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Numerical Prediction

I Related problem to classification: numerical prediction
I Determine the numerical value of an object
I Method: e.g., regression analysis
I Example: Prediction of flight delays

I Numerical prediction is different from classification
I Classification refers to predict categorical class label
I Numerical prediction models continuous-valued functions

I Numerical prediction is similar to classification
I First, construct a model
I Second, use model to predict unknown value
I Major method for numerical prediction is regression:

I Linear and multiple regression
I Non-linear regression
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Examples

Example: Housing values in suburbs of Boston

I Inputs:
I Number of rooms
I Median value of houses in the
I Neighborhood
I Weighted distance to five Boston employment centers
I Nitric oxides concentration
I Crime rate per capita
I . . .

I Goal: Compute a model of the housing values, which
can be used to predict the price for a house in that area.

Supervised Methods Regression January 25, 2019 464



Examples

Control engineering

I Control the inputs of a system in order to lead
the outputs to a given reference value

I Required: A model of the process
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Examples

Fuel injection process

I Database of spray images

I Inputs: Settings in the pressure chamber

I Outputs: Spray features, e.g., penetration, depth, spray, width, spray area

I Goal: Compute a model which predicts the spray features, for input settings which
have not been measured.
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Numerical Prediction

Numerical Prediction

I Given: A set of observations

I Compute: A generalized model of the
data which enables the prediction of
the output as a continuous value

Numerical 
Prediction 

Model 
Inputs 

(Predictiors) 
Outputs 

(Responses) 

Quality Measures

I Accuracy of the model

I Compactness of the model

I Interpretability of the model

I Runtime efficiency (training, prediction)
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Linear Regression

I Given a set of N observations with inputs of the form x = (x1, . . . , xd )T ∈ Rd and
outputs y ∈ R

I Approach: Minimize the Sum of Squared Errors (SSE)

I Numerical Prediction: Describe the outputs y as a linear equation of the inputs

ŷ = f (x) = w0 +
d∑

i=1

wi xi = (1, x1, . . . , xd )T w

I Train the parameters w = (w0,w1, . . . ,wd )T

according to

min
w

1

2

N∑
i=1

(yi − f (xi ))2
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Linear Regression

I Matrix notation: Let X ∈ RN×(d+1) be the matrix containing the inputs, Y ∈ RN

the outputs, and w the resulting coefficients:

X =

1 x1,1 . . . x1,d
...

...
. . .

...
1 xN,1 . . . xN,d

 , Y =

y1
...

yN

 , w =

w0
...

wd


I Goal: Find the coefficients w , which minimize the SSE

min
w

1

2

N∑
i=1

(yi − f (xi ))2 = min
w

1

2
||Xw − Y ||22

= min
w

1

2
(Xw − Y )T (Xw − Y )

Supervised Methods Regression January 25, 2019 469



Linear Regression

I The optimal coefficients can be derived by setting the first derivative to zero (cf.
classification with linear discriminant functions)

w = (X T X )−1X T Y

I For d = 1, the regression coefficients w0 and w1 can be computed as

w1 =
Cov(x , y)

Var(x)
=

x̃T ỹ

x̃T x̃
, w0 = ȳ − w1x̄

where x̃ = x − x̄ and ỹ = y − ȳ

I Note: If x̄ = ȳ = 0 (i.e., the data is centered), then w1 = xT y
xT x

and w0 = 0
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Polynomial Regression

I Second order polynomial for d = 1:

ŷ = f (x) = w0 + w1x1 + w2x2
2 = (1, x1, x

2
2 )T w

with

X =

1 x1,1 x2
1,1

...
...

...
1 xN,1 x2

N,1

 and w = (X T X )−1X T Y

I Second order polynomial for d = 2:

ŷ = f (x) = w0 + w1x1 + w2x2 + w3x2
1 + w4x2

2 + w5x1x2
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Polynomial Regression

I The number of coefficients increases exponentially with k and d

I Model building strategies: Forward selection, backward elimination

I The order of the polynomial should be as low as possible, high order polynomials
tend to overfit the data
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Nonlinear Regression

I Different nonlinear functions can be approximated

I Transform the data to a linear domain

ŷ = αeγx =⇒ ln ŷ = lnα + γx

=⇒ ŷ ′ = w0 + w1x

(for ŷ ′ = ln ŷ , w0 = lnα and w1 = γ )

I The parameters w0 and w1 are estimated with SSE

I The parameters α and γ are obtained, describing an exponential curve which
passes through the original observations

I Problem: SSE determines normally distributed errors in the transformed space
 skewed error distribution in the original space

Supervised Methods Regression January 25, 2019 473



Nonlinear Regression

I Different nonlinear functions can be approximated

I Outputs are estimated by a function with nonlinear parameters, e.g., exponential,
trigonometric

I Example type of function:

ŷ = w0 + w1ew2x + sin(w3x)

I Approach: The type of nonlinear function is chosen and the corresponding
parameters are computed

I No closed form solution exists  numerical approximation:
I Gauss Newton, Gradient descent, Levenberg-Marquardt
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Linear and Nonlinear Regression

Problems

I Linear regression: Most of the real world data has a nonlinear behavior

I Polynomial regression: Limited, cannot describe arbitrary nonlinear behavior

I General nonlinear regression: The type of nonlinear function must be specified in
advance
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Piecewise Linear Functions

Piecewise Linear Functions

For a partitioning of the input space C = {C1, . . . ,Ck}, a piecewise linear function is
defined by coefficient vectors wi, and offset βi for i = 1, . . . , k.

f (x) =


wT

1 x + β1, x ∈ C1

...

wT
k x + βk , x ∈ Ck
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Piece Linear Functions

Properties

I Simple approach

I Can approximate any function

I Accuracy increases with increasing number of partitions

I Compactness & Interpretability decreases with increasing number of partitions

Challenge

Find an appropriate partitioning of the input space
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Regression Tree

Greedy divide and conquer: recursive partioning of the input space.
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Regression Tree

General Approach

I Given: Set of observations T = (X ,Y ) with X = {x1, . . . , xn}, and
Y = {y1, . . . , yn}

I Find a split of T into T1, T2 with minimal summed impurity imp(T1) + imp(T2).

I If the stopping criterion is not reached: repeat for T1 and T2

I If the stopping criterion is reached: undo the split
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Impurity Measure

y

x

Variance of the Residuals

imp(T ) =
1

|T |
∑

(x,y)∈T

(y − f (x))2

where f is the approximator function, i.e. here a linear function. For constant f , this
measure coincides with the variance of the output.
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Stopping Criterion: Impurity Ratio

Impurity Ratio Stopping Criterion

The recursive splitting is stopped if one of the following holds

I The sample size of a node is below some specified threshold

I The split is not significant for threshold τ0, when

τ =
imp(T1) + imp(T2)

imp(T )
≥ τ0

Choosing τ0

τ0 controls the overfitting/underfitting trade-off:

I τ0 too large =⇒ stopping too early =⇒ model not accurate enough

I τ0 too small =⇒ stopping too early =⇒ model overfits to observations

Supervised Methods Regression January 25, 2019 481



Split Strategy

I The split strategy determines how the training samples
are partitioned, whether the split is actually performed
is decided by the stopping criterion.

I The most common splits are axis parallel:
I Split = a value in one input dimension
I Compute the impurity of all possible splits in all input

dimensions and choose at the end the split with the
lowest impurity

I For each possible split compute the two corresponding
models and their impurity  expensive to compute

Five axis-parallel splits to
separate red from blue

samples.
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Strategy for Oblique Splits

I More intuitive to use oblique splits

I An oblique split is a linear separator in the input space
instead of a split value in an input dimension

I The optimal split (with minimal impurity measure)
cannot be efficiently computed  Heuristic approach
required A single oblique split can

separate red from blue
samples.
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Strategy for Oblique Splits

Heuristic Approach

1. Compute a clustering in the full (input + output)
space, such that the samples are as well as possible
described by linear equations

2. Project the clusters onto the input space

3. Use the clusters to train a linear classifier in the input
space. Split = separating hyperplane in input space

4. Compute linear models for the two linearly separated
clusters

y

x1

x2

x1

x2

y

x1

x2

Supervised Methods Regression January 25, 2019 484



Example: Oblique Splits
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Continuous Splits

Motivation

I At the boundaries of the partitions the prediction may be discontinuous.

I In some applications this might by undesirable, e.g. when using the prediction to
control engine speed, a rapid jump may cause damage to the engine

Solution

Hinging Hyperplane Models (not detailed in this lecture).

f (x) =
k∑

i=1

hi (x) hi (x) =

{〈
w(i ,+), x̃

〉
,
〈
w(i), x̃

〉
> 0 x̃ = (1, x1, . . . , xd )〈

w(i ,−), x̃
〉
,
〈
w(i), x̃

〉
≤ 0 w(i) = w(i ,+) −w(i ,−)
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