier
Decision tree
k-NN classifier
Quality Measures for Classifiers

- Classification accuracy or classification error (complementary)
- Compactness of the model
 - Decision tree size, number of decision rules, ...
- Interpretability of the model
 - Insights and understanding of the data provided by the model
- Efficiency
 - Time to generate the model (training time)
 - Time to apply the model (prediction time)
- Scalability for large databases
 - Efficiency in disk-resident databases
- Robustness
 - Robust against noise or missing values
Evaluation of Classifiers: Notions

- Using training data to build a classifier and to estimate the model’s accuracy may result in misleading and overoptimistic estimates
 - Overspecialization of the learning model to the training data
- **Train-and-Test**: Decomposition of labeled data set \(O \) into two partitions
 - Training data is used to train the classifier
 - Construction of the model by using information about the class labels
 - Test data is used to evaluate the classifier
 - Temporarily hide class labels, predict them anew and compare with original class labels
- Train-and-Test is not applicable if the set of objects for which the class label is known is very small
Evaluation of Classifiers: Cross Validation

\(m \)-fold Cross Validation

- Decompose data set evenly into \(m \) subsets of (nearly) equal size
- Iteratively use \((m - 1)\) partitions for training data and the remaining single partition as test data
- Combine the \(m \) classification accuracy values to an overall classification accuracy

Leave-one-out: Special case of cross validation \((m = n)\)

- For each of the objects \(o \) in the data set \(O \):
 - Use set \(O \setminus \{o\} \) as training set
 - Use the singleton set \(\{o\} \) as test set
 - Compute classification accuracy by dividing the number of correct predictions through the database size \(|O|\)
- Particularly well applicable to nearest-neighbor classifiers
Quality Measures: Accuracy and Error

- Let K be a classifier
- Let $C(o)$ denote the correct class label of an object o
- Measure the quality of K:
 - Predict the class label for each object o from a data set $T \subseteq O$
 - Determine the fraction of correctly predicted class labels

Classification Accuracy of K

$$G_T(K) = \frac{|\{o \in T \mid K(o) = C(o)\}|}{|T|}$$

Classification Error of K

$$F_T(K) = \frac{|\{o \in T \mid K(o) \neq C(o)\}|}{|T|} = 1 - G_T(K)$$
Quality Measures: Accuracy and Error

- Let K be a classifier
- Let $TR \subseteq O$ be the training set: Used to build the classifier
- Let $TE \subseteq O$ be the test set: Used to test the classifier

Resubstitution Error of K

$$F_{TR}(K) = \frac{|\{o \in TR \mid K(o) \neq C(o)\}|}{|TR|}$$

(True) Classification Error of K

$$F_{TE}(K) = \frac{|\{o \in TE \mid K(o) \neq C(o)\}|}{|TE|}$$
Quality Measures: Confusion Matrix

Results on the test set: Confusion matrix

<table>
<thead>
<tr>
<th>correct label</th>
<th>class 1</th>
<th>class 2</th>
<th>class 3</th>
<th>class 4</th>
<th>class 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>class 1</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>class 2</td>
<td>0</td>
<td>31</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>class 3</td>
<td>3</td>
<td>1</td>
<td>50</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>class 4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>class 5</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>16</td>
<td>13</td>
</tr>
</tbody>
</table>

(correctly classified in green)

Based on the confusion matrix, we can compute several accuracy measures, including:

- Classification Accuracy/Error
- Precision and Recall
Quality Measures: Precision and Recall

Recall

Fraction of test objects of class i, which have been identified correctly.

$$\text{Recall}_{TE}(K, i) = \frac{|\{o \in C_i \mid K(o) = C(o)\}|}{|C_i|}$$

Precision

Fraction of test objects assigned to class i, which have been identified correctly.

$$\text{Precision}_{TE}(K, i) = \frac{|\{o \in C_i \mid K_i(o) = C(o)\}|}{|K_i|}$$
Overfitting

Characterization of Overfitting

The classifier adapts too closely to the training dataset and may therefore fail to accurately predict class labels for test objects unseen during training.

Example: Decision Tree

Generalization \leftarrow classifier \rightarrow specialization

“overfitting”
Overfitting

Overfitting

- Occurs when the classifier is too optimized to the (noisy) training data
- As a result, the classifier yields worse results on the test data set
- Potential reasons:
 - Bad quality of training data (noise, missing values, wrong values)
 - Different statistical characteristics of training data and test data

Overfitting Avoidance

- Removal of noisy/erroneous/contradicting training data
- Choice of an appropriate size of the training set
 - Not too small, not too large
- Choice of appropriate sample
 - Sample should describe all aspects of the domain and not only parts of it
Underfitting

- Occurs when the classifiers model is too simple, e.g. trying to separate classes linearly that can only be separated by a quadratic surface.
- Happens seldomly.

~~ Trade-off: Usually one has to find a good balance between over- and underfitting.
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods
 4.1 Classification
 4.1.1 Bayesian Classifiers
 4.1.2 Linear Discriminant Functions
 4.1.3 Support Vector Machines
 4.1.4 Kernel Methods
 4.1.5 Decision Tree Classifiers
 4.1.6 Nearest Neighbor Classifiers
 4.1.7 Ensemble Classification
 4.2 Regression

5. Advanced Topics
Bayes Classification

- Probability based classification
 - Based on likelihood of observed data, estimate explicit probabilities for classes
 - Classify objects depending on costs for possible decisions and the probabilities for the classes

- Incremental
 - Likelihood functions built up from classified data
 - Each training example can incrementally increase/decrease the probability that a hypothesis (class) is correct
 - Prior knowledge can be combined with observed data.

- Good classification results in many applications
Bayes’ Theorem

Probability Theory

- Conditional probability: \(P(A \mid B) = \frac{P(A \cap B)}{P(B)} \) ("prob. of A given B")
- Product Rule: \(P(A \cap B) = P(A \mid B) \cdot P(B) \)

Bayes’ Theorem

- \(P(A \cap B) = P(A \mid B) \cdot P(B) \)
- \(P(B \cap A) = P(B \mid A) \cdot P(A) \)
- Since \(P(A \cap B) = P(B \cap A) \), \(P(A \mid B) \cdot P(B) = P(B \mid A) \cdot P(A) \), and thus

\[
P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}
\]
Bayes Classifier

- Bayes’ rule: \(P(c_j \mid x) = \frac{P(x \mid c_j) \cdot P(c_j)}{p(x)} \) for object \(x \) and class \(c_j \in C \).

- We are interested in maximizing this, i.e.

\[
\arg\max_{c_j \in C} (P(c_j \mid x)) = \arg\max_{c_j \in C} \left(\frac{P(x \mid c_j) \cdot P(c_j)}{p(x)} \right) = \arg\max_{c_j \in C} (P(x \mid c_j) \cdot P(c_j))
\]

where \((*)\) assumes the value of \(p(x) \) is constant and hence does not change the result.

- Final decision rule:

\[
K(x) = c_{\text{max}} = \arg\max_{c_j \in C} (P(x \mid c_j) \cdot P(c_j))
\]

- But how to obtain \(P(c_j) \) and \(P(x \mid c_j) \).
Bayes Classifier: Density Estimation

A-Priori Class Probabilities

Estimate the a-priori probabilities $P(c_j)$ of classes $c_j \in C$ by using the observed relative frequency of the individual class labels c_j in the training set, i.e.,

$$P(c_j) = \frac{N_{c_j}}{N}$$

Conditional Probabilities

▶ Non-parametric methods: Kernel methods Parzen’s window, Gaussian kernels, etc.
▶ Parametric methods, e.g.
 ▶ Single Gaussian distribution: Computed by maximum likelihood estimators (MLE)
 ▶ Mixture models: e.g. Gaussian Mixture Model computed by EM algorithm
Bayes Classifier: Density Estimation

Problem
Curse of dimensionality often lead to problems in high dimensional data \Rightarrow Density functions become too uninformative

Solution
- Dimensionality reduction
- Usage of statistical independence of single attributes (extreme case: naïve Bayes)
Naïve Bayes Classifier

Assumptions

- Objects are given as \(d\)-dimensional vectors, \(x = (x_1, \ldots, x_d)\)
- For any given class \(c_j\) the attribute values \(x_i\) are conditionally independent, i.e.

\[
P(x_1, \ldots, x_d \mid c_j) = \prod_{i=1}^{d} P(x_i \mid c_j) = P(x_1 \mid c_j) \cdot \ldots \cdot P(x_d \mid c_j)
\]

Decision Rule

\[
K_{\text{naïve}}(x) = \arg\max_{c_j \in \mathcal{C}} \left(P(c_j) \cdot \prod_{i=1}^{d} P(x_i \mid c_j) \right)
\]
Naïve Bayes Classifier

Categorical Attribute x_i

$P(x_i \mid c_j)$ can be estimated as the relative frequency of samples having value v_i as the ith attribute in class c_j in the training set.

Continuous Attribute x_i

$P(x_i \mid c_j)$ can, for example, be estimated through a Gaussian distribution determined by μ_{ij}, σ_{ij}.

\Rightarrow Computationally easy in both cases.
Naïve Bayes Classifier: Example

<table>
<thead>
<tr>
<th>age</th>
<th>car_type</th>
<th>max_speed</th>
<th>risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>family</td>
<td>180</td>
<td>high</td>
</tr>
<tr>
<td>17</td>
<td>sportive</td>
<td>240</td>
<td>high</td>
</tr>
<tr>
<td>43</td>
<td>sportive</td>
<td>246</td>
<td>high</td>
</tr>
<tr>
<td>68</td>
<td>family</td>
<td>183</td>
<td>low</td>
</tr>
<tr>
<td>32</td>
<td>truck</td>
<td>110</td>
<td>low</td>
</tr>
</tbody>
</table>

Model Setup

- **Age** $\sim N(\mu, \sigma^2)$ (normal distribution)
- **car_type** \sim relative frequencies
- **max_speed** $\sim N(\mu, \sigma^2)$ (normal distribution)
Naïve Bayes Classifier: Example (cont’d)

Query

\[q = (\text{age} = 60; \text{car_type} = \text{family}; \text{max_speed} = 190) \]

Example

We have:

- \(P(\text{high}) = \frac{3}{5} \)
- \(\mu_{\text{age, high}} = \frac{83}{3}, \sigma^2_{\text{age, high}} = \frac{1112}{3} \Rightarrow P(\text{age} = 60 | \text{high}) \approx 0.00506 \)
- \(P(\text{car_type} = \text{family} | \text{high}) = \frac{1}{3} \)
- \(\mu_{\text{max_speed, high}} = 222, \sigma^2_{\text{max_speed, high}} = 2664 \Rightarrow P(\text{max_speed} = 190 | \text{high}) \approx 0.00638 \)

and hence

\[
P(\text{high})P(q | \text{high}) = P(\text{high})P(\text{age} = 60 | \text{high})P(\text{car_type} = \text{family} | \text{high})P(\text{max_speed} = 190 | \text{high}) \\
\approx 6.45166 \cdot 10^{-6}
\]

Analogously, we obtain \(P(\text{low})P(q | \text{low}) = 15.72290 \cdot 10^{-6} \Rightarrow K_{\text{naïve}}(q) = \text{low} \).
Bayesian Classifier

- Assuming dimensions of $x = (x_1, \ldots, x_d)$ are \textit{not} independent
- Assume multivariate normal distribution (i.e. Gaussian)

$$P(x \mid C_j) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma_j)}} \exp \left(-\frac{1}{2} (x - \mu_j) \Sigma_j^{-1} (x - \mu_j)^T \right)$$

with

- μ_j: mean vector of class C_j
- Σ_j is the $d \times d$ covariance matrix
- $\det(\Sigma_j)$ is the determinant of Σ_j, and Σ_j^{-1} its inverse
Example: Interpretation of Raster Images

- Scenario: Automated interpretation of raster images
 - Take an image from a certain region (in d different frequency bands, e.g., infrared, etc.)
 - Represent each pixel by d values: (x_1, \ldots, x_d)
- Basic assumption: different surface properties of the earth ("landuse") follow a characteristic reflection and emission pattern
Example: Interpretation of Raster Images

Application of the Bayes classifier:

- Estimation of the $P(x \mid c)$ without assumption of conditional independence

- Assumption of d-dimensional normal (= Gaussian) distributions for the value vectors of a class

![Probability of class membership diagram]
Example: Interpretation of Raster Images

Method

Estimate the following measures from training data

- μ_j: d-dimensional mean vector of all feature vectors of class C_j
- Σ_j: $d \times d$ covariance matrix of class C_j

Problems

- if likelihood of respective class is very low
- if several classes share the same likelihood

Mitigate e.g. by applying some minimum likelihood threshold; do not classify regions below.
Bayesian Classifiers: Discussion

Pro

- High classification accuracy for many applications if density function defined properly
- Incremental computation: many models can be adopted to new training objects by updating densities
 - For Gaussian: store count, sum, squared sum to derive mean, variance
 - For histogram: store count to derive relative frequencies
- Incorporation of expert knowledge about the application in the prior $P(C_i)$

Contra

- Limited applicability: often, required conditional probabilities are not available
- Lack of efficient computation: in case of a high number of attributes (particularly for Bayesian belief networks)
The Independence Hypothesis

... makes efficient computation possible
... yields optimal classifiers when satisfied
... but is seldom satisfied in practice, as attributes (variables) are often correlated.

Attempts to overcome this limitation

- *Bayesian networks*, that combine Bayesian reasoning with causal relationships between attributes
- *Decision trees*, that reason on one attribute at the time, considering most important attributes first
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods
 4.1 Classification
 4.1.1 Bayesian Classifiers
 4.1.2 Linear Discriminant Functions
 4.1.3 Support Vector Machines
 4.1.4 Kernel Methods
 4.1.5 Decision Tree Classifiers
 4.1.6 Nearest Neighbor Classifiers
 4.1.7 Ensemble Classification

 4.2 Regression

5. Advanced Topics
Linear Discriminant Function Classifier

Idea
Separate points of two classes by a hyperplane
▶ I.e., classification model is a hyperplane
▶ Points of one class in one half space, points of second class in the other half space

Questions
▶ How to formalize the classifier?
▶ How to find optimal parameters of the model?

<table>
<thead>
<tr>
<th>age</th>
<th>car_type</th>
<th>max_speed</th>
<th>risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>family</td>
<td>180</td>
<td>high</td>
</tr>
<tr>
<td>17</td>
<td>sportive</td>
<td>240</td>
<td>high</td>
</tr>
<tr>
<td>43</td>
<td>sportive</td>
<td>246</td>
<td>high</td>
</tr>
<tr>
<td>68</td>
<td>family</td>
<td>183</td>
<td>low</td>
</tr>
<tr>
<td>32</td>
<td>truck</td>
<td>110</td>
<td>low</td>
</tr>
</tbody>
</table>
Basic Notions

Recall some general algebraic notions for a vector space V:

- $\langle x, y \rangle$ denotes an inner product of two vectors $x, y \in V$
- E.g., the scalar product $\langle x, y \rangle = x^T y = \sum_{i=1}^{d} x_i y_i$
- $H(w, w_0)$ denotes a hyperplane with normal vector w and constant term w_0:
 \[x \in H \iff \langle x, w \rangle + w_0 = 0 \]

- The normal vector w may be normalized to w':
 \[
 w' = \frac{1}{\sqrt{\langle w, w \rangle}} w \implies \langle w', w' \rangle = 1
 \]

- Distance of a point x to the hyperplane $H(w', w_0)$:
 \[
 \text{dist}(x, H(w', w_0)) = |\langle w', x \rangle + w_0|
 \]
Formalization

Consider a two-class example (generalizations later on):

- D: d-dimensional vector space with attributes a_1, \ldots, a_d
- $Y = \{-1, 1\}$ set of 2 distinct class labels y_j
- $O \subseteq D$: Set of objects $o = (o_1, \ldots, o_d)$ with known class labels $y \in Y$ and cardinality $|O| = N$

- A hyperplane $H(w, w_0)$ with normal vector w and constant term w_0

$$x \in H \iff w^T x + w_0 = 0$$

Classification Rule

$$K_{H(w, w_0)}(x) = \text{sign}(w^T x + w_0)$$
Optimal Parameter Estimation

How to estimate optimal parameters w, w_0?

1. Define an objective/loss function $L(\cdot)$ that assigns a value (e.g. the error on the training set) to each parameter-configuration
2. Optimal parameters minimize/maximize the objective function

How does an objective function look like?

- Different choices possible
- Most intuitive: Each misclassified object contributes a constant (loss) value $\leadsto 0$-1 loss
Optimal Parameter Estimation

0-1 Loss Objective for Linear Classifier

\[L(w, w_0) = \sum_{i=1}^{N} I(y_i \neq K_{H(w, w_0)}(x_i)) \]

\[\min_{w, w_0} L(w, w_0) \]

where \(I(condition) = 1 \) if condition holds, 0 otherwise

- Minimize the overall number of training errors, but . . .
 - NP-hard to optimize in general (non-smooth, non-convex)
 - Small changes of \(w, w_0 \) can lead to large changes of the loss
Loss Functions

Alternative Convex Loss Functions

- **Sum-of-squares loss**: \((w^T x_i + w_0 - y_i)^2\)
- **Hinge loss**: \(\max \{0, (1 - y_i(w^T x_i + w_0))\}\) (SVM)
- **Exponential loss**: \(\exp(-y_i(w^T x_i + w_0))\) (AdaBoost)
- **Cross-entropy error**:

 \[
 -y_i \log g(x_i) + (1 - y_i) \log(1 - g(x_i))
 \]

 where \(g(x_i) = \frac{1}{1 + \exp(-(w^T x_i + w_0))}\) (Logistic Regression)

... and many more

- Optimizing different loss function leads to several classification algorithms
- Next, we derive the optimal parameters for the sum-of-squares loss
Optimal Parameters for SSE loss

Objective Function

\[SSE(w, w_0) = \frac{1}{2} \sum_{i=1}^{N} (w^T x_i + w_0 - y_i)^2 \]

- Minimize the error function for getting optimal parameters
- Use standard optimization technique:
 1. Calculate first derivative
 2. Set derivative to zero and compute the global minimum (SSE is a convex function)
Optimal Parameters for SSE Loss

- Transform the problem for simpler computations:
 - $w^T x + w_0 = \sum_{i=1}^d w_i x_i + w_0 = \sum_{i=0}^d w_i x_i$ with $x_0 = 1$
 - For w let $\tilde{w} = (w_0, \ldots, w_d)^T$

- Combine the values to matrices

\[
\tilde{X} = \begin{pmatrix}
1 & x_{1,1} & \ldots & x_{1,d} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{N,1} & \ldots & x_{N,d}
\end{pmatrix}, \quad Y = \begin{pmatrix}
y_1 \\
\vdots \\
y_N
\end{pmatrix}
\]

- Then the sum-of-squares error is equal to

\[
SSE(\tilde{w}) = \frac{1}{2}(\tilde{X}\tilde{w} - Y)^T(\tilde{X}\tilde{w} - Y)
\]
Optimal Parameters for SSE Loss

- Take the derivative:
 \[
 \frac{\partial}{\partial \tilde{w}} SSE(\tilde{w}) = \tilde{X}^T (\tilde{X}\tilde{w} - Y)
 \]

- Solve \(\frac{\partial}{\partial \tilde{w}} SSE(\tilde{w}) = 0 \):
 \[
 \tilde{X}^T (\tilde{X}\tilde{w} - Y) = 0
 \]
 \[
 \Leftrightarrow \tilde{X}^T \tilde{X}\tilde{w} = \tilde{X}^T Y
 \]
 \[
 \Leftrightarrow \tilde{w} = \left(\tilde{X}^T \tilde{X} \right)^{-1} \tilde{X}^T Y
 \]
 \[
 \text{Left-inverse of } \tilde{X} \text{ ("Moore-Penrose Inverse")}
 \]
Optimal Parameters for SSE Loss

- Set $\hat{w} = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T Y$
- Classify new point x with $x_0 = 1$ using

\[
K_{H(\hat{w})}(x) = \text{sign} (\hat{w} x)
\]
Example SSE

▶ Data (consider only age and max. speed):

\[
\tilde{X} = \begin{pmatrix} 1 & 23 & 180 \\ 1 & 17 & 240 \\ 1 & 43 & 246 \\ 1 & 68 & 183 \\ 1 & 32 & 110 \end{pmatrix}, \quad Y = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}
\]

 Encode classes as \(\{\text{high} = 1, \text{low} = -1\}\)

\[
(\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T = \begin{pmatrix} 0.7491 & -0.0836 & -0.8603 & -0.4736 & 1.6684 \\ -0.0087 & -0.0114 & 0.0049 & 0.0194 & -0.0043 \\ -0.0012 & 0.0036 & 0.0046 & -0.0002 & -0.0068 \end{pmatrix}
\]

\[
\hat{w} = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T Y = \begin{pmatrix} w_0 \\ w_{age} \\ w_{maxspeed} \end{pmatrix} = \begin{pmatrix} -1.3896 \\ -0.0302 \\ 0.0141 \end{pmatrix}
\]
Example SSE

▷ Model parameters:

\[
\hat{w} = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T Y = \begin{pmatrix}
w_0 \\
w_{age} \\
w_{maxspeed}
\end{pmatrix} = \begin{pmatrix}
-1.3896 \\
-0.0302 \\
0.0141
\end{pmatrix}
\]

\[
\Rightarrow K_H(\hat{w})(x) = \text{sign} \left(\begin{pmatrix}
-0.0302 \\
0.0141
\end{pmatrix}^T x - 1.3896 \right)
\]

▷ Query: \(q = (age = 60; max_speed = 190) \)

\[
\text{sign}(\hat{w}^T \bar{q}) = \text{sign}(-0.5323) = -1
\]

\[
\Rightarrow \text{class} = \text{low}
\]
Extension to Multiple Classes

Assume we have more than two ($k > 2$) classes. What to do?

One-vs-the-rest ("one-vs-all")
$\rightarrow k$ classifiers

One-vs-one (Majority vote of classifiers)
$\rightarrow \frac{k(k-1)}{2}$ classifiers

Multiclass linear classifier
$\rightarrow k$ classifiers
Extension to Multiple Classes

Idea of Multiclass Linear Classifier

- Take k linear functions of the form $H_{w_j, w_{j,0}}(x) = w_j^T x + w_{j,0}$
- Decide for class y_j:
 $$y_j = \arg\max_{j=1,\ldots,k} H_{w_j, w_{j,0}}(x)$$

- Advantage: No ambiguous regions except for points on decision hyperplanes
- The optimal parameter estimation is also extendable to k classes y_1, \ldots, y_k
Discussion (SSE)

Advantages
- Simple approach
- Closed form solution for parameters
- Easily extendable to non-linear spaces (later on)

Disadvantages
- Sensitive to outliers → not a stable classifier
 - How to define and efficiently determine the maximum stable hyperplane?
- Only good results for linearly separable data
- Expensive computation of selected hyperplanes

→ Approach to solve problems: Support Vector Machines (SVMs) [Vapnik 1979, 1995]
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods
 4.1 Classification
 4.1.1 Bayesian Classifiers
 4.1.2 Linear Discriminant Functions
 4.1.3 Support Vector Machines
 4.1.4 Kernel Methods
 4.1.5 Decision Tree Classifiers
 4.1.6 Nearest Neighbor Classifiers
 4.1.7 Ensemble Classification

 4.2 Regression

5. Advanced Topics
Maximum Margin Hyperplane

Question
How to define the notion of the "best" hyperplane differently?

Criteria
▶ Stability at insertion
▶ Distance to the objects of both classes
Support Vector Machines: Principle

Basic Idea

Linear separation with the *Maximum Margin Hyperplane (MMH):*

- Distance to points from any of the two sets is maximal, i.e., at least ξ
- Minimal probability that the separating hyperplane has to be moved due to an insertion
 \Rightarrow Best generalization behavior; MMH is “maximally stable”
Support Vector Machines: Principle

Support Vectors

MMH only depends on points p_i whose distance to the hyperplane is exactly ξ. These p_i are called *support vectors* (SV).
Let $x_i \in \mathbb{R}^d$ denote the data points, and $y_i = +1$, if first class, else $y_i = -1$.

A hyperplane in Hesse normal form is represented by a normal vector $w \in \mathbb{R}^d$ of unit length (i.e., $\|w\|_2 = 1$), and a (signed) distance from the origin $b \in \mathbb{R}$.

In the following slides, we will define the requirements which the MMH shall fulfil.
Requirements of the MMH

The parameters \((w, b)\) of the MMH shall fulfil the following two requirements:

No Error

The classification is accurate for all points, i.e.

\[
y_i \cdot (\langle w, x_i \rangle + b) > 0 \iff \begin{cases} y_i = -1 & \langle w, x_i \rangle + b < 0 \\ y_i = +1 & \langle w, x_i \rangle + b > 0 \end{cases}
\]

Requirement: Maximal Margin

Let \(\xi = \min_{x_i \in TR} |\langle w, x_i \rangle + b|\) denote the minimum distance of any training object \(x_i\) to the hyperplane \(H(w, b)\). The margin \(\xi\) should be as large as possible.
Computation of the MMH

- Task: Maximise ξ subject to $y_i \cdot (\langle w, x_i \rangle + b) > \xi$ for all $i \in \{1, \ldots, n\}$.
- Scaling the constraints by ξ^{-1} yields $y_i \cdot (\langle \xi^{-1} w, x_i \rangle + \xi^{-1} b) > 1$ for all $i \in \{1, \ldots, n\}$.
- Define $w' = \xi^{-1} w$, and $b' = \xi^{-1} b$.
- Maximizing ξ corresponds to minimizing $\langle w', w' \rangle = \frac{\langle w, w \rangle}{\xi^2}$.

Primary Optimization Problem

$$\min \quad ||w'||_2^2$$

$$\text{s.t.} \quad y_i \cdot (\langle w', x_i \rangle + b') > 1 \quad i \in \{1, \ldots, n\}$$
Computation of the MMH

Primary Optimization Problem

\[
\begin{align*}
\text{min} & \quad \|w'\|^2_2 \\
\text{s.t.} & \quad y_i \cdot (\langle w', x_i \rangle + b') > 1 \quad i \in \{1, \ldots, n\}
\end{align*}
\]

- Convex optimization problem: Quadratic programming problem with linear constraints
 - Solution can be obtained by Lagrangian Theory.
Soft Margin Optimization

Problem of MMH optimization: How to treat non-(linearly separable) data?

Two typical problems:
- Data points not linearly separable
- Complete separation not optimal (overfitting)

Trade-off between training error and size of margin
Soft Margin Optimization

- Additionally regard the number of training errors when optimizing:
 - ξ_i is the distance from x_i to the margin (often called *slack variable*):
 - $\xi_i = 0 \implies x_i$ on correct side
 - $\xi_i > 0 \implies x_i$ on wrong side

- Introduce parameter C to weight the misclassification against the size of the margin.
Soft Margin Optimization

Primary Optimization Problem With Soft Margin

$$\begin{align*}
\text{min} & \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{s.t.} & \quad y_i \cdot (\langle w, x_i \rangle + b') > 1 - \xi_i \quad \forall i \in \{1, \ldots, n\} \\
& \quad \xi_i \geq 0 \quad \forall i \in \{1, \ldots, n\}
\end{align*}$$
Soft Margin Optimization

Wolfe-Dual with Lagrange Multipliers

\[
\begin{align*}
\text{max} & \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \\
\text{s.t.} & \quad \sum_{i=1}^{n} \alpha_i y_i = 0 \\
& \quad 0 \leq \alpha_i \leq C \\
& \quad i \in \{1, \ldots, n\}
\end{align*}
\]

- \(\alpha_i = 0 \): \(x_i \) is not a support vector
- \(\alpha_i = C \): \(x_i \) is support vector with \(\xi_i > 0 \)
- \(0 < \alpha_i < C \): \(x_i \) is support vector with \(\xi_i = 0 \)
Decision Rule

\[H(x) = \text{sign} \left(\sum_{x_i \in SV} \alpha_i y_i \langle x_i, x \rangle + b \right) \]

where \(SV \) denotes the set of support vectors.
SVM: Discussion

Pro

- generate classifiers with a high classification accuracy
- relatively weak tendency to overfitting (generalization theory)
- efficient classification of new objects due to often small number of support vectors
- compact models

Contra

- training times may be long (appropriate feature space may be very high-dimensional)
- expensive implementation
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods
 4.1 Classification
 4.1.1 Bayesian Classifiers
 4.1.2 Linear Discriminant Functions
 4.1.3 Support Vector Machines
 4.1.4 Kernel Methods
 4.1.5 Decision Tree Classifiers
 4.1.6 Nearest Neighbor Classifiers
 4.1.7 Ensemble Classification
 4.2 Regression

5. Advanced Topics
Non-Linearly Separable Data Sets

Problem
For real data sets, a linear separation with a high classification accuracy often is not possible.

Idea
Transform the data non-linearly into a new space, and try to separate the data in the new space linearly (extension of the hypotheses space)
Extension of the Hypotheses Space

Principle

input space $\phi \rightarrow$ extented feature space

\leadsto Try to linearly separate in the extended feature space.

Example

$\phi(x, y) = (1, x, y, x^2, xy, y^2)$

Here: A hyperplane in the extended feature space is a polynomial of degree 2 in the input space.
Extension of the Hypotheses Space: Example (1)

Input Space (2 attributes):
\[x = (x_1, x_2) \]
\[x_2 = x_1^2 + 0.5 \]

Extended Space (6 attributes):
\[\phi(x) = (1, x, y, x^2, xy, y^2) \]
\[x_2 = (x_1^2) + 0.5 \]
Extension of the Hypotheses Space: Example (2)

Input Space (2 attributes):
\[x = (x_1, x_2) \]

Extended Space (3 attributes):
\[\phi(x) = (x_1^2, x_2^2, x_1x_2) \]

Supervised Methods Classification February 6, 2019 408
Extension of Linear Discriminant Function Classifier

▶ Linear classifier can be easily extended to non-linear spaces
▶ Recap: linear classifier $K_{H(w,w_0)}(x) = \text{sign}(w^T x + w_0)$
▶ Extend to non-linear case:
 ▶ Transform all data points x to new feature space $\phi(x)$
 ▶ Data Matrix X becomes a matrix Φ
 ▶ The optimal hyperplane vector becomes . . .

$$\tilde{w}_{opt,\phi} = (\Phi^T\Phi)^{-1}\Phi^T Y$$

▶ . . . and that’s all!
▶ New classification rule: $K_{H(w_\phi,w_0,\phi)}(x) = \text{sign}(w_\phi^T \phi(x) + w_0,\phi)$
▶ SVM can be extended in a similar way
Non-linear Classification: Discussion

Pro
- By explicit feature transformation a much richer hypotheses space
- Simple extension of existing techniques
- Efficient evaluation, if transformed feature space not too high-dimensional

Contra
- Explicit mapping to other feature spaces can become problematic
- Meaningful transformation is usually not known a-priori
- Complex data distributions may require very high-dimensional features spaces
 - High memory consumption, High computational costs
Explicit Mapping

Explicit mapping of the data into the new feature space:

- After transformation, any vector-based distance is applied
- Resulting feature space may be very high dimensional ⇨ Potential problems: Inefficient calculation, storage overhead

Often, we do not need the transformed data points themselves, but just the distances between them!
Implicit Mappings: Kernel Methods

"Kernel Trick"

Just \textit{implicitly} map the data to a feature space: Determine a function K_ϕ, which computes the distance in the kernel space without explicitly computing $\phi(\cdot)$.

$$K_\phi(x, y) = \langle \phi(x), \phi(y) \rangle$$
Kernel: Example

- Assume the original domain is $\mathcal{X} = \mathbb{R}^2$
- We transform a point $x = (x_1, x_2)$ to $\phi(x) = (x_1^2, x_2^2, x_1x_2)$, i.e. the novel feature space is $\mathcal{H} = \mathbb{R}^3$, and $\kappa : \mathcal{X} \rightarrow \mathcal{H}$.

Input Space (2 attributes):

$x = (x_1, x_2)$

$x_1^2 + x_2^2 = 0.25$

Extended Space (3 attributes):

$\phi(x) = (x_1^2, x_2^2, x_1x_2)$

$(x_2^2) = -(x_1^2) + 0.25$
Kernel: Example

- Original point \(x = (x_1, x_2) \); transformed point \(\phi(x) = (x_1^2, x_2^2, \sqrt{2} \cdot x_1x_2) \)

- We want to calculate the dot product in the novel feature space \(\mathcal{H} \):

\[
\langle \phi(x), \phi(y) \rangle = \langle \left(x_1^2, x_2^2, \sqrt{2} \cdot x_1x_2 \right), \left(y_1^2, y_2^2, \sqrt{2} \cdot y_1y_2 \right) \rangle \\
= x_1^2y_1^2 + x_2^2y_2^2 + 2x_1x_2y_1y_2 \\
= (x_1y_1 + x_2y_2)^2 \\
= \langle x, y \rangle^2
\]

- We do not have to explicitly map the points to the feature space \(\mathcal{H} \)!
- Simply calculate squared dot product in the original domain \(\mathcal{X} \)!

\(\kappa : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, (x, y) \mapsto \langle x, y \rangle^2 \) is called a (valid) kernel
Why is the dot product useful?

- Kernels correspond to dot products in some feature space
- With the dot product we are able to compute:
 - The norm/length of a vector $\|x\| = \sqrt{\langle x, x \rangle}$
 - The distance between two vectors:
 $$\|x - y\|^2 = \langle x - y, x - y \rangle = \langle x, x \rangle + \langle y, y \rangle - 2 \langle x, y \rangle$$
 - The angle between two vectors:
 $$\angle(x, y) = \arccos \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$$
Formal Definitions

Definition: Kernel Function

A *kernel function* $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a symmetric function, i.e., $\kappa(x, y) = \kappa(y, x)$, mapping pairs of objects $x, y \in \mathcal{X}$ to real numbers.

Definition: Mercer Kernel

For all finite $\{x_1, \ldots, x_n\} = X \subseteq \mathcal{X}$, let $\kappa(X) := (\kappa(x_i, x_j))_{i,j} \in \mathbb{R}^{n \times n}$. A kernel function κ is called *Mercer kernel*, valid kernel, admissible kernel, or positive semi-definite, if for all such finite X, the matrix $\kappa(X)$ is positive semi-definite, i.e. for all $c \in \mathbb{R}^n$, it holds

$$c^T \kappa(X) c \geq 0$$
Formal Definitions (cont’d)

Definition: Dot Product

A dot product in a vector space \mathcal{H} is a function $\langle \cdot , \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ satisfying:

- $\langle x, x \rangle = 0$ for $x = 0$
- $\langle x, x \rangle > 0$ for $x \neq 0$
- $\langle x, y \rangle = \langle y, x \rangle$ (Symmetry)
- $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ (Bi-linearity)

Definition: Hilbert Space

A vector space \mathcal{H} endowed with a dot product $\langle \cdot , \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ for which the induced norm gives a complete metric space, is termed *Hilbert Space*.

Supervised Methods Classification February 6, 2019 417
Interpretation of Kernel Functions

Theorem
Let $\kappa : X \times X \rightarrow \mathbb{R}$ be a valid kernel on X. There exists a possibly infinite-dimensional Hilbert space \mathcal{H} and a mapping $\phi : X \rightarrow \mathcal{H}$ such that $\kappa(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$ for all $x, y \in X$ where $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ denotes the dot product in a Hilbert space \mathcal{H}.

\[\Rightarrow \text{every kernel } \kappa \text{ can be seen as a dot product in some feature space } \mathcal{H}. \]

Advantages
- Feature space \mathcal{H} can be infinite-dimensional
- Not really necessary to know which feature space \mathcal{H} we have
- Computation of kernel is done in original domain X
Kernel SVM

Wolfe-Dual Optimization Problem with Lagrange Multipliers

\[
\begin{align*}
\text{max} & \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \kappa(x_i, x_j) \\
\text{s.t.} & \quad \sum_{i=1}^{n} \alpha_i y_i = 0 \\
& \quad 0 \leq \alpha_i \leq C \\ & \quad i \in \{1, \ldots, n\}
\end{align*}
\]

Decision Rule

\[
H(x) = \text{sign} \left(\sum_{x_i \in SV} \alpha_i y_i \kappa(x_i, x) + b \right)
\]
Example for Mercer Kernels

Radial Basis Kernel
$$\kappa(x, y) = \exp\left(-\gamma \|x - y\|^2\right)$$

Polynomial Kernel (degree 2)
$$\kappa(x, y) = (\langle x, y \rangle + 1)^d$$
Discussion

<table>
<thead>
<tr>
<th>Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Kernel methods provide a simple method for dealing with non-linearity</td>
</tr>
<tr>
<td>▶ Implicit mapping allows for mapping to arbitrary-dimensional spaces: Computational effort depends on the number of training examples, but not on the feature space dimensionality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contra</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Resulting models rarely provide an intuition</td>
</tr>
<tr>
<td>▶ Choice of kernel can be difficult</td>
</tr>
</tbody>
</table>
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods
 4.1 Classification
 4.1.1 Bayesian Classifiers
 4.1.2 Linear Discriminant Functions
 4.1.3 Support Vector Machines
 4.1.4 Kernel Methods
 4.1.5 Decision Tree Classifiers
 4.1.6 Nearest Neighbor Classifiers
 4.1.7 Ensemble Classification
 4.2 Regression

5. Advanced Topics
Decision Tree Classifiers

- Approximating discrete-valued target function
- Learned function is represented as a tree:
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution

- Tree can be transformed into decision rules:
 - if age > 60 then risk = low
 - if age ≤ 60 and car type = truck then risk = low
 - if age ≤ 60 and car type ≠ truck then risk = high

Advantages
- Decision trees represent explicit knowledge
- Decision trees are intuitive to most users
Decision Tree Classifier: Splits

Goal

- Each tree node defines an axis-parallel \((d - 1)\)-dimensional hyperplane, that splits the data space.
- *Find such splits which lead to as homogenous groups as possible.*
Decision Tree Classifiers: Basics

- Decision tree generation (training phase) consists of two phases
 1. Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 2. Tree pruning
 - Identify and remove branches that reflect noise or outliers

- Use of decision tree: Classifying an unknown sample
 - Traverse the tree and test the attribute values of the sample against the decision tree
 - Assign the class label of the respective leaf to the query object
Algorithm for Decision Tree Construction

- **Basic algorithm (a greedy algorithm)**
 - Tree is created in a *top-down recursive divide-and-conquer* manner
 - Attributes may be categorical or continuous-valued
 - At the start, all the training examples are assigned to the root node
 - Recursively partition examples at each node and push them down to the new nodes
 - Select test attributes and determine split points or split sets for the respective values based on a heuristic or statistical measure (*split strategy*, e.g., information gain)

- **Conditions for stopping partitioning**
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning – majority voting is employed for classifying the leaf
 - There are no samples left
Algorithm for Decision Tree Construction

▶ Most algorithms are versions of this basic algorithm (greedy, top-down)
▶ E.g.: ID3, or its successor C4.5

ID3 Algorithm

procedure ID3(Examples, TargetAttr, Attributes) ▶ specialized to learn boolean-valued functions

Create Root node for the tree
if all Examples are positive then return Root with label = +
else if all Examples are negative then return Root with label = −
else if Attributes = ∅ then return Root with label = most common value of TargetAttr in Examples
else

A = "best" decision attribute for next node ▶ how to determine the "best" attribute?
Assign A as decision attribute for Root
for each possible value vi of A do ▶ how to split the possible values?

Generate branch corresponding to test A = vi
Examplesvi = examples that have value vi for A
if Examplesvi = ∅ then
Add leaf node with label = most common value of TargetAttr in Examples
else
Add subtree ID3(Examplesvi, TargetAttr, Attributes \ {A})
Example: Decision for “playing_tennis”

Query: How about playing tennis today?

Training data:

<table>
<thead>
<tr>
<th>day</th>
<th>forecast</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>tennis decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rainy</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>

Build decision tree ...
Split Strategies: Quality of Splits

Given

- A set T of training objects
- A (disjoint, complete) partitioning T_1, \ldots, T_m of T
- The relative frequencies p_i of class c_i in T and in the partitions T_1, \ldots, T_m

Wanted

- A measure for the heterogeneity of a set S of training objects with respect to the class membership
- A split of T into partitions $\{T_1, \ldots, T_m\}$ such that the heterogeneity is minimized

债权 Proposals: *Information gain, Gini index, Misclassification error*
Attribute Selection Measures: Information Gain

- Used in ID3/C4.5

Entropy

- Minimum number of bits to encode a message that contains the class label of a random training object
- The entropy of a set T of training objects is defined as

$$
entropy(T) = -\sum_{i=1}^{k} p_i \log_2 p_i
$$

for k classes with frequencies p_i

- $entropy(T) = 0$ if $p_i = 1$ for any class c_i
- $entropy(T) = 1$ if $p_i = \frac{1}{k}$ for all classes c_i
Attribute Selection Measures: Information Gain

Let A be the attribute that induced the partitioning $\{T_1, \ldots, T_m\}$ of T. The information gain of attribute A w.r.t. T is defined as

$$\text{information_gain}(T, A) = \text{entropy}(T) - \sum_{i=1}^{m} \frac{|T_i|}{|T|} \text{entropy}(T_i)$$
Attribute Selection: Example (Information Gain)

\[
\text{information gain}(T, \text{forecast}) = 0.94 - \frac{5}{14} \cdot 0.971 - \frac{4}{14} \cdot 0 - \frac{5}{14} \cdot 0.971 = 0.246
\]

\[
\text{information gain}(T, \text{temperature}) = 0.94 - \frac{4}{14} \cdot 0.811 - \frac{6}{14} \cdot 0.981 - \frac{4}{14} \cdot 1 = 0.029
\]

\[
\text{information gain}(T, \text{humidity}) = 0.94 - \frac{7}{14} \cdot 0.985 - \frac{7}{14} \cdot 0.592 = 0.151
\]

\[
\text{information gain}(T, \text{wind}) = 0.94 - \frac{8}{14} \cdot 0.811 - \frac{6}{14} \cdot 1 = 0.048
\]

Result: "forecast" yields the highest information gain
Example: Decision Tree for "playing_tennis"

<table>
<thead>
<tr>
<th>day</th>
<th>forecast</th>
<th>temperature</th>
<th>humidity</th>
<th>wind</th>
<th>tennis decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>weak</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>rainy</td>
<td>mild</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>weak</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>strong</td>
<td>no</td>
</tr>
</tbody>
</table>
Attribute Selection Measures: Gini Index

Used in IBM’s IntelligentMiner

Gini Index

The Gini index for a set T of training objects is defined as

$$gini(T) = 1 - \sum_{i=1}^{k} p_i^2$$

- Small value of Gini index \equiv low heterogeneity
- Large value of Gini index \equiv high heterogeneity

Gini Index (of an attribute A)

Let A be the attribute that induced the partitioning $\{T_1, \ldots, T_m\}$ of T. The Gini index of attribute A w.r.t. T is defined as

$$gini_A(T) = \sum_{i=1}^{m} \frac{|T_i|}{|T|} gini(T_i)$$
Attribute Selection Measures: Misclassification Error

Misclassification Error

The Misclassification Error for a set \(T \) of training objects is defined as

\[
Error(T) = 1 - \max_{c_i} p_i
\]

- Small value of Error \(\equiv \) low heterogeneity
- Large value of Error \(\equiv \) high heterogeneity

Misclassification Error (of an attribute \(A \))

Let \(A \) be the attribute that induced the partitioning \(\{T_1, \ldots, T_m\} \) of \(T \). The Misclassification Error of attribute \(A \) w.r.t. \(T \) is defined as

\[
Error_A(T) = \sum_{i=1}^{m} \frac{|T_i|}{|T|} Error(T_i)
\]
Attribute Selection Measures: Comparison

For two-class problems:
Split Strategies: Types of Splits

► Categorical attributes
 ► Split criteria based on equality "attribute = a"
 ► Based on subset relationships "attribute ∈ set"
 ⇒ many possible choices (subsets)
 ► Choose the best split according to, e.g., gini index

► Numerical attributes
 ► Split criteria of the form "attribute < a"
 ⇒ many possible choices for the split point
 ► One approach: Order test samples w.r.t. their attribute value; consider every mean value between two adjacent samples as possible split point; choose best one according to, e.g., gini index
 ► Partition the attribute value into a discrete set of intervals (Binning)
Avoid Overfitting in Classification

- The generated tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Result has poor accuracy for unseen samples

- Two approaches to avoid overfitting for decision trees:
 1. Post-pruning = pruning of overspecialized branches
 2. Pre-pruning = halt tree construction early
Avoid Overfitting in Classification

<table>
<thead>
<tr>
<th>Post-pruning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pruning of overspecialized branches:</td>
</tr>
<tr>
<td>▶ Remove branches from a "fully grown" tree and get a sequence of progressively pruned trees</td>
</tr>
<tr>
<td>▶ Use a set of data different from the training data to decide which is the “best pruned tree”</td>
</tr>
</tbody>
</table>
Avoid Overfitting in Classification

Pre-pruning

Halt tree construction early, do not split a node if this would result in the goodness measure falling below a threshold.

► Choice of an appropriate value for *minimum support*
 ► Minimum support: minimum number of data objects a leaf node contains
 ► In general, *minimum support* $\gg 1$

► Choice of an appropriate value for *minimum confidence*
 ► Minimum confidence: minimum fraction of the majority class in a leaf node
 ► Typically, *minimum confidence* $\ll 100\%$
 ► Leaf nodes can absorb errors or noise in data records

► Discussion
 ► With Pre-pruning it is difficult to choose appropriate thresholds
 ► Pre-pruning has less information for the pruning decision than post-pruning \rightsquigarrow can be expected to produce decision trees with lower classification quality
 ► Tradeoff: tree construction time vs. classification quality
Pruning of Decision Trees: Approach Post-pruning

Reduced-Error Pruning

1. Decompose classified data into training set and test set
2. Create a decision tree E for the training set
3. Prune E using the test set T
 - Determine the interior node v of E whose pruning reduces the number of misclassified data points on T the most (i.e., replace the subtree S with root v by a leaf. Determine the value of the leaf by majority voting)
 - Prune
 - Finish if no such interior node exists
4. Only applicable if a sufficient number of classified data is available

Minimal Cost Complexity Pruning

- Does not require a separate test set
 - Applicable to small training sets as well
- Pruning of the decision tree by using the training set
 - Classification error is no appropriate quality measure
- New quality measure for decision trees:
 - Trade-off of classification error and tree size
 - Weighted sum of classification error and tree size
- General observation
 - The smaller decision trees yield the better generalization

Minimal Cost Complexity Pruning: Notions

- Size $|E|$ of a decision tree E: number of leaf nodes
- Cost-complexity quality measure of E with respect to training set T, classification error F_T and complexity parameter $\alpha \geq 0$:

$$CC_T(E, \alpha) = F_T(E) + \alpha |E|$$

- For the smallest minimal subtree $E(\alpha)$ of E w.r.t. α, it is true that:
 1. There is no subtree of E with a smaller cost complexity
 2. If $E(\alpha)$ and B both fulfill (1), then is $E(\alpha)$ a subtree of B
- $\alpha = 0$: $E(\alpha) = E$
 - Only error matters
- $\alpha \to \infty$: $E(\alpha) = \text{root node of } E$
 - Only tree size matters
- $0 < \alpha < \infty$: $E(\alpha)$ is a proper substructure of E
 - The root node or more than the root node
Extracting Classification Rules from Trees

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class prediction
- Rules are easier for humans to understand

Example

```python
if forecast = "overcast" then playing_tennis = "yes"
if forecast = "sunny" and humidity = "high" then playing_tennis = "no"
if forecast = "sunny" and humidity = "normal" then playing_tennis = "yes"
if forecast = "rainy" and wind = "strong" then playing_tennis = "no"
if forecast = "rainy" and wind = "weak" then playing_tennis = "yes"
```
Enhancement: Handle Missing Attribute Values

- If node n tests attribute A:
 - Assign most common value of A among other examples sorted to node n
 - Assign the most common value of the attribute among other examples with the same target value sorted to node n
 - Assign probability p_i to each of the possible values v_i of attribute A among other examples sorted to node n
 - Assign fraction p_i of example to each descendant in tree
 - Classify new examples in the same fashion: Classification decision is the one with the highest probability (sum over all instance fragments of each class decision)
Decision Tree Classifiers: Summary

Pro
- Relatively fast learning speed (in comparison to other classification methods)
- Fast classification speed
- Convertible to simple and easy to understand classification rules
- Often comparable classification accuracy with other classification methods

Contra
- Not very stable, small changes of the data can lead to large changes of the tree
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods
 4.1 Classification
 4.1.1 Bayesian Classifiers
 4.1.2 Linear Discriminant Functions
 4.1.3 Support Vector Machines
 4.1.4 Kernel Methods
 4.1.5 Decision Tree Classifiers
 4.1.6 Nearest Neighbor Classifiers
 4.1.7 Ensemble Classification

4.2 Regression

5. Advanced Topics
Nearest Neighbor Classifiers

Motivation

- Assume data in a non-vector representation: graphs, forms, XML-files, etc.
- No simple way to use linear classifiers or decision trees

Solutions

- Use appropriate kernel function for kernel machines (e.g. kernel SVM)
 - Not always clear how to define a kernel
- Transformation of objects to some vector space (e.g. representation learning)
 - Difficult to determine appropriate transformation & vector space
- Here: Nearest neighbor classifier
 - Direct usage of the similarity of objects for classification
Nearest Neighbor Classifiers

Procedure

Assign query object \(q \) to the class \(c_j \) of the closest training object \(x \in D \):

\[
\text{class}(q) = \text{class}(\text{NN}(q)) \\
\text{NN}(q) = \{ x \in D \mid \forall x' \in D : d(q, x) \leq d(q, x') \}
\]

\(\rightsquigarrow \) Instance-Based Learning

Example

Classifier decides that query object \(q \) is a dog.
Instance-Based Methods

Eager Evaluation

- Create models from data (training phase) and then use these models for classification (test phase)
- Examples: Decision tree, Bayes classifier

Instance-Based Learning

- Store training examples and delay the processing (“lazy evaluation”) until a new instance must be classified
- Typical Approaches: \(k \)-nearest neighbor approach:
 - Instances represented as points in a metric space (e.g. Euclidean)
 - Classification by label of NN \(\sim \) requires fast NN queries
 - \(\sim \) Training phase = Index construction (e.g. R-tree)
Nearest Neighbor Classifiers: Notions

Notions

- Distance Function: Defines the (dis-)similarity for pairs of objects
- Decision Set: The set of k nearest neighboring objects to be used in the decision rule

Decision Rule

Given the class labels of the objects from the decision set, how to determine the class label to be assigned to the query object?
Decision Rules

Majority Vote (Default)

Choose majority class in the decision set, i.e. the class with the most representatives in the decision set.

Weighted Decision Rules

Choose *weighted* majority of decision set class labels. Weight variants:

- **Reciprocal squared distance**: $d(q, x)^{-2}$
- **Inverse A-Priori Probability**: Use inverse frequency of classes in the training set
Example: $k = 5$ – Influence of Weighting

Majority Vote

Reciprocal Squared Distance
Example: Majority Vote – Influence of k

$k = 1$

$k = 5$
Choosing an appropriate k: Tradeoff between *overfitting* and *generalization*:

Influence of k

- k too small: High sensitivity against outliers
- k too large: Decision set contains many objects from other classes

Rules of Thumb

- Based on theoretical considerations: Choose k, such that it grows slowly with n, e.g. $k \approx \sqrt{n}$ or $k \approx \log n$
- Empirically, $1 \ll k < 10$ yields a high classification accuracy in many cases
NN Classifier: Variants

- **k-NN Classifier**: Consider the k nearest neighbors for the class assignment decision
- **Weighted k-NN Classifier**: Use weights for the classes of the k nearest neighbors
- **Mean-based NN Classifier**: Determine mean vector m_i for each class c_j (in training phase); Assign query object to the class c_j of the nearest mean vector m_i
- **Generalization**: Representative-based NN Classifier; Use more than one representative per class
NN Classifier: Discussion

Pro

- **Applicability**: Training data and distance function required only
- High classification *accuracy* in many applications
- Easy *incremental* adaptation to new training objects useful also for prediction
- *Robust* to noisy data by averaging k-nearest neighbors

Contra

- Naïve implementation is inefficient: Requires k-nearest neighbor query processing \leadsto support by database techniques may help to reduce from $O(n)$ to $O(\log n)$
- Does not produce explicit knowledge about classes, *but* provides some explanation information
- Curse of dimensionality: Distance between neighbors could be dominated by irrelevant attributes \leadsto Apply dimensionality reduction first
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods
 4.1 Classification
 4.1.1 Bayesian Classifiers
 4.1.2 Linear Discriminant Functions
 4.1.3 Support Vector Machines
 4.1.4 Kernel Methods
 4.1.5 Decision Tree Classifiers
 4.1.6 Nearest Neighbor Classifiers
 4.1.7 Ensemble Classification
 4.2 Regression

5. Advanced Topics
Ensemble Classification

Problem
- No single classifier performs good on every problem
- For some techniques, small changes in the training set lead to very different classifiers

Idea
Improve performance by combining different classifiers \(\rightarrow\) ensemble classification. Different possibilities exist. Discussed here:
- Bagging (Bootstrap aggregation)
- Boosting
How to obtain different classifiers?

Easiest way: Train the same classifier K on different datasets

Bagging (or Bootstrap Aggregation)

- Randomly select m different subsets from the training set
- On each subset, independently train a classifier K_i ($i = 1, \ldots, m$)
- Overall decision:

$$K(x) = \text{sign} \left(\frac{1}{m} \sum_{i=1}^{m} K_i(x) \right)$$
Boosting

- Linear combination of several weak learners (different classifiers)
- Given \(m \) weak learners \(K_i \) and weights \(\alpha_i \) for \(i = 1, \ldots, m \)
- Overall decision

\[
K(x) = \text{sign} \left(\sum_{i=1}^{m} \alpha_i K_i(x) \right)
\]

- Important difference: classifiers are trained in sequence!
- Repeatedly misclassified points are weighted stronger
AdaBoost

Widely used boosting method: AdaBoost21: Meta-algorithm that iteratively generates a chain of weak learners

General Idea

- Assume \((t - 1)\) weak learners are already given. The \(t\)th learner should focus on instances that were previously misclassified.
- Assign a weight \(w_i\) to each instance \(x_i\) to represent its importance.
- Start with equal weight for each instance, adapt weights according to the performance of previously trained classifiers.

AdaBoost – Algorithm

Given: n data points x_1, \ldots, x_n, labels y_1, \ldots, y_n
Initialize $w_1 = \ldots = w_n = \frac{1}{n}$
for $i = 1, \ldots, m$ do
 Fit a classifier $K_i(x)$ to the training data by minimizing weighted error function

$$J_i = \sum_{j=1}^{n} w_j \mathbb{I}(K_i(x_j) \neq y_j)$$

where \mathbb{I} is the indicator function

Compute weighting coefficient

$$\alpha_i = \ln \left(\frac{1 - \epsilon_i}{\epsilon_i} \right) \quad \text{where} \quad \epsilon_i = \frac{J_i}{\sum_{j=1}^{n} w_j}$$

Update all data weights:

$$w_j := w_j \exp \left(\alpha_i \mathbb{I}(K_i(x_j) \neq y_j) \right)$$

Final Model

$$K(x) = \text{sign} \left(\sum_{i=1}^{m} \alpha_i K_i(x) \right)$$
Classification: Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Compactness</th>
<th>Model Interpretability</th>
<th>Decision Interpretability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Model</td>
<td>hyperplane</td>
<td>compact (# dims)</td>
<td>medium/low</td>
</tr>
<tr>
<td>SVM</td>
<td>hyperplane/non-linear(kernel)</td>
<td>compact (# SV)</td>
<td>medium/low</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>set of (axis-parallel) hyperplanes</td>
<td>compact (pruned)</td>
<td>good</td>
</tr>
<tr>
<td>kNN</td>
<td>no model</td>
<td>no model</td>
<td>no model</td>
</tr>
<tr>
<td>Bayes</td>
<td>statistical distribution</td>
<td>model dependent</td>
<td>model dependent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Types</th>
<th>Robustness</th>
<th>Training Time</th>
<th>Test Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Model</td>
<td>arbitrary (kernel)</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>SVM</td>
<td>arbitrary (kernel)</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>categorical & vector</td>
<td>low</td>
<td>low/medium</td>
</tr>
<tr>
<td>kNN</td>
<td>arbitrary (distance)</td>
<td>high</td>
<td>no training</td>
</tr>
<tr>
<td>Bayes</td>
<td>arbitrary (probability distribution)</td>
<td>high</td>
<td>model-dependent</td>
</tr>
</tbody>
</table>
Classification: Conclusion

- Classification is an extensively studied problem (mainly in statistics and machine learning)
- Classification is probably one of the most widely used data mining techniques with a lot of extensions
- Scalability is an important issue for database applications: thus combining classification with database techniques should be a promising topic
- Research directions: classification of complex data, e.g., text, spatial, multimedia, etc.;
 Example: kNN-classifiers rely on distances but do not require vector representations of data
- Results can be improved by ensemble classification
Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods
 4.1 Classification
 4.2 Regression
 4.2.1 Piece-Wise Linear Regression

5. Advanced Topics
Numerical Prediction

- Related problem to classification: numerical prediction
 - Determine the numerical value of an object
 - Method: e.g., regression analysis
 - Example: Prediction of flight delays

- Numerical prediction is *different* from classification
 - Classification refers to predict categorical class label
 - Numerical prediction models continuous-valued functions

- Numerical prediction is *similar* to classification
 - First, construct a model
 - Second, use model to predict unknown value
 - Major method for numerical prediction is regression:
 - Linear and multiple regression
 - Non-linear regression
Examples

Example: Housing values in suburbs of Boston

- **Inputs:**
 - Number of rooms
 - Median value of houses in the neighborhood
 - Weighted distance to five Boston employment centers
 - Nitric oxides concentration
 - Crime rate per capita
 - ...

- **Goal:** Compute a model of the housing values, which can be used to predict the price for a house in that area.
Examples

Control engineering

- Control the inputs of a system in order to lead the outputs to a given reference value
- Required: A model of the process

Controller
- Optimization
- Process model

Inputs (manipulated variables)

Measured outputs

Wind turbine

Diesel engine
Examples

Fuel injection process

- Database of spray images
- Inputs: Settings in the pressure chamber
- Outputs: Spray features, e.g., penetration, depth, spray, width, spray area
- Goal: Compute a model which predicts the spray features, for input settings which have not been measured.
Numerical Prediction

- Given: A set of observations
- Compute: A generalized model of the data which enables the prediction of the output as a continuous value

Quality Measures

- Accuracy of the model
- Compactness of the model
- Interpretability of the model
- Runtime efficiency (training, prediction)
Linear Regression

- Given a set of N observations with inputs of the form $x = (x_1, \ldots, x_d)^T \in \mathbb{R}^d$ and outputs $y \in \mathbb{R}$
- Approach: Minimize the Sum of Squared Errors (SSE)
- Numerical Prediction: Describe the outputs y as a linear equation of the inputs

$$\hat{y} = f(x) = w_0 + \sum_{i=1}^{d} w_i x_i = (1, x_1, \ldots, x_d)^T w$$

- Train the parameters $w = (w_0, w_1, \ldots, w_d)^T$ according to

$$\min_w \frac{1}{2} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$\begin{align*}
\text{d} = 1: & \quad y = 0.5645 \cdot x + 1.2274 \\
\end{align*}$
Matrix notation: Let $X \in \mathbb{R}^{N \times (d+1)}$ be the matrix containing the inputs, $Y \in \mathbb{R}^N$ the outputs, and w the resulting coefficients:

$$X = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N,1} & \cdots & x_{N,d} \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}, \quad w = \begin{pmatrix} w_0 \\ \vdots \\ w_d \end{pmatrix}$$

Goal: Find the coefficients w, which minimize the SSE

$$\min_w \frac{1}{2} \sum_{i=1}^N (y_i - f(x_i))^2 = \min_w \frac{1}{2} \|Xw - Y\|_2^2$$

$$= \min_w \frac{1}{2} (Xw - Y)^T (Xw - Y)$$
Linear Regression

- The optimal coefficients can be derived by setting the first derivative to zero (cf. classification with linear discriminant functions)

\[w = (X^TX)^{-1}X^TY \]

- For \(d = 1 \), the regression coefficients \(w_0 \) and \(w_1 \) can be computed as

\[w_1 = \frac{\text{Cov}(x, y)}{\text{Var}(x)} = \frac{\tilde{x}^T\tilde{y}}{\tilde{x}^T\tilde{x}}, \quad w_0 = \tilde{y} - w_1\tilde{x} \]

where \(\tilde{x} = x - \bar{x} \) and \(\tilde{y} = y - \bar{y} \)

- Note: If \(\bar{x} = \bar{y} = 0 \) (i.e., the data is centered), then \(w_1 = \frac{x^Ty}{x^Tx} \) and \(w_0 = 0 \)
Polynomial Regression

- Second order polynomial for $d = 1$:

$$\hat{y} = f(x) = w_0 + w_1 x_1 + w_2 x_2^2 = (1, x_1, x_2^2)^T w$$

with

$$X = \begin{pmatrix} 1 & x_{1,1} & x_{1,1}^2 \\ \vdots & \vdots & \vdots \\ 1 & x_{N,1} & x_{N,1}^2 \end{pmatrix}$$

and

$$w = (X^T X)^{-1} X^T Y$$

- Second order polynomial for $d = 2$:

$$\hat{y} = f(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 + w_5 x_1 x_2$$
Polynomial Regression

- The number of coefficients increases exponentially with k and d
- Model building strategies: Forward selection, backward elimination
- The order of the polynomial should be as low as possible, high order polynomials tend to overfit the data
Nonlinear Regression

- Different nonlinear functions can be approximated
- Transform the data to a linear domain
 \[\hat{y} = \alpha e^{\gamma x} \implies \ln \hat{y} = \ln \alpha + \gamma x \implies \hat{y}' = w_0 + w_1 x \]
 (for \(\hat{y}' = \ln \hat{y} \), \(w_0 = \ln \alpha \) and \(w_1 = \gamma \))
- The parameters \(w_0 \) and \(w_1 \) are estimated with SSE
- The parameters \(\alpha \) and \(\gamma \) are obtained, describing an exponential curve which passes through the original observations
- Problem: SSE determines normally distributed errors in the transformed space \(\leadsto \) skewed error distribution in the original space
Nonlinear Regression

- Different nonlinear functions can be approximated
- Outputs are estimated by a function with nonlinear parameters, e.g., exponential, trigonometric
- Example type of function:
 \[\hat{y} = w_0 + w_1 e^{w_2 x} + \sin(w_3 x) \]
- Approach: The type of nonlinear function is chosen and the corresponding parameters are computed
- No closed form solution exists \(\Rightarrow \) numerical approximation:
 - Gauss Newton, Gradient descent, Levenberg-Marquardt
Linear and Nonlinear Regression

Problems

- Linear regression: Most of the real world data has a nonlinear behavior
- Polynomial regression: Limited, cannot describe arbitrary nonlinear behavior
- General nonlinear regression: The type of nonlinear function must be specified in advance
1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods
 4.1 Classification
 4.2 Regression
 4.2.1 Piece-Wise Linear Regression

5. Advanced Topics
For a partitioning of the input space $\mathcal{C} = \{C_1, \ldots, C_k\}$, a piecewise linear function is defined by coefficient vectors w_i, and offset β_i for $i = 1, \ldots, k$.

$$f(x) = \begin{cases} \mathbf{w}_1^T \mathbf{x} + \beta_1, & \mathbf{x} \in C_1 \\ \vdots \\ \mathbf{w}_k^T \mathbf{x} + \beta_k, & \mathbf{x} \in C_k \end{cases}$$
Piecewise Linear Functions

Properties

- Simple approach
- Can approximate any function
- *Accuracy increases* with increasing number of partitions
- *Compactness & Interpretability decreases* with increasing number of partitions

Challenge

Find an appropriate partitioning of the input space
Greedy divide and conquer: recursive partitioning of the input space.
Regression Tree

General Approach

- Given: Set of observations $T = (X, Y)$ with $X = \{x_1, \ldots, x_n\}$, and $Y = \{y_1, \ldots, y_n\}$
- Find a split of T into T_1, T_2 with minimal summed impurity $imp(T_1) + imp(T_2)$.
- If the stopping criterion is not reached: repeat for T_1 and T_2
- If the stopping criterion is reached: undo the split
Impurity Measure

Variance of the Residuals

\[\text{imp}(T) = \frac{1}{|T|} \sum_{(x,y) \in T} (y - f(x))^2 \]

where \(f \) is the approximator function, i.e. here a linear function. For constant \(f \), this measure coincides with the variance of the output.
Stopping Criterion: Impurity Ratio

Impurity Ratio Stopping Criterion

The recursive splitting is stopped if one of the following holds

▶ The sample size of a node is below some specified threshold
▶ The split is *not significant* for threshold τ_0, when

$$\tau = \frac{imp(T_1) + imp(T_2)}{imp(T)} \geq \tau_0$$

Choosing τ_0

τ_0 controls the overfitting/underfitting trade-off:

▶ τ_0 too large \Rightarrow stopping too early \Rightarrow model not accurate enough
▶ τ_0 too small \Rightarrow stopping too early \Rightarrow model overfits to observations
The split strategy determines how the training samples are partitioned, whether the split is actually performed is decided by the stopping criterion.

The most common splits are *axis parallel*:

- Split = a value in one input dimension
- Compute the impurity of all possible splits in all input dimensions and choose at the end the split with the lowest impurity
- For each possible split compute the two corresponding models and their impurity \leadsto expensive to compute

Five axis-parallel splits to separate red from blue samples.
Strategy for Oblique Splits

- More intuitive to use oblique splits
- An oblique split is a linear separator in the input space instead of a split value in an input dimension
- The optimal split (with minimal impurity measure) cannot be efficiently computed \Rightarrow Heuristic approach required

A single oblique split can separate red from blue samples.
Heuristic Approach

1. Compute a clustering in the full (input + output) space, such that the samples are as well as possible described by linear equations
2. Project the clusters onto the input space
3. Use the clusters to train a linear classifier in the input space. Split = separating hyperplane in input space
4. Compute linear models for the two linearly separated clusters
Example: Oblique Splits

- TSR (tip-speed ratio)
- λ (pitch angle)
- C_p (power coefficient)
- penetration depth
- injection time
- time

Supervised Methods
Regression
February 6, 2019
Continuous Splits

Motivation

▶ At the boundaries of the partitions the prediction may be discontinuous.
▶ In some applications this might be undesirable, e.g. when using the prediction to control engine speed, a rapid jump may cause damage to the engine

Solution

Hinging Hyperplane Models (not detailed in this lecture).

\[f(x) = \sum_{i=1}^{k} h_i(x) \]

\[h_i(x) = \begin{cases} \langle w^{(i,+)}(x),\tilde{x} \rangle, & \langle w^{(i)},\tilde{x} \rangle > 0 \\ \langle w^{(i,-)}(x),\tilde{x} \rangle, & \langle w^{(i)},\tilde{x} \rangle \leq 0 \end{cases} \]

\[\tilde{x} = (1, x_1, \ldots, x_d) \]

\[w^{(i)} = w^{(i,+)} - w^{(i,-)} \]
Announcements

First Exam Inspection

- Time: Tu, 12.03.19, 10:00 - 11:30
- Place: Oettingenstr. 67, room 157

Second Exam

- Time: Mo, 18.03.19, 16:00 - 18:00
- Place: M218 A240 (HGB, Geschw.-Scholl-Pl. 1)

For further announcements, please check the course website:
1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods

5. Advanced Topics
 5.1 Process Mining
 5.2 Outlook
Motivation

Process Model

- supports/controls
- configures
- log events
- discovery
- conformance
- enhancement

<table>
<thead>
<tr>
<th>ID</th>
<th>Time</th>
<th>Location</th>
<th>Piece</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>14.01.2018 10:32</td>
<td>MUNICH</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>14.01.2018 11:40</td>
<td>MUNICH</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>14.01.2018 15:17</td>
<td>MUNICH</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>14.01.2018 22:12</td>
<td>LEIPZIG</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Notions

- Process: System of actions, movements (e.g. sign document, customer call, financial transaction, delivery of goods)
- Different instances/cases should follow a common process description
- Each case contains actions as events (their sequence is called *trace*)
- An event is represented by at least
 - A case identifier
 - An activity label
 - A timestamp
- but may also comprise additional (meta-)information (e.g. involved (work) resources)
Petri Nets as Process Model

Start \[\bullet\] \rightarrow a \rightarrow b \rightarrow d \rightarrow \text{End}

Places

Transitions

Places

Transitions
Main Tasks

1. *Process Discovery:*
 Mine multiple sequences of actions to derive a workflow pattern

2. *Conformance Checking:*
 Use previously mined model to judge the validity of a new case

3. *Process Enhancement:*
 Evolve models with new data, find deviations
Process Discovery

Input

<table>
<thead>
<tr>
<th>#</th>
<th>trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2048</td>
<td>ace</td>
</tr>
<tr>
<td>1234</td>
<td>acdce</td>
</tr>
<tr>
<td>404</td>
<td>acdcdce</td>
</tr>
<tr>
<td>120</td>
<td>acdcdcdce</td>
</tr>
<tr>
<td>42</td>
<td>ab</td>
</tr>
<tr>
<td>5</td>
<td>acdb</td>
</tr>
</tbody>
</table>

Quality Measures

- Fitness: ability to replay the log
- Simplicity: simplified as much as possible
- Generalization: no underfitting of log
- Precision: no overfitting of log
Example Discovery Algorithm: α-Miner

1. Scan the log for all activities
2. For each pair of activities a and b, we define the relations
 - $a > b$ if for some case a is immediately followed by b (direct succession)
 - $a \parallel b$ if $a > b$ and $b > a$ (parallelism)
 - $a \rightarrow b$ if $a > b$ and not $b > a$ (causality)
 - $a \# b$ if not $a > b$ and not $b > a$
3. All activities, having only $\#$ or \rightarrow in their row are starting activities. They are collected in T_{in}.
4. Analogously, $\#$ or \leftarrow determine T_{out}.

Example: $\{abcd, acbd, acd\}$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>→</td>
<td>→</td>
<td>#</td>
</tr>
<tr>
<td>b</td>
<td>←</td>
<td>‖</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>←</td>
<td>‖</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>#</td>
<td>←</td>
<td>←</td>
<td></td>
</tr>
</tbody>
</table>

$T_{in} = \{a\}$, $T_{out} = \{d\}$

22van der Aalst, Weijters, Maruster (2003). "Workflow Mining: Discovering process models from event logs", IEEE Transactions on Knowledge and Data Engineering, vol 16
Example Discovery Algorithm: α-Miner

1. Prepare a Petri net. The set of transitions is equal to activities

2. A starting place is created and connected to each node in T_{in}

3. Also, a final place is created and each node in T_{out} is connected to it

4. Determine all pairs of sets A and B, such that
 - $\forall a_1, a_2 \in A: a_1 \neq a_2$
 - $\forall b_1, b_2 \in B: b_1 \neq b_2$
 - $\forall a \in A, b \in B: a \rightarrow b$

5. A place is added in between A and B and connected accordingly

2. $\bullet \rightarrow a$

3. $\text{d} \rightarrow \bigcirc$

4. $A = \{a\} , B = \{b, c\}$

5. $\text{a} \rightarrow \bigcirc \rightarrow \text{b}$

$\bigcirc \rightarrow \text{c}$
Conformance Checking

Use previously mined model to judge the validity of a new case (similar to binary classification: valid vs. invalid)

Input
- Model
- Trace

Aims
- Model reasoning
- Auditing
- Security (fraud detection)
Example Conformance Checking Algorithm: Token-Replay

Replay the event in the model. Count:
- the number of produced tokens \(p \)
- the number of consumed tokens \(c \)
- the number of missing tokens \(m \)
- the number of remaining tokens \(r \)

Output a fitness value

\[
 f = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right)
\]

The fitness value ranges between 0 and 1, where 1 is a perfect match.
Agenda

1. Introduction
2. Basics
3. Unsupervised Methods
4. Supervised Methods
5. Advanced Topics
 5.1 Process Mining
 5.2 Outlook
Further Machine Learning Methods

- Graphical Models
- Generative Models
- Neural Networks
- Deep Learning

⇝ Machine Learning (SS), Deep Learning and Artificial Intelligence (WS)
Decision Making / Planning

- Setting:
 - Agents are in some environment, observe, and have to take actions that influence the environment.

- Methods:
 - Deterministic/Stochastic Planning
 - A*-Search
 - Model-Free Reinforcement Learning
 - Q-Learning
 - Adversarial Search (e.g. Alpha-Beta Pruning)

⇝ Deep Learning (WS), Managing Massive Multiplayer Online Games (SS)
High-Dimensional Data

- Challenges:
 - *Curse of dimensionality*: distances become more and more similar
 - Datasets become sparse.
 - Expensive distance measures
 - Degeneration of index structures
 - Unintuitive properties in high dimensions.

- Tasks
 - Feature Selection
 - Feature Reduction / Metric Learning
 - Clustering in High-Dimensional Spaces

⇝ Knowledge Discovery in Databases II (SS), Big Data Management and Analytics (WS)
Graph Data

- Graphs are everywhere!
 - Chemical data analysis, proteins
 - Biological pathways/networks
 - Program control flow, traffic flow
 - Web graph, social network analysis

- Typical tasks
 - Measure similarity between graphs
 - Find frequent patterns in graphs
 - Generate "realistic" synthetic graphs
 - Identify groups in social networks
 - Integrate additional information

~ Knowledge Discovery in Databases II (SS), Big Data Management and Analytics (WS)
Spatial Data

- Mining spatial data
 - Spatial clustering, outlier detection, prediction, rule mining, ...
- Spatial data management
 - Process spatial queries without scanning the whole database
 - Spatial index structures: BSP-tree, R-tree, Quad-tree, ...
- Mining trajectory data
 - Similarity models for trajectories
 - Trajectory compression
 - Mining patterns in trajectories (encounters, flocks, ...)

⇝ Managing Massive Multiplayer Online Games (SS)
Big Data

40 ZETTABYTES
(40 TRILLION GIGABYTES)
of data will be created by 2025, an increase of 300 times from 2005

Volume
SCALE OF DATA

2020

6 BILLION PEOPLE
have cell phones

World Population: 7 billion

2015

600QUINTILLION
BYTES
(600 TRILLION GIGABYTES)
of data are created each day

It's estimated that
2.5 QUINTILLION
BYTES
(2.5 TRILLION GIGABYTES)
of data are created each day

Most companies in the U.S. have at least
100 TERABYTES
(100,000 GIGABYTES)
of data stored

The New York Stock Exchange captures
1 TB OF TRADE INFORMATION
during each trading session

Modern cars have close to
100 SENSORS
that monitor items such as fuel level and tire pressure

By 2025, it is projected there will be
18.9 BILLION
NETWORK CONNECTIONS
- almost 2.5 connections per person on earth

By 2020,

The FOUR V’s
of Big Data

From traffic patterns and music downloads to web history and medical records, data is recorded, stored, and analyzed to enable the technology and services that the world relies on every day. But what exactly is big data, and how can these massive amounts of data be used?

As a leader in the sector, IBM data scientists break big data into four dimensions: Volume, Velocity, Variety, and Veracity.

Depending on the industry and organization, big data encompasses information from external internal and external sources such as transactions, social media, enterprise content, sensors and mobile devices. Companies can leverage data to adapt their products and services to better meet customer needs, optimize operations and infrastructure, and find new sources of revenue.

By 2020,

4.4 MILLION IT JOBS
will be created globally to support big data, with 1.9 million in the United States

The FOUR V’s
of Big Data

As of 2011, the global size of data in healthcare was estimated to be
150 EXABYTES
(150,000 MILLION GIGABYTES)

By 2014, it's anticipated there will be
420 MILLION WEARABLE, WIRELESS HEALTH MONITORS

4 BILLION+
HOURS OF VIDEO
are watched on YouTube each month

Variety
DIFFERENT FORMS OF DATA

30 BILLION PIECES OF CONTENT
are shared on Facebook every month

400 MILLION TWEETS
are sent per day by about 200 million monthly active users

1 IN 3 BUSINESS
LEADERS
don't trust the information they use to make decisions

27% OF RESPONDENTS
in one survey were unsure of how much of their data was inaccurate

Veracity
UNCERTAINTY OF DATA

Poor data quality costs the US economy around
$3.1 TRILLION A YEAR

Sources: McKinsey Global Institute, Twitter, Groove, Gartner, EMC, SAS, IBM, WEF, WEC, Gartner
Big Data Management

▶ Vertical scaling limited and expensive
 ⇝ Distributed storage
▶ NoSQL databases
 ▶ Redis
 ▶ MongoDB
 ▶ Cassandra
 ▶ Neo4J
▶ Distributed file systems
 ▶ GFS (Google)
 ▶ HDFS (Hadoop)
 ▶ S3 (Amazon)

⇝ Big Data Management and Analytics (WS)
Distributed Data Processing

- Processing and analyzing big data
- Map-Reduce: Programming model for distributed processing of large datasets
 - Algorithms are specified as sequences of map and reduce functions
 - Programs are automatically parallelized and executed on a cluster
 - System is tolerant to hardware faults
- Frameworks
 - Apache Spark (batch processing)
 - Apache Flink (stream processing)

⇝ Big Data Management and Analytics (WS)
Stream Data

- Data objects arrive over time in a continuous data stream
- Challenges
 - Infinite stream
 - Limited time and memory
 - Evolving distribution
 - Varying data rates
 - Concept drift
- Typical tasks
 - Sampling and buffering
 - Stream statistics
 - Aging mechanisms

~ Knowledge Discovery in Databases II (SS), Big Data Management and Analytics (WS)
Seminars, Practicals, Theses

Dive deeper into specific topics and get hands-on experience:

▶ Master Seminar "Recent Developments in Data Science" (SS)
▶ Master Practical "Big Data Science" (SS)
▶ Master Practical "Applied Reinforcement Learning" (SS)
▶ Individual Bachelor and Master Theses