Ludwig-Maximilians-Universität München Lehrstuhl für Datenbanksysteme und Data Mining Prof. Dr. Thomas Seidl

Knowledge Discovery and Data Mining I

Winter Semester 2018/19

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

- 4. Supervised Methods
 - 4.1 Classification
 - 4.1.1 Bayesian Classifiers
 - 4.1.2 Linear Discriminant Functions
 - 4.1.3 Support Vector Machines
 - 4.1.4 Kernel Methods
 - 4.1.5 Decision Tree Classifiers
 - 4.1.6 Nearest Neighbor Classifiers
 - 4.1.7 Ensemble Classification

4.2 Regression

5. Advanced Topics

Additional Literature for this Chapter

Christopher M. Bishop: Pattern Recognition and Machine Learning. Springer, Berlin 2006.

Introduction: Example

Training data

age	car_type	max_speed	risk
23	family	180	high
17	sportive	240	high
43	sportive	246	high
68	family	183	low
32	truck	110	low

Simple classifier

if age > 50 then risk = low if age ≤ 50 and car type = truck then risk = low if age ≤ 50 and car type \ne truck then risk = high

Classification: Training Phase (Model Construction)

Classification: Prediction Phase (Application)

Classification

The systematic assignment of new observations to known categories according to criteria learned from a training set.

Formal Setup

- ▶ A classifier K for a model $M(\theta)$ is a function $K_{M(\theta)} : D \to Y$, where
 - D: data space
 - Often *d*-dim. space with attributes a_1, \ldots, a_d (not necessarily a vector space)
 - Some other space, e.g. metric space
 - $Y = \{y_1, \ldots, y_k\}$: set of k distinct class labels
 - $O \subseteq D$: set of *training objects o* with known class labels $y \in Y$
- ▶ Classification: Application of classifier K on objects from $D \setminus O$
- ▶ Model $M(\theta)$ is the "type" of the classifier, and θ are the model parameters
- Supervised learning: find/learn optimal parameters θ for $M(\theta)$ given O

Supervised vs. Unsupervised Learning

Unsupervised Learning (clustering)

- The class labels of training data are unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data
 - Classes (=clusters) are to be determined

Supervised Learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - Classes are known in advance (a priori)
- New data is classified based on information extracted from the training set

Numerical Prediction

- Related problem to classification: numerical prediction
 - Determine the numerical value of an object
 - Method: e.g., regression analysis
 - Example: Prediction of flight delays

- Classification refers to predict categorical class label
- Numerical prediction models continuous-valued functions
- Numerical prediction is similar to classification
 - First, construct a model
 - Second, use model to predict unknown value
 - Major method for numerical prediction is regression:
 - Linear and multiple regression
 - Non-linear regression

Goals for this Section

- 1. Introduction of different classification models
- 2. Learning techniques for these models

age	car_type	max_speed	risk
23	family	180	high
17	sportive	240	high
43	sportive	246	high
68	family	183	low
32	truck	110	low

Quality Measures for Classifiers

- Classification accuracy or classification error (complementary)
- Compactness of the model
 - Decision tree size, number of decision rules, ...
- Interpretability of the model
 - Insights and understanding of the data provided by the model
- Efficiency
 - Time to generate the model (training time)
 - Time to apply the model (prediction time)
- Scalability for large databases
 - Efficiency in disk-resident databases
- Robustness
 - Robust against noise or missing values

Evaluation of Classifiers: Notions

Using training data to build a classifier and to estimate the model's accuracy may result in misleading and overoptimistic estimates

• ~ Overspecialization of the learning model to the training data

- ► *Train-and-Test*: Decomposition of labeled data set *O* into two partitions
 - Training data is used to train the classifier
 - Construction of the model by using information about the class labels
 - Test data is used to evaluate the classifier
 - ▶ Temporarily hide class labels, predict them anew and compare with original class labels
- Train-and-Test is not applicable if the set of objects for which the class label is known is very small

Evaluation of Classifiers: Cross Validation

m-fold Cross Validation

Decompose data set evenly into m subsets of (nearly) equal size

- ► Iteratively use (m 1) partitions for training data and the remaining single partition as test data
- ▶ Combine the *m* classification accuracy values to an overall classification accuracy

Leave-one-out: Special case of cross validation (m = n)

- For each of the objects o in the data set O:
 - Use set $O \setminus \{o\}$ as training set
 - ► Use the singleton set {*o*} as test set
 - Compute classification accuracy by dividing the number of correct predictions through the database size |O|
- Particularly well applicable to nearest-neighbor classifiers

Quality Measures: Accuracy and Error

- Let K be a classifier
- Let C(o) denote the correct class label of an object o
- Measure the quality of K:
 - Predict the class label for each object o from a data set $T \subseteq O$
 - Determine the fraction of correctly predicted class labels

Classification Accuracy of K

$$G_{\mathcal{T}}(\mathcal{K}) = \frac{|\{o \in \mathcal{T} \mid \mathcal{K}(o) = \mathcal{C}(o)\}|}{|\mathcal{T}|}$$

$$F_T(K) = \frac{|\{o \in T \mid K(o) \neq C(o)\}|}{|T|}$$
$$= 1 - G_T(K)$$

Quality Measures: Accuracy and Error

- Let K be a classifier
- Let $TR \subseteq O$ be the training set: Used to build the classifier
- Let $TE \subseteq O$ be the test set: Used to test the classifier

Quality Measures: Confusion Matrix

Results on the test set: Confusion matrix

		classified as				
		class 1	class 2	class 3	class 4	class 5
-	class 1	35	1	1	1	4
label	class 2	0	31	1	1	5
	class 3	3	1	50	1	2
correct	class 4	1	0	1	10	2
ŭ	class 5	3	1	9	16	13
(correctly classified in green)						

(correctly classified in green)

- Based on the confusion matrix, we can compute several accuracy measures, including:
 - Classification Accuracy/Error
 - Precision and Recall

Quality Measures: Precision and Recall

Recall

Fraction of test objects of class *i*, which have been identified correctly.

$$Recall_{TE}(K,i) = \frac{|\{o \in C_i \mid K(o) = C(o)\}|}{|C_i|}$$

Precision

Fraction of test objects assigned to class i, which have been identified correctly.

$$Precision_{TE}(K,i) = \frac{|\{o \in C_i \mid K_i(o) = C(o)\}|}{|K_i|}$$

$$C_i = \{o \in TE \mid C(o) = i\}$$

$$K_i = \{o \in TE \mid K(o) = i\}$$

Overfitting

Characterization of Overfitting

The classifier adapts too closely to the training dataset and may therefore fail to accurately predict class labels for test objects unseen during training.

Overfitting

Overfitting

- Occurs when the classifier is too optimized to the (noisy) training data
- ▶ As a result, the classifier yields worse results on the test data set

Potential reasons:

- Bad quality of training data (noise, missing values, wrong values)
- Different statistical characteristics of training data and test data

Overfitting Avoidance

- Removal of *noisy/erroneous/contradicting* training data
 Choice of an appropriate *size* of the training set
 - Not too small, not too large
- Choice of appropriate sample
 - Sample should describe all aspects of the domain and not only parts of it

Underfitting

Underfitting

 Occurs when the classifiers model is too simple, e.g. trying to separate classes linearly that can only be separated by a quadratic surface

Happens seldomly

~> Trade-off: Usually one has to find a good balance between over- and underfitting.

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

- 4. Supervised Methods
 - 4.1 Classification
 - 4.1.1 Bayesian Classifiers
 - 4.1.2 Linear Discriminant Functions
 - 4.1.3 Support Vector Machines
 - 4.1.4 Kernel Methods
 - 4.1.5 Decision Tree Classifiers
 - 4.1.6 Nearest Neighbor Classifiers
 - 4.1.7 Ensemble Classification
 - 4.2 Regression
- 5. Advanced Topics

Bayes Classification

Probability based classification

- Based on likelihood of observed data, estimate explicit probabilities for classes
- Classify objects depending on costs for possible decisions and the probabilities for the classes
- Incremental
 - Likelihood functions built up from classified data
 - Each training example can incrementally increase/decrease the probability that a hypothesis (class) is correct
 - Prior knowledge can be combined with observed data.
- Good classification results in many applications

Bayes' Theorem

Probability Theory

• Conditional probability:
$$P(A | B) = \frac{P(A \land B)}{P(B)}$$
 ("prob. of A given B")

• Product Rule:
$$P(A \land B) = P(A \mid B) \cdot P(B)$$

Bayes' Theorem

$$\blacktriangleright P(A \land B) = P(A \mid B) \cdot P(B)$$

$$\blacktriangleright P(B \land A) = P(B \mid A) \cdot P(A)$$

Since $P(A \land B) = P(B \land A)$, $P(A \mid B) \cdot P(B) = P(B \mid A) \cdot P(A)$, and thus

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Bayes Classifier

▶ Bayes' rule: P(c_j | x) = P(x|c_j)·P(c_j)/P(x) for object x and class c_j ∈ C.
 ▶ We are interested in maximizing this, i.e.

$$rgmax_{c_j \in \mathcal{C}} \left(P(c_j \mid x)
ight) = rgmax_{c_j \in \mathcal{C}} \left(rac{P(x \mid c_j) \cdot P(c_j)}{p(x)}
ight) \stackrel{(*)}{=} rgmax_{c_j \in \mathcal{C}} \left(P(x \mid c_j) \cdot P(c_j)
ight)$$

where (*) assumes the value of p(x) is constant and hence does not change the result.

Final decision rule:

$$\mathcal{K}(x) = c_{\max} = \operatorname*{argmax}_{c_j \in \mathcal{C}} \left(P(x \mid c_j) \cdot P(c_j) \right)$$

• But how to obtain $P(c_j)$ and $P(x | c_j)$.

Supervised Methods

Bayes Classifier: Density Estimation

A-Priori Class Probabilities

Estimate the a-priori probabilities $P(c_j)$ of classes $c_j \in C$ by using the observed relative frequency of the individual class labels c_j in the training set, i.e.,

$$\mathsf{P}(c_j) = rac{\mathsf{N}_{c_j}}{\mathsf{N}}$$

Conditional Probabilities

- Non-parametric methods: Kernel methods Parzen's window, Gaussian kernels, etc.
- Parametric methods, e.g.
 - Single Gaussian distribution: Computed by maximum likelihood estimators (MLE)
 - Mixture models: e.g. Gaussian Mixture Model computed by EM algorithm

Bayes Classifier: Density Estimation

Problem

Curse of dimensionality often lead to problems in high dimensional data \rightsquigarrow Density functions become too uninformative

Solution

- Dimensionality reduction
- Usage of statistical independence of single attributes (extreme case: naïve Bayes)

Naive Bayes Classifier

Assumptions

- Objects are given as *d*-dimensional vectors, $x = (x_1, \ldots, x_d)$
- For any given class c_j the attribute values x_i are conditionally independent, i.e.

$$P(x_1,\ldots,x_d \mid c_j) = \prod_{i=1}^d P(x_i \mid c_j) = P(x_1 \mid c_j) \cdot \ldots \cdot P(x_d \mid c_j)$$

Decision Rule

$$\mathcal{K}_{ ext{naive}}(x) = rgmax_{c_j \in \mathcal{C}} \left(\mathcal{P}(c_j) \cdot \prod_{i=1}^d \mathcal{P}(x_i \mid c_j)
ight)$$

Categorical Attribute x_i

 $P(x_i | c_j)$ can be estimated as the relative frequency of samples having value v_i as the *i*th attribute in class c_j in the training set.

Continuous Attribute x_i

 $P(x_i \mid c_j)$ can, for example, be estimated through a Gaussian distribution determined by μ_{ij}, σ_{ij} .

 \rightsquigarrow Computationally easy in both cases.

Naïve Bayes Classifier: Example

age	car_type	max_speed	risk
23	family	180	high
17	sportive	240	high
43	sportive	246	high
68	family	183	low
32	truck	110	low

Model Setup

- Age $\sim N(\mu, \sigma^2)$ (normal distribution)
- car_type \sim relative frequencies
 - max_speed \sim N(μ, σ^2) (normal distribution)

Naïve Bayes Classifier: Example (cont'd)

Query

$$q = (age = 60; car_type = family; max_speed = 190)$$

Example

We have:

ar

►
$$P(high) = \frac{3}{5}$$

► $\mu_{age,high} = \frac{83}{3}, \sigma_{age,high}^2 = \frac{1112}{3} \implies P(age = 60 \mid high) \approx 0.00506$
► $P(car_type = family \mid high) = \frac{1}{3}$
► $\mu_{max_speed,high} = 222, \sigma_{max_speed,high}^2 = 2664 \implies P(max_speed = 190 \mid high) \approx 0.00638$
and hence

$$\begin{array}{lll} P(high)P(q \mid high) &= & P(high)P(age = 60 \mid high)P(car_type = family \mid high)P(max_speed = 190 \mid high) \\ &\approx & 6.45166 \cdot 10^{-6} \end{array}$$

Analogously, we obtain $P(low)P(q \mid low) = 15.72290 \cdot 10^{-6} \implies K_{naïve}(q) = low.$

Supervised Methods

Bayesian Classifier

• Assuming dimensions of $x = (x_1, \ldots, x_d)$ are *not* independent

Assume multivariate normal distribution (i.e. Gaussian)

$$P(x \mid C_j) = rac{1}{\sqrt{(2\pi)^d \det(\Sigma_j)}} \exp\left(-rac{1}{2}(x-\mu_j)\Sigma_j^{-1}(x-\mu_j)^T
ight)$$

with

- μ_j : mean vector of class C_j
- Σ_j is the $d \times d$ covariance matrix
- det(Σ_j) is the determinant of Σ_j, and Σ_j⁻¹ its inverse

Example: Interpretation of Raster Images

- Scenario: Automated interpretation of raster images
 - Take an image from a certain region (in d different frequency bands, e.g., infrared, etc.)
 - Represent each pixel by d values: (x_1, \ldots, x_d)
- Basic assumption: different surface properties of the earth ("landuse") follow a characteristic reflection and emission pattern

Example: Interpretation of Raster Images

Probability of class membership

Application of the Bayes classifier:
▶ Estimation of the P(x | c) without

- Estimation of the P(x | c) without assumption of conditional independence
- Assumption of *d*-dimensional normal (= Gaussian) distributions for the value vectors of a class

Example: Interpretation of Raster Images

Method

Estimate the following measures from training data

- ▶ μ_j : *d*-dimensional mean vector of all feature vectors of class C_j
- Σ_j : $d \times d$ covariance matrix of class C_j

Problems

- if likelihood of respective class is very low
- if several classes share the same likelihood

 \rightsquigarrow Mitigate e.g. by applying some minimum likelihood threshold; do not classify regions below.

Bayesian Classifiers: Discussion

Pro

- High classification accuracy for many applications if density function defined properly
- Incremental computation: many models can be adopted to new training objects by updating densities
 - ▶ For Gaussian: store count, sum, squared sum to derive mean, variance
 - For histogram: store count to derive relative frequencies
- Incorporation of expert knowledge about the application in the prior $P(C_i)$

Contra

- Limited applicability: often, required conditional probabilities are not available
- Lack of efficient computation: in case of a high number of attributes (particularly for Bayesian belief networks)

The Independence Hypothesis

The Independence Hypothesis

- ... makes efficient computation possible
- ... yields optimal classifiers when satisfied
- ▶ ... but is seldom satisfied in practice, as attributes (variables) are often correlated.

Attempts to overcome this limitation

- Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes
- Decision trees, that reason on one attribute at the time, considering most important attributes first

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods

4.1 Classification

- 4.1.1 Bayesian Classifiers
- 4.1.2 Linear Discriminant Functions
- 4.1.3 Support Vector Machines
- 4.1.4 Kernel Methods
- 4.1.5 Decision Tree Classifiers
- 4.1.6 Nearest Neighbor Classifiers
- 4.1.7 Ensemble Classification
- 4.2 Regression
- 5. Advanced Topics

Linear Discriminant Function Classifier

Idea

Separate points of two classes by a hyperplane

- ► I.e., classification model is a hyperplane
- Points of one class in one half space, points of second class in the other half space

\sim			
()	ues	tio	ns
Å	uco	10	

- How to formalize the classifier?
- How to find optimal parameters of the model?

age	car_type	max_speed	risk
23	family	180	high
17	sportive	240	high
43	sportive	246	high
68	family	183	low
32	truck	110	low

Basic Notions

Recall some general algebraic notions for a vector space V:

- ▶ $\langle x, y \rangle$ denotes an inner product of two vectors $x, y \in V$
 - E.g., the scalar product $\langle x, y \rangle = x^T y = \sum_{i=1}^d x_i y_i$
- $H(w, w_0)$ denotes a hyperplane with normal vector w and constant term w_0 :

$$x \in H \Leftrightarrow \langle x, w
angle + w_0 = 0$$

• The normal vector w may be normalized to w':

$$w' = rac{1}{\sqrt{\langle w, w
angle}} w \implies \langle w', w'
angle = 1$$

• Distance of a point x to the hyperplane $H(w', w_0)$:

$$dist(x, H(w', w_0)) = |\langle w', x \rangle + w_0|$$

Supervised Methods

Formalization

- Consider a two-class example (generalizations later on):
 - ▶ D: d-dimensional vector space with attributes a_1, \ldots, a_d
 - $Y = \{-1, 1\}$ set of 2 distinct class labels y_j
 - ▶ $O \subseteq D$: Set of objects $o = (o_1, ..., o_d)$ with known class labels $y \in Y$ and cardinality |O| = N
- A hyperplane $H(w, w_0)$ with normal vector w and constant term w_0

$$x \in H \Leftrightarrow w^{T} x + w_{0} = 0$$

$$\mathbf{w}^{T} \mathbf{x} + w_{0} > 0$$

$$\mathbf{w}^{T} \mathbf{x} + w_{0} > 0$$

$$\mathbf{w}^{T} \mathbf{x} + w_{0} = 0$$

 $K_{H(w,w_0)}(x) =$

Classification Rule

Optimal Parameter Estimation

How to estimate optimal parameters w, w_0 ?

- 1. Define an objective/loss function $L(\cdot)$ that assigns a value (e.g. the error on the training set) to each parameter-configuration
- 2. Optimal parameters minimize/maximize the objective function

How does an objective function look like?

- Different choices possible
- Most intuitive: Each misclassified object contributes a constant (loss) value ~> 0-1 loss

Optimal Parameter Estimation

0-1 Loss Objective for Linear Classifier

•
$$L(w, w_0) = \sum_{i=1}^{N} I(y_i \neq K_{H(w, w_0)}(x_i))$$

• $\min_{w, w_0} L(w, w_0)$

where I(condition) = 1 if condition holds, 0 otherwise

- Minimize the overall number of training errors, but ...
 - NP-hard to optimize in general (non-smooth, non-convex)
 - Small changes of w, w_0 can lead to large changes of the loss

Loss Functions

Alternative Convex Loss Functions

Sum-of-squares loss Hinge loss Exponential loss Cross-entropy error

$$\begin{array}{l} (w' x_i + w_0 - y_i)^2 \\ \max\left\{0, (1 - y_i(w^T x_i + w_0)\right\} \\ \exp(-y_i(w^T x_i + w_0)) \\ -y_i \log g(x_i) + (1 - y_i) \log(1 - g(x_i)) \\ \text{where } g(x_i) = \frac{1}{1 + \exp(-(w^T x_i + w_0))} \end{array}$$

`

(SVM) (AdaBoost) (Logistic Regression)

 \ldots and many more

- Optimizing different loss function leads to several classification algorithms
- Next, we derive the optimal parameters for the sum-of-squares loss

Optimal Parameters for SSE loss

Objective Function

$$SSE(w, w_0) = \frac{1}{2} \sum_{i=1}^{N} (w^T x_i + w_0 - y_i)^2$$

- Minimize the error function for getting optimal parameters
- Use standard optimization technique:
 - 1. Calculate first derivative
 - 2. Set derivative to zero and compute the global minimum (SSE is a convex function)

Optimal Parameters for SSE Loss

Transform the problem for simpler computations:

•
$$w^T x + w_0 = \sum_{i=1}^d w_i x_i + w_0 = \sum_{i=0}^d w_i x_i$$
 with $x_0 = 1$
• For w let $\tilde{w} = (w_0, \dots, w_d)^T$

Combine the values to matrices

$$\tilde{X} = \begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N,1} & \dots & x_{N,d} \end{pmatrix}, \qquad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$$

Then the sum-of-squares error is equal to

$$SSE(\tilde{w}) = \frac{1}{2}(\tilde{X}\tilde{w} - Y)^T(\tilde{X}\tilde{w} - Y)$$

Supervised Methods

Optimal Parameters for SSE Loss

Take the derivative:

$$\frac{\partial}{\partial \tilde{w}} SSW(\tilde{w}) = \tilde{X}^{T} (\tilde{X} \tilde{w} - Y)$$

• Solve $\frac{\partial}{\partial \tilde{w}}SSE(\tilde{w}) = 0$:

$$\begin{split} \tilde{X}^{T}(\tilde{X}\tilde{w} - Y) &= 0 \\ \Leftrightarrow \tilde{X}^{T}\tilde{X}\tilde{w} &= \tilde{X}^{T}Y \\ \Leftrightarrow \tilde{w} &= \underbrace{(\tilde{X}^{T}\tilde{X})^{-1}\tilde{X}^{T}}_{\text{Left-inverse of }\tilde{X}} Y \\ & \overset{\text{Left-inverse of }\tilde{X}}{(\text{"Moore-Penrose Inverse"})} \end{split}$$

Optimal Parameters for SSE Loss

• Set
$$\hat{w} = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T Y$$

• Classify new point x with $x_0 = 1$ using

Classification Rule

$$K_{H(\hat{w})}(x) = \operatorname{sign}(\hat{w}x)$$

Example SSE

Data (consider only age and max. speed):

$$ilde{X} = egin{pmatrix} 1 & 23 & 180 \ 1 & 17 & 240 \ 1 & 43 & 246 \ 1 & 68 & 183 \ 1 & 32 & 110 \end{pmatrix}, \qquad extsf{Y} = egin{pmatrix} 1 \ 1 \ 1 \ -1 \ -1 \ -1 \end{pmatrix}$$

age	car_type	max_speed	risk
23	family	180	high
17	sportive	240	high
43	sportive	246	high
68	family	183	low
32	truck	110	low

• Encode classes as {high = 1, low = -1}

$$(\tilde{X}^{T}\tilde{X})^{-1}\tilde{X}^{T} = \begin{pmatrix} 0.7491 & -0.0836 & -0.8603 & -0.4736 & 1.6684 \\ -0.0087 & -0.0114 & 0.0049 & 0.0194 & -0.0043 \\ -0.0012 & 0.0036 & 0.0046 & -0.0002 & -0.0068 \end{pmatrix}$$
$$\implies \hat{w} = (\tilde{X}^{T}\tilde{X})^{-1}\tilde{X}^{T}Y = \begin{pmatrix} w_{0} \\ w_{age} \\ w_{maxspeed} \end{pmatrix} = \begin{pmatrix} -1.3896 \\ -0.0302 \\ 0.0141 \end{pmatrix}$$

Example SSE

► Model parameters:

$$\hat{w} = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T Y = \begin{pmatrix} w_0 \\ w_{age} \\ w_{maxspeed} \end{pmatrix} = \begin{pmatrix} -1.3896 \\ -0.0302 \\ 0.0141 \end{pmatrix}$$
$$\implies \mathcal{K}_{H(\hat{w})}(x) = \operatorname{sign}\left(\begin{pmatrix} -0.0302 \\ 0.0141 \end{pmatrix}^T x - 1.3896 \right)$$

• Query:
$$q = (age = 60; max_speed = 190)$$

$$sign(\hat{w}^T \tilde{q}) = sign(-0.5323) = -1$$
$$\implies class = low$$

Supervised Methods

Classification

Extension to Multiple Classes

Assume we have more than two (k > 2) classes. What to do?

Extension to Multiple Classes

Idea of Multiclass Linear Classifier

Take k linear functions of the form H_{wj,wj,0}(x) = w_j^Tx + w_{j,0}
 Decide for class y_i:

$$y_j = \operatorname*{argmax}_{j=1,...,k} H_{w_j,w_{j,0}}(x)$$

Advantage: No ambiguous regions except for points on decision hyperplanes
 The optimal parameter estimation is also extendable to k classes y₁,..., y_k

Advantages

Simple approach

- Closed form solution for parameters
- Easily extendable to non-linear spaces (later on)

Disadvantages

- Sensitive to outliers ~> not a stable classifier
 - How to define and efficiently determine the maximum stable hyperplane?
- Only good results for linearly separable data
- Expensive computation of selected hyperplanes

→ Approach to solve problems: Support Vector Machines (SVMs) [Vapnik 1979, 1995]

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods

4.1 Classification

- 4.1.1 Bayesian Classifiers
- 4.1.2 Linear Discriminant Functions

4.1.3 Support Vector Machines

- 4.1.4 Kernel Methods
- 4.1.5 Decision Tree Classifiers
- 4.1.6 Nearest Neighbor Classifiers
- 4.1.7 Ensemble Classification
- 4.2 Regression

5. Advanced Topics

Maximum Margin Hyperplane

Question

How to define the notion of the "best" hyperplane differently?

Criteria

- Stability at insertion
- Distance to the objects of both classes

Support Vector Machines: Principle

Basic Idea

Linear separation with the *Maximum Margin Hyperplane (MMH)*:

- Distance to points from any of the two sets is maximal, i.e., at least ξ
- Minimal probability that the separating hyperplane has to be moved due to an insertion ~> Best generalization behavior; MMH is "maximally stable"

Support Vector Machines: Principle

Support Vectors

MMH only depends on points p_i whose distance to the hyperplane is exactly ξ . These p_i are called *support vectors* (SV).

Formalisation

- Let $\mathbf{x}_i \in \mathbb{R}^d$ denote the data points, and $y_i = +1$, if first class, else $y_i = -1$.
- A hyperplane in Hesse normal form is represented by a normal vector w ∈ ℝ^d of unit length (i.e., ||w||₂ = 1), and a (signed) distance from the origin b ∈ ℝ.
- ▶ In the following slides, we will define the requirements which the MMH shall fulfil.

Requirements of the MMH

The parameters (\mathbf{w}, b) of the MMH shall fulfil the following two requirements:

No Error

The classification is accurate for all points, i.e.

$$y_i \cdot (\langle \mathbf{w}, \mathbf{x_i} \rangle + b) > 0 \iff \begin{cases} y_i = -1 & \langle \mathbf{w}, \mathbf{x_i} \rangle + b < 0 \\ y_i = +1 & \langle \mathbf{w}, \mathbf{x_i} \rangle + b > 0 \end{cases}$$

Requirement: Maximal Margin

Let $\xi = \min_{\mathbf{x}_i \in TR} |\langle \mathbf{w}, \mathbf{x}_i \rangle + b|$ denote the minimum distance of any training object \mathbf{x}_i to the hyperplane $H(\mathbf{w}, b)$. The margin ξ should be as large as possible.

Supervised Methods

Computation of the MMH

► Task: Maximise ξ subject to $y_i \cdot (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) > \xi$ for all $i \in \{1, ..., n\}$.

Scaling the constraints by ξ^{-1} yields $y_i \cdot (\langle \xi^{-1} \mathbf{w}, \mathbf{x}_i \rangle + \xi^{-1} b) > 1$ for all $i \in \{1, \ldots, n\}$.

• Define
$$\mathbf{w}' = \xi^{-1}\mathbf{w}$$
, and $b' = \xi^{-1}b$.

• Maximizing ξ corresponds to minimizing $\langle \mathbf{w}', \mathbf{w}' \rangle = \frac{\langle \mathbf{w}, \mathbf{w} \rangle}{\xi^2}$.

Primary Optimization Problem

$$\begin{array}{ll} \min & \|\mathbf{w}'\|_2^2 \\ s.t. & y_i \cdot (\langle \mathbf{w}', \mathbf{x_i} \rangle + b') > 1 \qquad i \in \{1, \ldots, n\} \end{array}$$

Computation of the MMH

Primary Optimization Problem

$$\begin{array}{ll} \min & \|\mathbf{w}'\|_2^2 \\ s.t. & y_i \cdot (\langle \mathbf{w}', \mathbf{x}_i \rangle + b') > 1 & i \in \{1, \dots, n\} \end{array}$$

- Convex optimization problem: Quadratic programming problem with linear constraints
 - \implies Solution can be obtained by Lagrangian Theory.

- Problem of MMH optimization: How to treat non-(linearly separable) data?
- Two typical problems:
 - data points not linearly separable

Trade-off between training error and size of margin

- Additionally regard the number of training errors when optimizing:
 - ξ_i is the distance from x_i to the margin (often called *slack variable*):
 - $\xi_i = 0 \implies \mathbf{x_i}$ on correct side
 - $\xi_i > 0 \implies \mathbf{x_i}$ on wrong side
- Introduce parameter C to weight the misclassification against the size of the margin.

Primary Optimization Problem With Soft Margin

$$\begin{array}{ll} \min & \frac{1}{2} \| \mathbf{w}' \|_2^2 + C \sum_{i=1}^n \xi_i \\ s.t. & y_i \cdot (\langle \mathbf{w}', \mathbf{x}_i \rangle + b') > 1 - \xi_i \\ & \xi_i \ge 0 \end{array} \qquad i \in \{1, \dots, n\} \\ i \in \{1, \dots, n\} \end{array}$$

Wolfe-Dual with Lagrange Multipliers

$$\max \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle$$

$$s.t. \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$0 \leq \alpha_{i} \leq C$$

$$i \in \{1, \dots, n\}$$

•
$$\alpha_i = 0$$
: **x**_i is not a support vector

•
$$\alpha_i = C$$
: **x**_i is support vector with $\xi_i > 0$

• $0 < \alpha_i < C$: **x**_i is support vector with $\xi_i = 0$

Supervised Methods

Soft Margin SVM

Decision Rule

$$\mathcal{H}(\mathbf{x}) = \textit{sign}\left(\sum_{\mathbf{x}_{\mathbf{i}} \in \mathcal{SV}} lpha_i y_i \left< \mathbf{x}_{\mathbf{i}}, \mathbf{x} \right> + b
ight)$$

where SV denotes the set of support vectors.

SVM: Discussion

Pro

- generate classifiers with a high classification accuracy
- relatively weak tendency to overfitting (generalization theory)
- efficient classification of new objects due to often small number of support vectors
- compact models

Contra

training times may be long (appropriate feature space may be very high-dimensional)

expensive implementation

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods

4.1 Classification

- 4.1.1 Bayesian Classifiers
- 4.1.2 Linear Discriminant Functions
- 4.1.3 Support Vector Machines

4.1.4 Kernel Methods

- 4.1.5 Decision Tree Classifiers
- 4.1.6 Nearest Neighbor Classifiers
- 4.1.7 Ensemble Classification
- 4.2 Regression

5. Advanced Topics

Non-Linearly Separable Data Sets

Problem

For real data sets, a linear separation with a high classification accuracy often is not possible.

Idea

Transform the data non-linearly into a new space, and try to separate the data in the new space linearly (extension of the hypotheses space)

Extension of the Hypotheses Space

Principle input space $\xrightarrow{\phi}$ extented feature space \rightsquigarrow Try to linearly separate in the extended feature space. Example $\phi(x, y) = (1, x, y, x^2, xy, y^2)$

Here: A hyperplane in the extended feature space is a polynomial of degree 2 in the input space

Extension of the Hypotheses Space: Example (1)

Input Space (2 attributes):

$$x = (x_1, x_2)$$

 $x_2 = x_1^2 + 0.5$

Extended Space (6 attributes):

$$\phi(x) = (1, x, y, x^2, xy, y^2)$$

$$x_2 = (x_1^2) + 0.5$$

Extension of the Hypotheses Space: Example (2)

Input Space (2 attributes): $x = (x_1, x_2)$

Extended Space (3 attributes): $\phi(x) = (x_1^2, x_2^2, x_1x_2)$

Extension of Linear Discriminant Function Classifier

- Linear classifier can be easily extended to non-linear spaces
- Recap: linear classifier $K_{H(w,w_0)}(x) = sign(w^T x + w_0)$
- Extend to non-linear case:
 - Transform all data points x to new feature space $\phi(x)$
 - Data Matrix X becomes a matrix Φ
 - The optimal hyperplane vector becomes ...

$$\tilde{w}_{opt,\phi} = (\Phi^T \Phi)^{-1} \Phi^T Y$$

...and that's all!

- ▶ New classification rule: $K_{H(w_{\phi},w_{0,\phi})}(x) = sign(w_{\phi}^{T}\phi(x) + w_{0,\phi})$
- SVM can be extended in a similar way

Non-linear Classification: Discussion

- Explicit mapping to other feature spaces can become problematic
- Meaningful transformation is usually not known a-priori
- Complex data distributions may require very high-dimensional features spaces ~--High memory consumption, High computational costs

Implicit Mappings: Kernel Methods

Explicit Mapping

Explicit mapping of the data into the new feature space:

- After transformation, any vector-based distance is applied
- Resulting feature space may be very high dimensional ~>> Potential problems: Inefficient calculation, storage overhead

Often, we do not need the transformed data points themselves, but just the distances between them!

Implicit Mappings: Kernel Methods

"Kernel Trick"

Just *implicitly* map the data to a feature space: Determine a function K_{ϕ} , which computes the distance in the kernel space without explicitly computing $\phi(\cdot)$

$${\it K}_{\phi}(x,y)=\langle \phi(x),\phi(y)
angle$$

Kernel: Example

- Assume the original domain is $\mathcal{X} = \mathbb{R}^2$
- We transform a point $x = (x_1, x_2)$ to $\phi(x) = (x_1^2, x_2^2, x_1x_2)$, i.e. the novel feature space is $\mathcal{H} = \mathbb{R}^3$, and $\kappa : \mathcal{X} \to \mathcal{H}$.

Input Space (2 attributes): $x = (x_1, x_2)$

Extended Space (3 attributes): $\phi(x) = (x_1^2, x_2^2, x_1x_2)$

Kernel: Example

• Original point $x = (x_1, x_2)$; transformed point $\phi(x) = (x_1^2, x_2^2, \sqrt{2} \cdot x_1 x_2)$

▶ We want to calculate the dot product in the novel feature space *H*:

$$\begin{aligned} \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle &= \left\langle \left(x_1^2, x_2^2, \sqrt{2} \cdot x_1 x_2 \right), \left(y_1^2, y_2^2, \sqrt{2} \cdot y_1 y_2 \right) \right\rangle \\ &= x_1^2 y_1^2 + x_2^2 y_2^2 + 2 x_1 x_2 y_1 y_2 \\ &= (x_1 y_1 + x_2 y_2)^2 \\ &= \langle x, y \rangle^2 \end{aligned}$$

We do not have to explicitly map the points to the feature space *H*!
Simply calculate squared dot product in the original domain *X*!
κ : *X* × *X* → ℝ, (*x*, *y*) ↦ ⟨*x*, *y*⟩² is called a (valid) kernel

Supervised Methods

Why is the dot product useful?

Kernels correspond to dot products in some feature space

- ▶ With the dot product we are able to compute:
 - The norm/length of a vector $||x|| = \sqrt{\langle x, x \rangle}$
 - The distance between two vectors:

$$\|x - y\|^2 = \langle x - y, x - y \rangle = \langle x, x \rangle + \langle y, y \rangle - 2 \langle x, y \rangle$$

The angle between two vectors:

$$\angle(x,y) = \arccos \frac{\langle x,y \rangle}{\|x\| \cdot \|y\|}$$

Formal Definitions

Definition: Kernel Function

A kernel function $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a symmetric function, i.e., $\kappa(x, y) = \kappa(y, x)$, mapping pairs of objects $x, y \in \mathcal{X}$ to real numbers.

Definition: Mercer Kernel

For all finite $\{x_1, \ldots, x_n\} = X \subseteq \mathcal{X}$, let $\kappa(X) := (\kappa(x_i, x_j))_{i,j} \in \mathbb{R}^{n \times n}$. A kernel function κ is called *Mercer kernel*, valid kernel, admissible kernel, or positive semi-definite, if for all such finite X, the matrix $\kappa(X)$ is positive semi-definite, i.e. for all $c \in \mathbb{R}^n$, it holds

 $c^{\mathsf{T}}\kappa(X)c\geq 0$

Formal Definitions (cont'd)

Definition: Dot Product

A dot product in a vector space \mathcal{H} is a function $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ satisfying:

•
$$\langle x, x \rangle = 0$$
 for $x = 0$

•
$$\langle x, x \rangle > 0$$
 for $x \neq 0$

•
$$\langle x, y \rangle = \langle y, x \rangle$$
 (Symmetry)

$$\blacktriangleright \langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$$
 (Bi-linearity)

Definition: Hilbert Space

A vector space \mathcal{H} endowed with a dot product $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ for which the induced norm gives a complete metric space, is termed *Hilbert Space*.

Supervised Methods

Interpretation of Kernel Functions

Theorem

Let $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a valid kernel on \mathcal{X} . There exists a possibly infinite-dimensional Hilbert space \mathcal{H} and a mapping $\phi : \mathcal{X} \to \mathcal{H}$ such that $\kappa(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$ for all $x, y \in \mathcal{X}$ where $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ denotes the dot product in a Hilbert space \mathcal{H} .

 \rightsquigarrow every kernel κ can be seen as a dot product in some feature space $\mathcal{H}.$

Advantages

- ► Feature space *H* can be infinite-dimensional
- ▶ Not really necessary to know which feature space \mathcal{H} we have
- \blacktriangleright Computation of kernel is done in original domain ${\mathcal X}$

Kernel SVM

Wolfe-Dual Optimization Problem with Lagrange Multipliers

$$\max \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \kappa(\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$s.t. \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$0 \le \alpha_{i} \le C$$

$$i \in \{1, \dots, n\}$$

Decision Rule

$$H(x) = sign\left(\sum_{x_i \in SV} \alpha_i y_i \kappa(x_i, x) + b\right)$$

Supervised Methods

Example for Mercer Kernels

Radial Basis Kernel $\kappa(x, y) = \exp(-\gamma ||x - y||^2)$

Polynomial Kernel (degree 2) $\kappa(x,y) = (\langle x,y \rangle + 1)^d$

Discussion

Pro

- Kernel methods provide a simple method for dealing with non-linearity
- Implicit mapping allows for mapping to arbitrary-dimensional spaces:c
 Computational effort depends on the number of training examples, but not on the feature space dimensionality

Contra

- Resulting models rarely provide an intuition
- Choice of kernel can be difficult

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods

4.1 Classification

- 4.1.1 Bayesian Classifiers
- 4.1.2 Linear Discriminant Functions
- 4.1.3 Support Vector Machines
- 4.1.4 Kernel Methods
- 4.1.5 Decision Tree Classifiers
- 4.1.6 Nearest Neighbor Classifiers
- 4.1.7 Ensemble Classification
- 4.2 Regression
- 5. Advanced Topics

Decision Tree Classifiers

- Approximating discrete-valued target function
- Learned function is represented as a tree:
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution

► Tree can be transformed into decision rules: if age > 60 then risk = low if age ≤ 60 and car type = truck then risk = low if age < 60 and car type ≠ truck then risk = high</p>

Advantages

- Decision trees represent explicit knowledge
- Decision trees are intuitive to most users

age	car_type	max_speed	risk
23	family	180	high
17	sportive	240	high
43	sportive	246	high
68	family	183	low
32	truck	110	low

Decision Tree Classifier: Splits

Goal

- Each tree node defines an axis-parallel (d 1)-dimensional hyperplane, that splits the data space.
- Find such splits which lead to as homogenous groups as possible.

Decision Tree Classifiers: Basics

Decision tree generation (training phase) consists of two phases

- 1. Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
- 2. Tree pruning
 - Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
 - Traverse the tree and test the attribute values of the sample against the decision tree
 - Assign the class label of the respective leaf to the query object

Algorithm for Decision Tree Construction

- Basic algorithm (a greedy algorithm)
 - Tree is created in a top-down recursive divide-and-conquer manner
 - Attributes may be categorical or continuous-valued
 - ► At the start, all the training examples are assigned to the root node
 - Recursively partition examples at each node and push them down to the new nodes
 - Select test attributes and determine split points or split sets for the respective values based on a heuristic or statistical measure (*split strategy*, e.g., information gain)

Conditions for stopping partitioning

- All samples for a given node belong to the same class
- There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
- There are no samples left

Algorithm for Decision Tree Construction

- Most algorithms are versions of this basic algorithm (greedy, top-down)
 - E.g.: ID3, or its successor C4.5

ID3 Algorithm

```
procedure ID3(Examples, TargetAttr, Attributes)
                                                                 ▷ specialized to learn boolean-valued functions
   Create Root node for the tree
   if all Examples are positive then return Root with label = +
   else if all Examples are negative then return Root with label = -
   else if Attributes = \emptyset then return Root with label = most common value of TargetAttr in Examples
   else
       A = "best" decision attribute for next node
                                                                       bow to determine the "best" attribute?
       Assign A as decision attribute for Root
       for each possible value v_i of A do
                                                                              ▷ how to split the possible values?
           Generate branch corresponding to test A = v_i
           E_{xamples_{v_i}} = e_{xamples} that have value v_i for A
           if E_{xamples_{y_i}} = \emptyset then
               Add leaf node with label = most common value of TargetAttr in Examples
           else
               Add subtree ID3(Examples<sub>vi</sub>, TargetAttr, Attributes \setminus {A})
```

Example: Decision for "playing_tennis"

Query: How about playing tennis today?

► Training data:

day	forecast	temperature	humidity	wind	tennis decision
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rainy	mild	high	weak	yes
5	rainy	cool	normal	weak	yes
6	rainy	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rainy	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rainy	mild	high	strong	no

Supervised Methods

Split Strategies: Quality of Splits

Given

- A set T of training objects
- A (disjoint, complete) partitioning $T_1, \ldots T_m$ of T
- The relative frequencies p_i of class c_i in T and in the partitions T_1, \ldots, T_m

Wanted

- A measure for the heterogeneity of a set S of training objects with respect to the class membership
- A split of T into partitions $\{T_1, \ldots, T_m\}$ such that the heterogeneity is minimized

 \rightsquigarrow Proposals: Information gain, Gini index, Misclassification error

Supervised Methods

Classification

Attribute Selection Measures: Information Gain

Used in ID3/C4.5

Entropy

- Minimum number of bits to encode a message that contains the class label of a random training object
- ▶ The entropy of a set *T* of training objects is defined as

$$entropy(T) = -\sum_{i=1}^{k} p_i \log_2 p_i$$

for k classes with frequencies p_i

- entropy(T) = 0 if $p_i = 1$ for any class c_i
- entropy (T) = 1 if $p_i = \frac{1}{k}$ for all classes c_i

Attribute Selection Measures: Information Gain

Information Gain

Let A be the attribute that induced the partitioning $\{T_1, \ldots, T_m\}$ of T. The information gain of attribute A w.r.t. T is defined as

information_gain(
$$T, A$$
) = entropy(T) - $\sum_{i=1}^{m} \frac{|T_i|}{|T|}$ entropy(T_i)

Attribute Selection: Example (Information Gain)

Example: Decision Tree for "playing_tennis"

day	forecast	temperature	humidity	wind	tennis decision
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rainy	mild	high	weak	yes
5	rainy	cool	normal	weak	yes
6	rainy	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rainy	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rainy	mild	high	strong	no

Final decision tree:

Attribute Selection Measures: Gini Index

Used in IBM's IntelligentMiner

Gini Index

The Gini index for a set T of training objects is defined as

$$\mathsf{gini}(\mathsf{T}) = 1 - \sum_{i=1}^k \mathsf{p}_i^2$$

Small value of Gini index \equiv low heterogeneity

• Large value of Gini index \equiv high heterogeneity

Gini Index (of an attribute A)

Let A be the attribute that induced the partitioning $\{T_1, \ldots, T_m\}$ of T. The Gini index of attribute A w.r.t. T is defined as

$$gini_A(T) = \sum_{i=1}^m rac{|\mathcal{T}_i|}{|\mathcal{T}|} gini(\mathcal{T}_i)$$

Supervised Methods

Classification

Attribute Selection Measures: Misclassification Error

Misclassification Error

The Misclassification Error for a set T of training objects is defined as

$$Error(T) = 1 - \max_{c_i} p_i$$

- Small value of Error \equiv low heterogeneity
- Large value of Error = high heterogeneity

Misclassification Error (of an attribute A)

Let A be the attribute that induced the partitioning $\{T_1, \ldots, T_m\}$ of T. The Misclassification Error of attribute A w.r.t. T is defined as

$$Error_{A}(T) = \sum_{i=1}^{m} \frac{|T_{i}|}{|T|} Error(T_{i})$$

Supervised Methods

Attribute Selection Measures: Comparison

For two-class problems:

Split Strategies: Types of Splits

- Categorical attributes
 - Split criteria based on equality " attribute = a"
 - ► Based on subset relationships "attribute ∈ set" → many possible choices (subsets)
 - Choose the best split according to, e.g., gini index
- Numerical attributes
 - Split criteria of the form "attribute < a" w many possible choices for the split point
 - One approach: Order test samples w.r.t. their attribute value; consider every mean value between two adjacent samples as possible split point; choose best one according to, e.g., gini index
 - Partition the attribute value into a discrete set of intervals (Binning)

Avoid Overfitting in Classification

- The generated tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Result has poor accuracy for unseen samples

Two approaches to avoid overfitting for decision trees:

- 1. Post-pruning = pruning of overspecialized branches
- 2. Pre-pruning = halt tree construction early

Avoid Overfitting in Classification

Post-pruning

Pruning of overspecialized branches:

- Remove branches from a "fully grown" tree and get a sequence of progressively pruned trees
- Use a set of data different from the training data to decide which is the "best pruned tree"

Avoid Overfitting in Classification

Pre-pruning

Halt tree construction early, do not split a node if this would result in the goodness measure falling below a threshold.

- Choice of an appropriate value for *minimum support*
 - Minimum support: minimum number of data objects a leaf node contains
 - In general, minimum support $\gg 1$
- Choice of an appropriate value for minimum confidence
 - Minimum confidence: minimum fraction of the majority class in a leaf node
 - ▶ Typically, *minimum confidence* ≪ 100%
 - Leaf nodes can absorb errors or noise in data records
- Discussion
 - With Pre-pruning it is difficult to choose appropriate thresholds
 - Pre-pruning has less information for the pruning decision than post-pruning ~> can be expected to produce decision trees with lower classification quality
 - Tradeoff: tree construction time vs. classification quality

Pruning of Decision Trees: Approach Post-pruning

Reduced-Error Pruning ¹

- Decompose classified data into training set and test set
- Create a decision tree E for the training set
- $\blacktriangleright \quad \mathsf{Prune} \ E \text{ using the test set } T$
 - Determine the interior node v of E whose pruning reduces the number of misclassified data points on T the most (i.e., replace the subtree S with root v by a leaf. Determine the value of the leaf by majority voting)
 - Prune
 - Finish if no such interior node exists
- Only applicable if a sufficient number of classified data is available

 1 J.R. Quinlan. Rule induction with statistical data – a comparison with multiple regression. In Journal of the Operational Research Society, 38, pages 347-352, 1987

Supervised Methods

Classification

Pruning of Decision Trees: Approach Post-pruning

Minimal Cost Complexity Pruning ¹

- Does not require a separate test set
 - Applicable to small training sets as well
- Pruning of the decision tree by using the training set
 - Classification error is no appropriate quality measure
- New quality measure for decision trees:
 - Trade-off of classification error and tree size
 - Weighted sum of classification error and tree size
- General observation
 - The smaller decision trees yield the better generalization

¹L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth International Group, 1984

Supervised Methods

Classification

Minimal Cost Complexity Pruning: Notions

- Size |E| of a decision tree E: number of leaf nodes
- Cost-complexity quality measure of *E* with respect to training set *T*, classification error F_T and complexity parameter $\alpha \ge 0$:

$$CC_T(E, \alpha) = F_T(E) + \alpha |E|$$

- For the smallest minimal subtree $E(\alpha)$ of E w.r.t. α , it is true that:
 - 1. There is no subtree of E with a smaller cost complexity
 - 2. If $E(\alpha)$ and B both fulfill (1), then is $E(\alpha)$ a subtree of B

$$\blacktriangleright \alpha = 0: E(\alpha) = E$$

Only error matters

•
$$\alpha \to \infty$$
: $E(\alpha) = \text{root node of } E$

Only tree size matters

- $0 < \alpha < \infty$: $E(\alpha)$ is a proper substructure of E
 - The root node or more than the root node

Extracting Classification Rules from Trees

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class prediction
- Rules are easier for humans to understand

Example

```
if forecast = "overcast" then playing_tennis = "yes"
if forecast = "sunny" and humidity = "high" then playing_tennis = "no"
if forecast = "sunny" and humidity = "normal" then playing_tennis = "yes"
if forecast = "rainy" and wind = "strong" then playing_tennis = "no"
if forecast = "rainy" and wind = "weak" then playing_tennis = "yes"
```

Enhancement: Handle Missing Attribute Values

► If node *n* tests attribute *A*:

- Assign most common value of A among other examples sorted to node n
- Assign the most common value of the attribute among other examples with the same target value sorted to node n
- Assign probability p_i to each of the possible values v_i of attribute A among other examples sorted to node n
 - Assign fraction p_i of example to each descendant in tree
 - Classify new examples in the same fashion: Classification decision is the one with the highest probability (sum over all instance fragments of each class decision)

Decision Tree Classifiers: Summary

Pro

- Relatively fast learning speed (in comparison to other classification methods)
- Fast classification speed
- Convertible to simple and easy to understand classification rules
- Often comparable classification accuracy with other classification methods

Contra

Not very stable, small changes of the data can lead to large changes of the tree

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods

4.1 Classification

- 4.1.1 Bayesian Classifiers
- 4.1.2 Linear Discriminant Functions
- 4.1.3 Support Vector Machines
- 4.1.4 Kernel Methods
- 4.1.5 Decision Tree Classifiers
- 4.1.6 Nearest Neighbor Classifiers
- 4.1.7 Ensemble Classification
- 4.2 Regression
- 5. Advanced Topics

Nearest Neighbor Classifiers

Motivation

Assume data in a non-vector representation: graphs, forms, XML-files, etc.

No simple way to use linear classifiers or decision trees

Solutions

- Use appropriate kernel function for kernel machines (e.g. kernel SVM) ~ Not always clear how to define a kernel
- Transformation of objects to some vector space (e.g. representation learning) ~> Difficult to determine appropriate transformation & vector space

Nearest Neighbor Classifiers

Procedure

Assign query object q to the class c_j of the closest training object $x \in D$:

class(q) = class(NN(q)) $NN(q) = \{x \in D \mid \forall x' \in D : d(q, x) \le d(q, x')\}$

 \rightsquigarrow Instance-Based Learning

Instance-Based Methods

Eager Evaluation

- Create models from data (training phase) and then use these models for classification (test phase)
- Examples: Decision tree, Bayes classifier

Instance-Based Learning

- Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- ▶ Typical Approaches: *k*-nearest neighbor approach:
 - Instances represented as points in a metric space (e.g. Euclidean)
 - ► Classification by label of NN ~→ requires fast NN queries
 - \blacktriangleright \rightsquigarrow Training phase = Index construction (e.g. R-tree)

Nearest Neighbor Classifiers: Notions

Notions

- Distance Function: Defines the (dis-)similarity for pairs of objects
- Decision Set: The set of k nearest neighboring objects to be used in the decision rule

Decision Rule

Given the class labels of the objects from the decision set, how to determine the class label to be assigned to the query object?

Decision Rules

Majority Vote (Default)

Choose majority class in the decision set, i.e. the class with the most representatives in the decision set

Weighted Decision Rules

Choose weighted majority of decision set class labels. Weight variants:

- Reciprocal squared distance: $d(q, x)^{-2}$
- ► Inverse A-Priori Probability: Use inverse frequency of classes in the training set

Example: k = 5 – Influence of Weighting

Majority Vote

Reciprocal Squared Distance

Example: Majority Vote – Influence of k

k = 1

NN Classifier: Parameter k

Choosing an appropriate k: Tradeoff between *overfitting* and *generalization*:

Influence of k

- k too small: High sensitivity against outliers
- k too large: Decision set contains many objects from other classes

Rules of Thumb

- ▶ Based on theoretical considerations: Choose k, such that it grows slowly with n, e.g. $k \approx \sqrt{n}$ or $k \approx \log n$
- Empirically, $1 \ll k < 10$ yields a high classification accuracy in many cases

- \blacktriangleright k-NN Classifier: Consider the k nearest neighbors for the class assignment decision
- ► Weighted k-NN Classifier: Use weights for the classes of the k nearest neighbors
- Mean-based NN Classifier: Determine mean vector m_i for each class c_j (in training phase); Assign query object to the class c_j of the nearest mean vector m_i
- Generalization: Representative-based NN Classifier; Use more than one representative per class

NN Classifier: Discussion

Pro

- Applicability: Training data and distance function required only
- High classification accuracy in many applications
- Easy *incremental* adaptation to new training objects useful also for prediction
- Robust to noisy data by averaging k-nearest neighbors

Contra

- Naïve implementation is inefficient: Requires k-nearest neighbor query processing → support by database techniques may help to reduce from O(n) to O(log n)
- Does not produce explicit knowledge about classes, but provides some explanation information
- Curse of dimensionality: Distance between neighbors could be dominated by irrelevant attributes ~> Apply dimensionality reduction first

Agenda

1. Introduction

2. Basics

3. Unsupervised Methods

4. Supervised Methods

4.1 Classification

- 4.1.1 Bayesian Classifiers
- 4.1.2 Linear Discriminant Functions
- 4.1.3 Support Vector Machines
- 4.1.4 Kernel Methods
- 4.1.5 Decision Tree Classifiers
- 4.1.6 Nearest Neighbor Classifiers
- 4.1.7 Ensemble Classification
- 4.2 Regression
- 5. Advanced Topics

Ensemble Classification

Problem

- No single classifier performs good on every problem
- For some techniques, small changes in the training set lead to very different classifiers

Idea

Improve performance by combining different classifiers \rightsquigarrow ensemble classification. Different possibilities exist. Discussed here:

- Bagging (Bootstrap aggregation)
- Boosting

How to obtain different classifiers?

Easiest way: Train the same classifier K on different datasets

Bagging (or Bootstrap Aggregation)

- Randomly select m different subsets from the training set
- ▶ On each subset, independently train a classifier K_i (i = 1, ..., m)
- Overall decision:

$$K(x) = sign\left(rac{1}{m}\sum_{i=1}^m K_i(x)
ight)$$

Boosting

Boosting

- Linear combination of several weak learners (different classifiers)
- Given *m* weak learners K_i and weights α_i for i = 1, ..., m
- Overall decision

$$\mathcal{K}(\mathbf{x}) = sign\left(\sum_{i=1}^{m} lpha_i \mathcal{K}_i(\mathbf{x})\right)$$

- Important difference: classifiers are trained in sequence!
- Repeatedly misclassified points are weighted stronger

AdaBoost

Widely used boosting method: AdaBoost ²¹: Meta-algorithm that iteratively generates a chain of weak learners

General Idea

- ► Assume (t 1) weak learners are already given. The tth learner should focus on instances that were previously misclassified.
- Assign a weight w_i to each instance x_i to represent its importance
- Start with equal weight for each instance, adapt weights according to the performance of previously trained classifiers

²¹Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1996.

AdaBoost – Algorithm

Given: *n* data points x_1, \ldots, x_n , labels y_1, \ldots, y_n Initialize $w_1 = \ldots = w_n = \frac{1}{n}$ for $i = 1, \ldots, m$ do

Fit a classifier $K_i(x)$ to the training data by minimizing weighted error function

$$J_i = \sum_{j=1}^n w_j \mathbb{I}(K_i(x_j) \neq y_j)$$

where ${\mathbb I}$ is the indicator function Compute weighting coefficient

$$\alpha_i = \ln\left(\frac{1-\epsilon_i}{\epsilon_i}\right)$$
 where $\epsilon_i = \frac{J_i}{\sum\limits_{j=1}^n w_j}$

Update all data weights:

$$w_j := w_j \exp \left(\alpha_i \mathbb{I}(K_i(x_j) \neq y_j) \right)$$

Final Model

$$\mathcal{K}(x) = sign\left(\sum_{i=1}^{m} \alpha_i \mathcal{K}_i(x)\right)$$

Supervised Methods

Classification

Classification: Summary

	Model	Compactness	Model Interpretability	Decision Interpretability
Linear Model	hyperplane	compact (# dims)	medium/low	low
SVM	hyperplane/non- linear(kernel)	compact (# SV)	medium/low	low
Decision Tree	set of (axis-parallel) hyperplanes	compact (pruned)	good	good (rules)
k NN	no model	no model	no model	medium/good (example)
Bayes	statistical density distribution	model dependent	model dependent	medium/good (probabili- ties)
	Data Types	Robustness	Training Time	Test Time
Linear Model	Data Types arbitrary (kernel)	Robustness low	Training Time high	Test Time
Linear Model SVM				
	arbitrary (kernel)	low	high	low/high (for high-dim)
SVM	arbitrary (kernel) arbitrary (kernel)	low high	high medium	low/high (for high-dim) low/medium
SVM Decision Tree	arbitrary (kernel) arbitrary (kernel) categorical & vector	low high low	high medium low/medium	low/high (for high-dim) low/medium low

Classification: Conclusion

- Classification is an extensively studied problem (mainly in statistics and machine learning)
- Classification is probably one of the most widely used data mining techniques with a lot of extensions
- Scalability is an important issue for database applications: thus combining classification with database techniques should be a promising topic
- Research directions: classification of complex data, e.g., text, spatial, multimedia, etc.;

Example: *k*NN-classifiers rely on distances but do not require vector representations of data

Results can be improved by ensemble classification