Ludwig-Maximilians-Universität München Lehrstuhl für Datenbanksysteme und Data Mining Prof. Dr. Thomas Seidl

Knowledge Discovery and Data Mining I

Winter Semester 2018/19

Agenda

1. Introduction

2. Basics

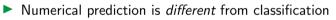
3. Unsupervised Methods

4. Supervised Methods 4.1 Classification 4.2 Regression 4.2.1 Piece-Wise Linear Regression

5. Advanced Topics

Numerical Prediction

- Related problem to classification: numerical prediction
 - Determine the numerical value of an object
 - Method: e.g., regression analysis
 - Example: Prediction of flight delays



- Classification refers to predict categorical class label
- Numerical prediction models continuous-valued functions
- Numerical prediction is similar to classification
 - First, construct a model
 - Second, use model to predict unknown value
 - Major method for numerical prediction is regression:
 - Linear and multiple regression
 - Non-linear regression



Examples

Example: Housing values in suburbs of Boston

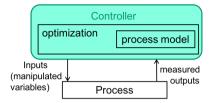
► Inputs:

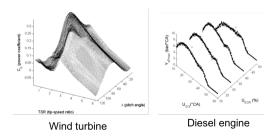
- Number of rooms
- Median value of houses in the
- Neighborhood
- Weighted distance to five Boston employment centers
- Nitric oxides concentration
- Crime rate per capita
- ► ...
- Goal: Compute a model of the housing values, which can be used to predict the price for a house in that area.

Examples

Control engineering

- Control the inputs of a system in order to lead the outputs to a given reference value
- Required: A model of the process

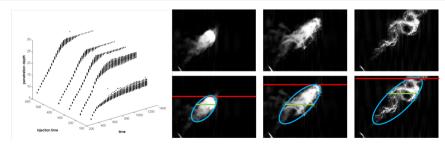




Examples

Fuel injection process

- Database of spray images
- Inputs: Settings in the pressure chamber
- Outputs: Spray features, e.g., penetration, depth, spray, width, spray area
- Goal: Compute a model which predicts the spray features, for input settings which have not been measured.



Supervised Methods

Regression

Numerical Prediction

Numerical Prediction

- Given: A set of observations
- Compute: A generalized model of the data which enables the prediction of the output as a continuous value



Quality Measures

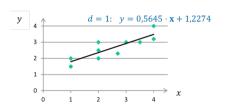
- Accuracy of the model
- Compactness of the model
- Interpretability of the model
- Runtime efficiency (training, prediction)

Linear Regression

- ► Given a set of N observations with inputs of the form x = (x₁,...,x_d)^T ∈ ℝ^d and outputs y ∈ ℝ
- Approach: Minimize the Sum of Squared Errors (SSE)
- Numerical Prediction: Describe the outputs y as a linear equation of the inputs

$$\hat{y} = f(x) = w_0 + \sum_{i=1}^{d} w_i x_i = (1, x_1, \dots, x_d)^T w$$

$$\min_{w} \frac{1}{2} \sum_{i=1}^{N} (y_i - f(x_i))^2$$



Linear Regression

Matrix notation: Let X ∈ ℝ^{N×(d+1)} be the matrix containing the inputs, Y ∈ ℝ^N the outputs, and w the resulting coefficients:

$$X = \begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N,1} & \dots & x_{N,d} \end{pmatrix}, \qquad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}, \qquad w = \begin{pmatrix} w_0 \\ \vdots \\ w_d \end{pmatrix}$$

▶ Goal: Find the coefficients *w*, which minimize the SSE

$$\begin{split} \min_{w} \frac{1}{2} \sum_{i=1}^{N} (y_{i} - f(x_{i}))^{2} &= \min_{w} \frac{1}{2} ||Xw - Y||_{2}^{2} \\ &= \min_{w} \frac{1}{2} (Xw - Y)^{T} ($$

Linear Regression

The optimal coefficients can be derived by setting the first derivative to zero (cf. classification with linear discriminant functions)

$$w = (X^T X)^{-1} X^T Y$$

For d = 1, the regression coefficients w_0 and w_1 can be computed as

$$w_1 = rac{Cov(x,y)}{Var(x)} = rac{ ilde{x}^T ilde{y}}{ ilde{x}^T ilde{x}}, \qquad w_0 = \overline{y} - w_1\overline{x}$$

where $\tilde{x} = x - \bar{x}$ and $\tilde{y} = y - \bar{y}$ Note: If $\bar{x} = \bar{y} = 0$ (i.e., the data is centered), then $w_1 = \frac{x^T y}{x^T x}$ and $w_0 = 0$

Supervised Methods

Polynomial Regression

• Second order polynomial for d = 1:

$$\hat{y} = f(x) = w_0 + w_1 x_1 + w_2 x_2^2 = (1, x_1, x_2^2)^T w$$

with

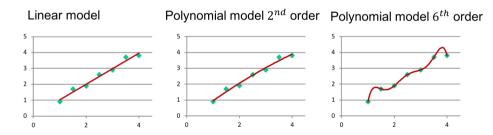
$$X = \begin{pmatrix} 1 & x_{1,1} & x_{1,1}^2 \\ \vdots & \vdots & \vdots \\ 1 & x_{N,1} & x_{N,1}^2 \end{pmatrix} \text{ and } w = (X^T X)^{-1} X^T Y$$

Second order polynomial for d = 2:

$$\hat{y} = f(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 + w_5 x_1 x_2$$

Polynomial Regression

- The number of coefficients increases exponentially with k and d
- Model building strategies: Forward selection, backward elimination
- The order of the polynomial should be as low as possible, high order polynomials tend to overfit the data



Nonlinear Regression

Different nonlinear functions can be approximated

Transform the data to a linear domain

$$\hat{y} = \alpha e^{\gamma x} \implies \ln \hat{y} = \ln \alpha + \gamma x$$

 $\implies \hat{y}' = w_0 + w_1 x$

(for $\hat{y}' = \ln \hat{y}$, $w_0 = \ln \alpha$ and $w_1 = \gamma$)

- The parameters w_0 and w_1 are estimated with SSE
- The parameters α and γ are obtained, describing an exponential curve which passes through the original observations
- Problem: SSE determines normally distributed errors in the transformed space ~> skewed error distribution in the original space

Nonlinear Regression

Different nonlinear functions can be approximated

- Outputs are estimated by a function with nonlinear parameters, e.g., exponential, trigonometric
- Example type of function:

$$\hat{y} = w_0 + w_1 e^{w_2 x} + \sin(w_3 x)$$

- Approach: The type of nonlinear function is chosen and the corresponding parameters are computed
- ▶ No closed form solution exists ~→ numerical approximation:
 - Gauss Newton, Gradient descent, Levenberg-Marquardt

Linear and Nonlinear Regression

Problems

- Linear regression: Most of the real world data has a nonlinear behavior
- ▶ Polynomial regression: Limited, cannot describe arbitrary nonlinear behavior
- General nonlinear regression: The type of nonlinear function must be specified in advance

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

- 4. Supervised Methods4.1 Classification4.2 Regression
 - 4.2.1 Piece-Wise Linear Regression

5. Advanced Topics

Piecewise Linear Functions

Piecewise Linear Functions

For a partitioning of the input space $C = \{C_1, \ldots, C_k\}$, a piecewise linear function is defined by coefficient vectors \mathbf{w}_i , and offset β_i for $i = 1, \ldots, k$.

$$f(\mathbf{x}) = \begin{cases} \mathbf{w}_1^T \mathbf{x} + \beta_1, & \mathbf{x} \in C_1 \\ \vdots \\ \mathbf{w}_k^T \mathbf{x} + \beta_k, & \mathbf{x} \in C_k \end{cases}$$

Piece Linear Functions

Properties

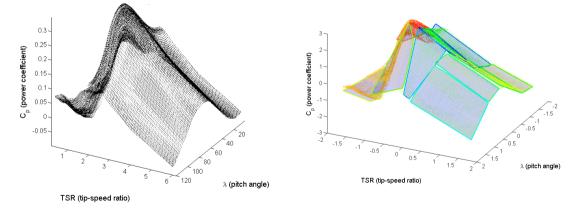
- Simple approach
- Can approximate any function
- Accuracy increases with increasing number of partitions
- Compactness & Interpretability decreases with increasing number of partitions

Challenge

Find an appropriate partitioning of the input space

Regression Tree

Greedy divide and conquer: recursive partioning of the input space.

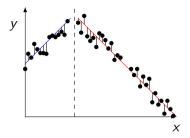


Regression Tree

General Approach

- Given: Set of observations T = (X, Y) with $X = \{x_1, \ldots, x_n\}$, and $Y = \{y_1, \ldots, y_n\}$
- Find a split of T into T_1 , T_2 with minimal summed impurity $imp(T_1) + imp(T_2)$.
- ▶ If the stopping criterion is not reached: repeat for T_1 and T_2
- If the stopping criterion is reached: undo the split

Impurity Measure



Variance of the Residuals

$$imp(T) = \frac{1}{|T|} \sum_{(\mathbf{x}, y) \in T} (y - f(\mathbf{x}))^2$$

where f is the approximator function, i.e. here a linear function. For constant f, this measure coincides with the variance of the output.

Supervised Methods

Stopping Criterion: Impurity Ratio

Impurity Ratio Stopping Criterion

The recursive splitting is stopped if one of the following holds

- The sample size of a node is below some specified threshold
- The split is *not significant* for threshold τ_0 , when

$$\tau = \frac{imp(T_1) + imp(T_2)}{imp(T)} \ge \tau_0$$

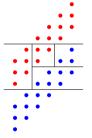
Choosing τ_0

 τ_0 controls the overfitting/underfitting trade-off:

- ▶ au_0 too large \implies stopping too early \implies model not accurate enough
- ▶ au_0 too small \implies stopping too early \implies model overfits to observations

Split Strategy

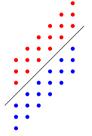
- The split strategy determines how the training samples are partitioned, whether the split is actually performed is decided by the stopping criterion.
- The most common splits are axis parallel:
 - Split = a value in one input dimension
 - Compute the impurity of all possible splits in all input dimensions and choose at the end the split with the lowest impurity
 - ► For each possible split compute the two corresponding models and their impurity ~→ expensive to compute



Five axis-parallel splits to separate red from blue samples.

Strategy for Oblique Splits

- More intuitive to use oblique splits
- An oblique split is a linear separator in the input space instead of a split value in an input dimension
- The optimal split (with minimal impurity measure) cannot be efficiently computed ~> Heuristic approach required

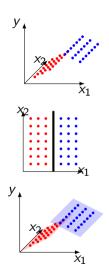


A single oblique split can separate red from blue samples.

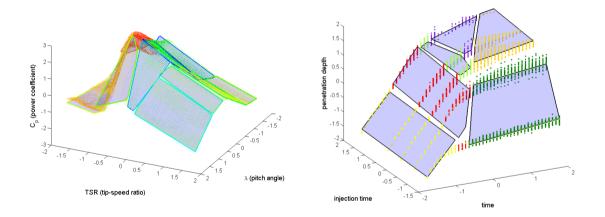
Strategy for Oblique Splits

Heuristic Approach

- Compute a clustering in the full (input + output) space, such that the samples are as well as possible described by linear equations
- 2. Project the clusters onto the input space
- 3. Use the clusters to train a linear classifier in the input space. Split = separating hyperplane in input space
- 4. Compute linear models for the two linearly separated clusters



Example: Oblique Splits



Continuous Splits

Motivation

- At the boundaries of the partitions the prediction may be discontinuous.
- In some applications this might by undesirable, e.g. when using the prediction to control engine speed, a rapid jump may cause damage to the engine

Solution

Hinging Hyperplane Models (not detailed in this lecture).

$$f(\mathbf{x}) = \sum_{i=1}^{k} h_i(\mathbf{x}) \qquad h_i(\mathbf{x}) = \begin{cases} \langle \mathbf{w}^{(i,+)}, \tilde{\mathbf{x}} \rangle, & \langle \mathbf{w}^{(i)}, \tilde{\mathbf{x}} \rangle > 0 \\ \langle \mathbf{w}^{(i,-)}, \tilde{\mathbf{x}} \rangle, & \langle \mathbf{w}^{(i)}, \tilde{\mathbf{x}} \rangle \le 0 \end{cases} \qquad \tilde{\mathbf{x}} = (1, x_1, \dots, x_d) \\ \mathbf{w}^{(i,-)}, \mathbf{x} \rangle, & \langle \mathbf{w}^{(i)}, \tilde{\mathbf{x}} \rangle \le 0 \end{cases}$$