Ludwig-Maximilians-Universität München Lehrstuhl für Datenbanksysteme und Data Mining Prof. Dr. Thomas Seidl

Knowledge Discovery and Data Mining I

Winter Semester 2018/19

Agenda

- 1. Introduction
- 2. Basics
- 3. Unsupervised Methods

- 4. Supervised Methods
- 5. Advanced Topics
 - 5.1 Process Mining
 - 5.2 Outlook

Further Machine Learning Methods

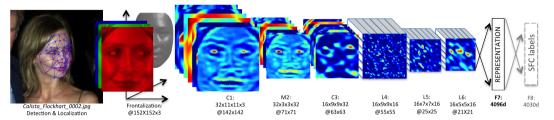


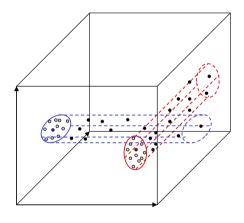
Image Source: Taigman, et al. "Deepface: Closing the gap to human-level performance in face verification." CVPR'14.

- Graphical Models
- ► Generative Models

- Neural Networks
- ► Deep Learning

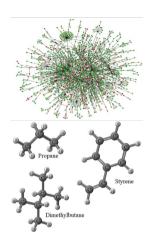
→ Machine Learning (SS), Deep Learning and Artificial Intelligence (WS)

Decision Making / Planning


- Setting:
 - Agents are in some environment, observe, and have to take actions that influence the environment.
- Methods:
 - Deterministic/Stochastic Planning
 - ► A*-Search
 - Model-Free Reinforcement Learning
 - Q-Learning
 - Adversarial Search (e.g. Alpha-Beta Pruning)

→ Deep Learning (WS), Managing Massive Multiplayer Online Games (SS)

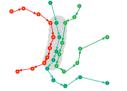
High-Dimensional Data


- Challenges:
 - Curse of dimensionality: distances become more and more similar
 - Datasets become sparse.
 - Expensive distance measures
 - Degeneration of index structures
 - Unintuitive properties in high dimensions.
- ► Tasks
 - Feature Selection
 - ► Feature Reduction / Metric Learning
 - Clustering in High-Dimensional Spaces

Monowledge Discovery in Databases II (SS), Big Data Management and Analytics (WS)

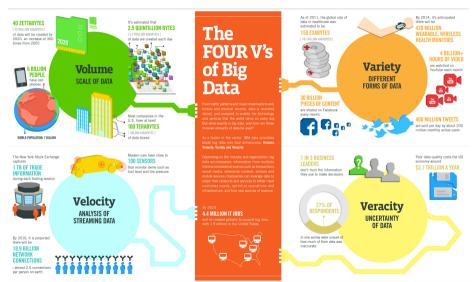
Graph Data

- Graphs are everywhere!
 - Chemical data analysis, proteins
 - Biological pathways/networks
 - Program control flow, traffic flow
 - Web graph, social network analysis
- Typical tasks
 - ► Measure similarity between graphs
 - Find frequent patterns in graphs
 - ► Generate "realistic" synthetic graphs
 - Identify groups in social networks
 - Integrate additional information



Nowledge Discovery in Databases II (SS), Big Data Management and Analytics (WS)

Spatial Data


- Mining spatial data
 - Spatial clustering, outlier detection, prediction, rule mining, ...
- Spatial data management
 - Process spatial queries without scanning the whole database
 - Spatial index structures: BSP-tree, R-tree, Quad-tree, ...
- Mining trajectory data
 - Similarity models for trajectories
 - Trajectory compression
 - Mining patterns in trajectories (encounters, flocks, ...)

→ Managing Massive Multiplayer Online Games (SS)

Big Data

Advanced Topics Outlook February 6, 2019

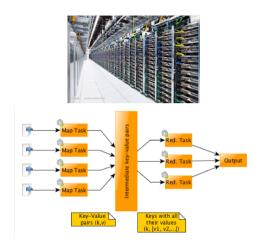
IBM

501

Big Data Management

- Vertical scaling limited and expensive
 - $\rightsquigarrow \mathsf{Distributed} \ \mathsf{storage}$
- ► NoSQL databases
 - Redis
 - MongoDB
 - Cassandra
 - ► Neo4J
- Distributed file systems
 - ► GFS (Google)
 - ► HDFS (Hadoop)
 - ► S3 (Amazon)

https://www.greentree.com/latest-news/avoiding-cumulus-congestus

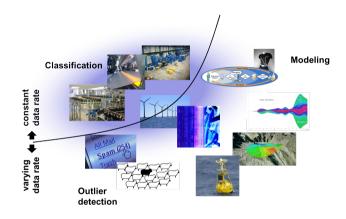


502

→ Big Data Management and Analytics (WS)

Distributed Data Processing

- Processing and analyzing big data
- Map-Reduce: Programming model for distributed processing of large datasets
 - Algorithms are specified as sequences of map and reduce functions
 - Programs are automatically parallelized and executed on a cluster
 - System is tolerant to hardware faults
- Frameworks
 - Apache Spark (batch processing)
 - Apache Flink (stream processing)



503

→ Big Data Management and Analytics (WS)

Stream Data

- Data objects arrive over time in a continuous data stream
- Challenges
 - Infinite stream
 - Limited time and memory
 - Evolving distribution
 - Varying data rates
 - Concept drift
- Typical tasks
 - Sampling and buffering
 - Stream statistics
 - Aging mechanisms

504

Seminars, Practicals, Theses

Dive deeper into specific topics and get hands-on experience:

- ► Master Seminar "Recent Developments in Data Science" (SS)
- Master Practical "Big Data Science" (SS)
- Master Practical "Applied Reinforcement Learning" (SS)
- Individual Bachelor and Master Theses