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Additional Literature for this Chapter

Christopher M. Bishop: Pattern Recognition and Machine Learning. Springer, Berlin 2006.
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Introduction: Example

I Training data

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low

I Simple classifier

if age > 50 then risk = low
if age ≤ 50 and car type = truck then risk = low
if age ≤ 50 and car type 6= truck then risk = high
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Classification: Training Phase (Model Construction)
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Classification: Prediction Phase (Application)
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Classification

The systematic assignment of new observations to known categories ac-
cording to criteria learned from a training set.

Formal Setup

I A classifier K for a model M(θ) is a function KM(θ) : D → Y , where
I D: data space

I Often d-dim. space with attributes a1, . . . , ad (not necessarily a vector space)
I Some other space, e.g. metric space

I Y = {y1, . . . , yk}: set of k distinct class labels
I O ⊆ D: set of training objects o with known class labels y ∈ Y

I Classification: Application of classifier K on objects from D \ O

I Model M(θ) is the ”type” of the classifier, and θ are the model parameters

I Supervised learning: find/learn optimal parameters θ for M(θ) given O
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Supervised vs. Unsupervised Learning

Unsupervised Learning (clustering)

I The class labels of training data are unknown
I Given a set of measurements, observations, etc. with the aim of establishing the

existence of classes or clusters in the data
I Classes (=clusters) are to be determined

Supervised Learning (classification)

I Supervision: The training data (observations, measurements, etc.) are
accompanied by labels indicating the class of the observations
I Classes are known in advance (a priori)

I New data is classified based on information extracted from the training set
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Numerical Prediction

I Related problem to classification: numerical prediction
I Determine the numerical value of an object
I Method: e.g., regression analysis
I Example: Prediction of flight delays

I Numerical prediction is different from classification
I Classification refers to predict categorical class label
I Numerical prediction models continuous-valued functions

I Numerical prediction is similar to classification
I First, construct a model
I Second, use model to predict unknown value
I Major method for numerical prediction is regression:

I Linear and multiple regression
I Non-linear regression
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Goals for this Section

1. Introduction of different classification models

2. Learning techniques for these models

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low
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Quality Measures for Classifiers

I Classification accuracy or classification error (complementary)
I Compactness of the model

I Decision tree size, number of decision rules, . . .

I Interpretability of the model
I Insights and understanding of the data provided by the model

I Efficiency
I Time to generate the model (training time)
I Time to apply the model (prediction time)

I Scalability for large databases
I Efficiency in disk-resident databases

I Robustness
I Robust against noise or missing values
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Evaluation of Classifiers: Notions

I Using training data to build a classifier and to estimate the model’s accuracy may
result in misleading and overoptimistic estimates
I  Overspecialization of the learning model to the training data

I Train-and-Test: Decomposition of labeled data set O into two partitions
I Training data is used to train the classifier

I Construction of the model by using information about the class labels

I Test data is used to evaluate the classifier
I Temporarily hide class labels, predict them anew and compare with original class labels

I Train-and-Test is not applicable if the set of objects for which the class label is
known is very small
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Evaluation of Classifiers: Cross Validation

m-fold Cross Validation

I Decompose data set evenly into m subsets of (nearly) equal size

I Iteratively use (m − 1) partitions for training data and the remaining single
partition as test data

I Combine the m classification accuracy values to an overall classification accuracy

Leave-one-out: Special case of cross validation (m = n)

I For each of the objects o in the data set O:
I Use set O \ {o} as training set
I Use the singleton set {o} as test set
I Compute classification accuracy by dividing the number of correct predictions

through the database size |O|
I Particularly well applicable to nearest-neighbor classifiers
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Quality Measures: Accuracy and Error

I Let K be a classifier

I Let C (o) denote the correct class label of an object o
I Measure the quality of K :

I Predict the class label for each object o from a data set T ⊆ O
I Determine the fraction of correctly predicted class labels

Classification Accuracy of K

GT (K ) =
|{o ∈ T | K (o) = C (o)}|

|T |

Classification Error of K

FT (K ) =
|{o ∈ T | K (o) 6= C (o)}|

|T |
= 1− GT (K )

Supervised Methods Classification January 25, 2019 355



Quality Measures: Accuracy and Error

I Let K be a classifier

I Let TR ⊆ O be the training set: Used to build the classifier

I Let TE ⊆ O be the test set: Used to test the classifier

Resubstitution Error of K

FTR(K ) =
|{o ∈ TR | K (o) 6= C (o)}|

|TR|

(True) Classification Error of K

FTE (K ) =
|{o ∈ TE | K (o) 6= C (o)}|

|TE |
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Quality Measures: Confusion Matrix

I Results on the test set: Confusion matrix
classified as . . .

class 1 class 2 class 3 class 4 class 5

co
rr

ec
t

la
b

el

class 1 35 1 1 1 4
class 2 0 31 1 1 5
class 3 3 1 50 1 2
class 4 1 0 1 10 2
class 5 3 1 9 16 13

(correctly classified in green)

I Based on the confusion matrix, we can compute several accuracy measures,
including:
I Classification Accuracy/Error
I Precision and Recall
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Quality Measures: Precision and Recall

Recall

Fraction of test objects of class i , which have been identified
correctly.

RecallTE (K , i) =
|{o ∈ Ci | K (o) = C (o)}|

|Ci |

Precision

Fraction of test objects assigned to class i , which have been
identified correctly.

PrecisionTE (K , i) =
|{o ∈ Ci | Ki (o) = C (o)}|

|Ki |
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Ci = {o ∈ TE | C (o) = i}
Ki = {o ∈ TE | K (o) = i}
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Overfitting

Characterization of Overfitting

The classifier adapts too closely to the training dataset and may therefore fail to
accurately predict class labels for test objects unseen during training.

Example: Decision Tree
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Overfitting

Overfitting

I Occurs when the classifier is too optimized to the (noisy) training data
I As a result, the classifier yields worse results on the test data set
I Potential reasons:

I Bad quality of training data (noise, missing values, wrong values)
I Different statistical characteristics of training data and test data

Overfitting Avoidance

I Removal of noisy/erroneous/contradicting training data
I Choice of an appropriate size of the training set

I Not too small, not too large

I Choice of appropriate sample
I Sample should describe all aspects of the domain and not only parts of it
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Underfitting

Underfitting

I Occurs when the classifiers model is too simple, e.g. trying to
separate classes linearly that can only be separated by a
quadratic surface

I Happens seldomly

 Trade-off: Usually one has to find a good balance between over- and underfitting.
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Bayes Classification

I Probability based classification
I Based on likelihood of observed data, estimate explicit probabilities for classes
I Classify objects depending on costs for possible decisions and the probabilities for the

classes

I Incremental
I Likelihood functions built up from classified data
I Each training example can incrementally increase/decrease the probability that a

hypothesis (class) is correct
I Prior knowledge can be combined with observed data.

I Good classification results in many applications
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Bayes’ Theorem

Probability Theory

I Conditional probability: P(A | B) = P(A∧B)
P(B) (”prob. of A given B”)

I Product Rule: P(A ∧ B) = P(A | B) · P(B)

Bayes’ Theorem

I P(A ∧ B) = P(A | B) · P(B)

I P(B ∧ A) = P(B | A) · P(A)

I Since P(A ∧ B) = P(B ∧ A), P(A | B) · P(B) = P(B | A) · P(A), and thus

P(A | B) =
P(B | A) · P(A)

P(B)

Supervised Methods Classification January 25, 2019 363



Bayes Classifier

I Bayes’ rule: P(cj | x) =
P(x |cj )·P(cj )

p(x) for object x and class cj ∈ C.

I We are interested in maximizing this, i.e.

argmax
cj∈C

(P(cj | x)) = argmax
cj∈C

(
P(x | cj ) · P(cj )

p(x)

)
(∗)
= argmax

cj∈C
(P(x | cj ) · P(cj ))

where (∗) assumes the value of p(x) is constant and hence does not change the
result.

I Final decision rule:

K (x) = cmax = argmax
cj∈C

(P(x | cj ) · P(cj ))

I But how to obtain P(cj ) and P(x | cj ).
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Bayes Classifier: Density Estimation

A-Priori Class Probabilities

Estimate the a-priori probabilities P(cj ) of classes cj ∈ C by using the observed relative
frequency of the individual class labels cj in the training set, i.e.,

P(cj ) =
Ncj

N

Conditional Probabilities

I Non-parametric methods: Kernel methods Parzen’s window, Gaussian kernels, etc.
I Parametric methods, e.g.

I Single Gaussian distribution: Computed by maximum likelihood estimators (MLE)
I Mixture models: e.g. Gaussian Mixture Model computed by EM algorithm
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Bayes Classifier: Density Estimation

Problem

Curse of dimensionality often lead to problems in high dimensional data  Density
functions become too uninformative

Solution

I Dimensionality reduction

I Usage of statistical independence of single attributes (extreme case: näive Bayes)
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Näive Bayes Classifier

Assumptions

I Objects are given as d-dimensional vectors, x = (x1, . . . , xd )

I For any given class cj the attribute values xi are conditionally independent, i.e.

P(x1, . . . , xd | cj ) =
d∏

i=1

P(xi | cj ) = P(x1 | cj ) · . . . · P(xd | cj )

Decision Rule

Knäive(x) = argmax
cj∈C

(
P(cj ) ·

d∏
i=1

P(xi | cj )

)
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Näive Bayes Classifier

Categorical Attribute xi

P(xi | cj ) can be estimated as the relative frequency of samples having value vi as the
ith attribute in class cj in the training set.

Continuous Attribute xi

P(xi | cj ) can, for example, be estimated through a Gaussian distribution determined
by µij , σij .

 Computationally easy in both cases.
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Näive Bayes Classifier: Example

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low

Model Setup

I Age ∼ N(µ, σ2) (normal distribution)

I car type ∼ relative frequencies

I max speed ∼ N(µ, σ2) (normal distribution)
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Näive Bayes Classifier: Example (cont’d)

Query

q = (age = 60; car type = family ; max speed = 190)

Example

We have:

I P(high) = 3
5

I µage,high = 83
3
, σ2

age,high = 1112
3

=⇒ P (age = 60 | high) ≈ 0.00506

I P(car type = family | high) = 1
3

I µmax speed,high = 222, σ2
max speed,high = 2664 =⇒ P (max speed = 190 | high) ≈ 0.00638

and hence

P(high)P(q | high) = P(high)P(age = 60 | high)P(car type = family | high)P(max speed = 190 | high)

≈ 6.45166 · 10−6

Analogously, we obtain P(low)P(q | low) = 15.72290 · 10−6 =⇒ Knäive(q) = low .
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Bayesian Classifier

I Assuming dimensions of x = (x1, . . . , xd ) are not independent

I Assume multivariate normal distribution (i.e. Gaussian)

P(x | Cj ) =
1√

(2π)d det(Σj )
exp

(
−1

2
(x − µj )Σ−1

j (x − µj )
T

)
with

I µj : mean vector of class Cj

I Σj is the d × d covariance matrix

I det(Σj ) is the determinant of Σj , and Σ−1
j its

inverse
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Example: Interpretation of Raster Images

I Scenario: Automated interpretation of raster images
I Take an image from a certain region (in d different frequency bands, e.g., infrared,

etc.)
I Represent each pixel by d values: (x1, . . . , xd )

I Basic assumption: different surface properties of the earth (”landuse”) follow a
characteristic reflection and emission pattern
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Example: Interpretation of Raster Images

Application of the Bayes classifier:

I Estimation of the P(x | c) without
assumption of conditional
independence

I Assumption of d-dimensional normal
(= Gaussian) distributions for the
value vectors of a class

Probability of class membership

Water

Farmland

Town
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Example: Interpretation of Raster Images

Method

Estimate the following measures from training data

I µj : d-dimensional mean vector of all feature vectors of class Cj

I Σj : d × d covariance matrix of class Cj

Problems

I if likelihood of respective class is very low

I if several classes share the same likelihood

 Mitigate e.g. by applying some minimum likelihood threshold; do not classify
regions below.
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Bayesian Classifiers: Discussion

Pro

I High classification accuracy for many applications if density function defined
properly

I Incremental computation: many models can be adopted to new training objects
by updating densities
I For Gaussian: store count, sum, squared sum to derive mean, variance
I For histogram: store count to derive relative frequencies

I Incorporation of expert knowledge about the application in the prior P(Ci )

Contra

I Limited applicability: often, required conditional probabilities are not available

I Lack of efficient computation: in case of a high number of attributes (particularly
for Bayesian belief networks)
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The Independence Hypothesis

The Independence Hypothesis . . .

I . . . makes efficient computation possible

I . . . yields optimal classifiers when satisfied

I . . . but is seldom satisfied in practice, as attributes (variables) are often correlated.

Attempts to overcome this limitation

I Bayesian networks, that combine Bayesian reasoning with causal relationships
between attributes

I Decision trees, that reason on one attribute at the time, considering most
important attributes first
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Linear Discriminant Function Classifier

Idea

Separate points of two classes by a hyperplane

I I.e., classification model is a hyperplane

I Points of one class in one half space, points of second
class in the other half space

Questions

I How to formalize the classifier?

I How to find optimal parameters of the model?

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low
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Basic Notions

Recall some general algebraic notions for a vector space V :
I 〈x , y〉denotes an inner product of two vectors x , y ∈ V

I E.g., the scalar product 〈x , y〉 = xT y =
∑d

i=1 xi yi

I H(w ,w0) denotes a hyperplane with normal vector w and constant term w0:

x ∈ H ⇔ 〈x ,w〉+ w0 = 0

I The normal vector w may be normalized to w ′:

w ′ =
1√
〈w ,w〉

w =⇒ 〈w ′,w ′〉 = 1

I Distance of a point x to the hyperplane H(w ′,w0):

dist(x ,H(w ′,w0)) = |〈w ′, x〉+ w0|
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Formalization

I Consider a two-class example (generalizations later on):
I D: d-dimensional vector space with attributes a1, . . . , ad

I Y = {−1, 1} set of 2 distinct class labels yj

I O ⊆ D: Set of objects o = (o1, . . . , od ) with known class labels y ∈ Y and
cardinality |O| = N

I A hyperplane H(w ,w0) with normal vector w and constant term w0

x ∈ H ⇔ w T x + w0 = 0

Classification Rule

KH(w ,w0)(x) = sign(w T x + w0)
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Optimal Parameter Estimation

How to estimate optimal parameters w ,w0?

1. Define an objective/loss function L(·) that assigns a value (e.g. the error on the
training set) to each parameter-configuration

2. Optimal parameters minimize/maximize the objective function

How does an objective function look like?

I Different choices possible

I Most intuitive: Each misclassified object contributes a constant (loss) value
 0-1 loss
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Optimal Parameter Estimation

0-1 Loss Objective for Linear Classifier

I L(w ,w0) =
∑N

i=1 I (yi 6= KH(w ,w0)(xi ))

I minw ,w0 L(w ,w0)

where I (condition) = 1 if condition holds, 0 otherwise

I Minimize the overall number of training errors, but . . .
I NP-hard to optimize in general (non-smooth, non-convex)
I Small changes of w ,w0 can lead to large changes of the loss
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Loss Functions

Alternative Convex Loss Functions

Sum-of-squares loss (w T xi + w0 − yi )
2

Hinge loss max
{

0, (1− yi (w T xi + w0)
}

(SVM)
Exponential loss exp(−yi (w T xi + w0)) (AdaBoost)
Cross-entropy error −yi log g(xi ) + (1− yi ) log(1− g(xi )) (Logistic Regression)

where g(xi ) = 1
1+exp(−(w T xi +w0))

... and many more

I Optimizing different loss function leads to
several classification algorithms

I Next, we derive the optimal parameters for the
sum-of-squares loss
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Optimal Parameters for SSE loss

Objective Function

SSE (w ,w0) =
1

2

N∑
i=1

(w T xi + w0 − yi )
2

I Minimize the error function for getting optimal parameters
I Use standard optimization technique:

1. Calculate first derivative
2. Set derivative to zero and compute the global minimum (SSE is a convex function)
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Optimal Parameters for SSE Loss

I Transform the problem for simpler computations:
I w T x + w0 =

∑d
i=1 wi xi + w0 =

∑d
i=0 wi xi with x0 = 1

I For w let w̃ = (w0, . . . ,wd )T

I Combine the values to matrices

X̃ =

1 x1,1 . . . x1,d
...

...
. . .

...
1 xN,1 . . . xN,d

 , Y =

y1
...

yN


I Then the sum-of-squares error is equal to

SSE (w̃) =
1

2
(X̃ w̃ − Y )T (X̃ w̃ − Y )
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Optimal Parameters for SSE Loss

I Take the derivative:
∂

∂w̃
SSW (w̃) = X̃ T (X̃ w̃ − Y )

I Solve ∂
∂w̃ SSE (w̃) = 0:

X̃ T (X̃ w̃ − Y ) = 0

⇔ X̃ T X̃ w̃ = X̃ T Y

⇔ w̃ = (X̃ T X̃ )−1X̃ T︸ ︷︷ ︸
Left-inverse of X̃

(”Moore-Penrose Inverse”)

Y

Supervised Methods Classification January 25, 2019 385



Optimal Parameters for SSE Loss

I Set ŵ = (X̃ T X̃ )−1X̃ T Y

I Classify new point x with x0 = 1 using

Classification Rule

KH(ŵ)(x) = sign(ŵx)
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Example SSE
I Data (consider only age and max. speed):

X̃ =


1 23 180
1 17 240
1 43 246
1 68 183
1 32 110

 , Y =


1
1
1
−1
−1


age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low

I Encode classes as {high = 1, low = –1}

(X̃ T X̃ )−1X̃ T =

 0.7491 −0.0836 −0.8603 −0.4736 1.6684
−0.0087 −0.0114 0.0049 0.0194 −0.0043
−0.0012 0.0036 0.0046 −0.0002 −0.0068


=⇒ ŵ = (X̃ T X̃ )−1X̃ T Y =

 w0

wage

wmaxspeed

 =

−1.3896
−0.0302
0.0141


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Example SSE

I Model parameters:

ŵ = (X̃ T X̃ )−1X̃ T Y =

 w0

wage

wmaxspeed

 =

−1.3896
−0.0302
0.0141


=⇒ KH(ŵ)(x) = sign

((
−0.0302
0.0141

)T

x − 1.3896

)
I Query: q = (age = 60; max speed = 190)

sign(ŵ T q̃) = sign(−0.5323) = −1

=⇒ class = low
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Extension to Multiple Classes
Assume we have more than two (k > 2) classes. What to do?
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Extension to Multiple Classes

Idea of Multiclass Linear Classifier

I Take k linear functions of the form Hwj ,wj,0(x) = w T
j x + wj ,0

I Decide for class yj :
yj = argmax

j=1,...,k
Hwj ,wj,0(x)

I Advantage: No ambiguous regions except for points on decision hyperplanes

I The optimal parameter estimation is also extendable to k classes y1, . . . , yk
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Discussion (SSE)

Advantages

I Simple approach
I Closed form solution for parameters
I Easily extendable to non-linear spaces (later on)

Disadvantages

I Sensitive to outliers  not a stable classifier
I How to define and efficiently determine the maximum stable hyperplane?

I Only good results for linearly separable data
I Expensive computation of selected hyperplanes

 Approach to solve problems: Support Vector Machines (SVMs) [Vapnik 1979, 1995]
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Maximum Margin Hyperplane

Question

How to define the notion of the ”best”
hyperplane differently?

Criteria

I Stability at insertion

I Distance to the objects of both classes

?

?
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Support Vector Machines: Principle

Basic Idea

Linear separation with the Maximum
Margin Hyperplane (MMH):

I Distance to points from any of the
two sets is maximal, i.e., at least ξ

I Minimal probability that the
separating hyperplane has to be
moved due to an insertion
 Best generalization behavior; MMH
is “maximally stable”

MMH

margin
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Support Vector Machines: Principle

Support Vectors

MMH only depends on points pi whose
distance to the hyperplane is exactly ξ.
These pi are called support vectors (SV). SV
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Formalisation

I Let xi ∈ Rd denote the data points, and yi = +1, if first class, else yi = −1.

I A hyperplane in Hesse normal form is represented by a normal vector w ∈ Rd of
unit length (i.e., ‖w‖2 = 1), and a (signed) distance from the origin b ∈ R.

I In the following slides, we will define the requirements which the MMH shall fulfil.
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Requirements of the MMH

The parameters (w, b) of the MMH shall fulfil the following two requirements:

No Error

The classification is accurate for all points, i.e.

yi · (〈w, xi〉+ b) > 0 ⇐⇒

{
yi = −1 〈w, xi〉+ b < 0

yi = +1 〈w, xi〉+ b > 0

Requirement: Maximal Margin

Let ξ = min
xi∈TR

|〈w, xi〉+ b| denote the minimum distance of any training object xi to

the hyperplane H(w, b). The margin ξ should be as large as possible.
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Computation of the MMH

I Task: Maximise ξ subject to yi · (〈w, xi〉+ b) > ξ for all i ∈ {1, . . . , n}.
I Scaling the constraints by ξ−1 yields yi · (

〈
ξ−1w, xi

〉
+ ξ−1b) > 1 for all

i ∈ {1, . . . , n}.
I Define w′ = ξ−1w, and b′ = ξ−1b.

I Maximizing ξ corresponds to minimizing 〈w′,w′〉 = 〈w,w〉
ξ2 .

Primary Optimization Problem

min ‖w′‖2
2

s.t. yi · (
〈
w′, xi

〉
+ b′) > 1 i ∈ {1, . . . , n}
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Computation of the MMH

Primary Optimization Problem

min ‖w′‖2
2

s.t. yi · (
〈
w′, xi

〉
+ b′) > 1 i ∈ {1, . . . , n}

I Convex optimization problem: Quadratic programming problem with linear
constraints
=⇒ Solution can be obtained by Lagrangian Theory.
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Soft Margin Optimization

I Problem of MMH optimization: How to treat non-(linearly separable) data?

I Two typical problems:

data points not linearly separable
complete separation not optimal

(overfitting)

I Trade-off between training error and size of margin
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Soft Margin Optimization

I Additionally regard the number of
training errors when optimizing:
I ξi is the distance from xi to the

margin (often called slack variable):
I ξi = 0 =⇒ xi on correct side
I ξi > 0 =⇒ xi on wrong side

I Introduce parameter C to weight the
misclassification against the size of the
margin.

ξi1

ξi2
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Soft Margin Optimization

Primary Optimization Problem With Soft Margin

min
1

2
‖w′‖2

2 + C
n∑

i=1

ξi

s.t. yi · (
〈
w′, xi

〉
+ b′) > 1− ξi i ∈ {1, . . . , n}

ξi ≥ 0 i ∈ {1, . . . , n}

Supervised Methods Classification January 25, 2019 401



Soft Margin Optimization

Wolfe-Dual with Lagrange Multipliers

max
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαj yi yj 〈xi, xj〉

s.t.
n∑

i=1

αi yi = 0

0 ≤ αi ≤ C i ∈ {1, . . . , n}

I αi = 0: xi is not a support vector

I αi = C : xi is support vector with ξi > 0

I 0 < αi < C : xi is support vector with ξi = 0
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Soft Margin SVM

Decision Rule

H(x) = sign

∑
xi∈SV

αi yi 〈xi, x〉+ b


where SV denotes the set of support vectors.
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SVM: Discussion

Pro

I generate classifiers with a high classification accuracy

I relatively weak tendency to overfitting (generalization theory)

I efficient classification of new objects due to often small number of support vectors

I compact models

Contra

I training times may be long (appropriate feature space may be very
high-dimensional)

I expensive implementation
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Non-Linearly Separable Data Sets

Problem

For real data sets, a linear separation with a high
classification accuracy often is not possible.

Idea

Transform the data non-linearly into a new space,
and try to separate the data in the new space
linearly (extension of the hypotheses space)

Example for quadratically
separable data set

1 0 1
x1

0.0

0.5

1.0

1.5

2.0

x
2

1 0 1
x1

0.0

0.5

1.0

1.5

2.0

x
2
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Extension of the Hypotheses Space

Principle

input space
φ→ extented feature space

 Try to linearly separate in the extended feature space.

Example

φ(x , y) =
(
1, x , y , x2, xy , y 2

)
Here: A hyperplane in the extended feature space is a polynomial of degree 2 in the
input space
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Extension of the Hypotheses Space: Example (1)

Input Space (2 attributes):
x = (x1, x2)

x2 = x2
1 + 0.5

1 0 1
x1

0.0

0.5

1.0

1.5

2.0

x
2

Extended Space (6 attributes):
φ(x) =

(
1, x , y , x2, xy , y 2

)
x2 = (x2

1 ) + 0.5

0 1

x21

0.0

0.5

1.0

1.5

2.0

x
2
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Extension of the Hypotheses Space: Example (2)

Input Space (2 attributes):
x = (x1, x2)

x2
1 + x2

2 = 0.25

1 0 1
x1

1.0

0.5

0.0

0.5

1.0

x
2

Extended Space (3 attributes):
φ(x) =

(
x2

1 , x
2
2 , x1x2

)
(x2

2 ) = −(x2
1 ) + 0.25

0.0 0.5 1.0

x21

0.00

0.25

0.50

0.75

1.00

x
2 2
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Extension of Linear Discriminant Function Classifier

I Linear classifier can be easily extended to non-linear spaces

I Recap: linear classifier KH(w ,w0)(x) = sign(w T x + w0)
I Extend to non-linear case:

I Transform all data points x to new feature space φ(x)
I Data Matrix X becomes a matrix Φ
I The optimal hyperplane vector becomes . . .

w̃opt,φ = (ΦT Φ)−1ΦT Y

I . . . and that’s all!

I New classification rule: KH(wφ,w0,φ)(x) = sign(w T
φ φ(x) + w0,φ)

I SVM can be extended in a similar way
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Non-linear Classification: Discussion

Pro

I By explicit feature transformation a much richer hypotheses space

I Simple extension of existing techniques

I Efficient evaluation, if transformed feature space not too high-dimensional

Contra

I Explicit mapping to other feature spaces can become problematic

I Meaningful transformation is usually not known a-priori

I Complex data distributions may require very high-dimensional features spaces  
High memory consumption, High computational costs

Supervised Methods Classification January 25, 2019 410



Implicit Mappings: Kernel Methods

Explicit Mapping

Explicit mapping of the data into the new feature space:

I After transformation, any vector-based distance is applied

I Resulting feature space may be very high dimensional  Potential problems:
Inefficient calculation, storage overhead

Often, we do not need the transformed data points themselves, but just the distances
between them!
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Implicit Mappings: Kernel Methods

”Kernel Trick”

Just implicitly map the data to a feature space: Determine a function Kφ, which
computes the distance in the kernel space without explicitly computing φ(·)

Kφ(x , y) = 〈φ(x), φ(y)〉

Original Domain

x

y φ

Novel Space

φ(x)

φ(y)
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Kernel: Example

I Assume the original domain is X = R2

I We transform a point x = (x1, x2) to φ(x) =
(
x2

1 , x
2
2 , x1x2

)
, i.e. the novel feature

space is H = R3, and κ : X → H.

Input Space (2 attributes):
x = (x1, x2)

x2
1 + x2

2 = 0.25

1 0 1
x1

1.0

0.5

0.0

0.5

1.0

x
2

Extended Space (3 attributes):
φ(x) =

(
x2

1 , x
2
2 , x1x2

)
(x2

2 ) = −(x2
1 ) + 0.25

0.0 0.5 1.0

x21

0.00

0.25

0.50

0.75

1.00

x
2 2
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Kernel: Example

I Original point x = (x1, x2); transformed point φ(x) =
(
x2

1 , x
2
2 ,
√

2 · x1x2

)
I We want to calculate the dot product in the novel feature space H:

〈φ(x), φ(y)〉 =
〈(

x2
1 , x

2
2 ,
√

2 · x1x2

)
,
(

y 2
1 , y

2
2 ,
√

2 · y1y2

)〉
= x2

1 y 2
1 + x2

2 y 2
2 + 2x1x2y1y2

= (x1y1 + x2y2)2

= 〈x , y〉2

I We do not have to explicitly map the points to the feature space H!

I Simply calculate squared dot product in the original domain X !

I κ : X × X → R, (x , y) 7→ 〈x , y〉2 is called a (valid) kernel
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Why is the dot product useful?

I Kernels correspond to dot products in some feature space
I With the dot product we are able to compute:

I The norm/length of a vector ‖x‖ =
√
〈x , x〉

I The distance between two vectors:

‖x − y‖2 = 〈x − y , x − y〉 = 〈x , x〉+ 〈y , y〉 − 2 〈x , y〉

I The angle between two vectors:

∠(x , y) = arccos
〈x , y〉
‖x‖ · ‖y‖
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Formal Definitions

Definition: Kernel Function

A kernel function κ : X × X → R is a symmetric function, i.e., κ(x , y) = κ(y , x),
mapping pairs of objects x , y ∈ X to real numbers.

Definition: Mercer Kernel

For all finite {x1, . . . , xn} = X ⊆ X , let κ(X ) := (κ(xi , xj ))i ,j ∈ Rn×n. A kernel
function κ is called Mercer kernel, valid kernel, admissible kernel, or positive
semi-definite, if for all such finite X , the matrix κ(X ) is positive semi-definite, i.e. for
all c ∈ Rn, it holds

cTκ(X )c ≥ 0
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Formal Definitions (cont’d)

Definition: Dot Product

A dot product in a vector space H is a function 〈·, ·〉 : H×H → R satisfying:

I 〈x , x〉 = 0 for x = 0

I 〈x , x〉 > 0 for x 6= 0

I 〈x , y〉 = 〈y , x〉 (Symmetry)

I 〈αx + βy , z〉 = α 〈x , z〉+ β 〈y , z〉 (Bi-linearity)

Definition: Hilbert Space

A vector space H endowed with a dot product 〈·, ·〉 : H×H → R for which the
induced norm gives a complete metric space, is termed Hilbert Space.

Supervised Methods Classification January 25, 2019 417



Interpretation of Kernel Functions

Theorem

Let κ : X ×X → R be a valid kernel on X . There exists a possibly infinite-dimensional
Hilbert space H and a mapping φ : X → H such that κ(x , y) = 〈φ(x), φ(y)〉H for all
x , y ∈ X where 〈·, ·〉H denotes the dot product in a Hilbert space H.

 every kernel κ can be seen as a dot product in some feature space H.

Advantages

I Feature space H can be infinite-dimensional

I Not really necessary to know which feature space H we have

I Computation of kernel is done in original domain X
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Kernel SVM

Wolfe-Dual Optimization Problem with Lagrange Multipliers

max
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαj yi yjκ(xi , xj )

s.t.
n∑

i=1

αi yi = 0

0 ≤ αi ≤ C i ∈ {1, . . . , n}

Decision Rule

H(x) = sign

 ∑
xi∈SV

αi yiκ(xi , x) + b


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Example for Mercer Kernels

Radial Basis Kernel Polynomial Kernel (degree 2)

κ(x , y) = exp
(
−γ‖x − y‖2

)
κ(x , y) = (〈x , y〉+ 1)d
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Discussion

Pro

I Kernel methods provide a simple method for dealing with non-linearity

I Implicit mapping allows for mapping to arbitrary-dimensional spaces:c
Computational effort depends on the number of training examples, but not on the
feature space dimensionality

Contra

I Resulting models rarely provide an intuition

I Choice of kernel can be difficult
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Decision Tree Classifiers

I Approximating discrete-valued target function
I Learned function is represented as a tree:

I A flow-chart-like tree structure
I Internal node denotes a test on an attribute
I Branch represents an outcome of the test
I Leaf nodes represent class labels or class

distribution

I Tree can be transformed into decision rules:
if age > 60 then risk = low
if age ≤ 60 and car type = truck then risk = low
if age ≤ 60 and car type 6= truck then risk = high

Advantages

I Decision trees represent explicit knowledge
I Decision trees are intuitive to most users

age car type max speed risk

23 family 180 high
17 sportive 240 high
43 sportive 246 high
68 family 183 low
32 truck 110 low
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Decision Tree Classifier: Splits

Goal

I Each tree node defines an axis-parallel (d − 1)-dimensional hyperplane, that splits
the data space.

I Find such splits which lead to as homogenous groups as possible.
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Decision Tree Classifiers: Basics

I Decision tree generation (training phase) consists of two phases
1. Tree construction

I At start, all the training examples are at the root
I Partition examples recursively based on selected attributes

2. Tree pruning
I Identify and remove branches that reflect noise or outliers

I Use of decision tree: Classifying an unknown sample
I Traverse the tree and test the attribute values of the sample against the decision tree
I Assign the class label of the respective leaf to the query object
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Algorithm for Decision Tree Construction

I Basic algorithm (a greedy algorithm)
I Tree is created in a top-down recursive divide-and-conquer manner
I Attributes may be categorical or continuous-valued
I At the start, all the training examples are assigned to the root node
I Recursively partition examples at each node and push them down to the new nodes
I Select test attributes and determine split points or split sets for the respective values

based on a heuristic or statistical measure (split strategy, e.g., information gain)

I Conditions for stopping partitioning
I All samples for a given node belong to the same class
I There are no remaining attributes for further partitioning – majority voting is

employed for classifying the leaf
I There are no samples left
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Algorithm for Decision Tree Construction

I Most algorithms are versions of this basic algorithm (greedy, top-down)
I E.g.: ID3, or its successor C4.5

ID3 Algorithm

procedure ID3(Examples, TargetAttr , Attributes) . specialized to learn boolean-valued functions
Create Root node for the tree
if all Examples are positive then return Root with label = +
else if all Examples are negative then return Root with label = −
else if Attributes = ∅ then return Root with label = most common value of TargetAttr in Examples
else

A = ”best” decision attribute for next node . how to determine the ”best” attribute?
Assign A as decision attribute for Root
for each possible value vi of A do . how to split the possible values?

Generate branch corresponding to test A = vi

Examplesvi = examples that have value vi for A
if Examplesvi = ∅ then

Add leaf node with label = most common value of TargetAttr in Examples
else

Add subtree ID3(Examplesvi , TargetAttr , Attributes \ {A})
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Example: Decision for ”playing tennis”

I Query: How about playing tennis today?

I Training data:

I Build decision tree . . .
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Split Strategies: Quality of Splits

Given

I A set T of training objects
I A (disjoint, complete) partitioning T1, . . .Tm of T
I The relative frequencies pi of class ci in T and in the partitions T1, . . .Tm

Wanted

I A measure for the heterogeneity of a set S of training objects with respect to the class membership
I A split of T into partitions {T1, . . . ,Tm} such that the heterogeneity is minimized

 Proposals: Information gain, Gini index, Misclassification error
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Attribute Selection Measures: Information Gain

I Used in ID3/C4.5

Entropy

I Minimum number of bits to encode a message that
contains the class label of a random training object

I The entropy of a set T of training objects is defined as

entropy(T ) = −
k∑

i=1

pi log2 pi

for k classes with frequencies pi

I entropy(T ) = 0 if pi = 1 for any class ci

I entropy(T ) = 1 if pi = 1
k for all classes ci

k = 2
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Attribute Selection Measures: Information Gain

Information Gain

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The
information gain of attribute A w.r.t. T is defined as

information gain(T ,A) = entropy(T )−
m∑

i=1

|Ti |
|T |

entropy(Ti )
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Attribute Selection: Example (Information Gain)

information gain(T , forecast) = 0.94−
5

14
0.971−

4

14
0−

5

14
0.971 = 0.246

information gain(T , temperature) = 0.94−
4

14
0.811−

6

14
0.981−

4

14
1 = 0.029

information gain(T , humidity) = 0.94−
7

14
0.985−

7

14
0.592 = 0.151

information gain(T ,wind) = 0.94−
8

14
0.811−

6

14
1 = 0.048

Result: ”forecast” yields the highest information gain
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Example: Decision Tree for ”playing tennis”

Final decision tree:
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Attribute Selection Measures: Gini Index
I Used in IBM’s IntelligentMiner

Gini Index

The Gini index for a set T of training objects is defined as

gini(T ) = 1−
k∑

i=1

p2
i

I Small value of Gini index ≡ low heterogeneity

I Large value of Gini index ≡ high heterogeneity

Gini Index (of an attribute A)

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The Gini index of
attribute A w.r.t. T is defined as

giniA(T ) =
m∑

i=1

|Ti |
|T |

gini(Ti )
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Attribute Selection Measures: Misclassification Error

Misclassification Error

The Misclassification Error for a set T of training objects is defined as

Error(T ) = 1−max
ci

pi

I Small value of Error ≡ low heterogeneity

I Large value of Error ≡ high heterogeneity

Misclassification Error (of an attribute A)

Let A be the attribute that induced the partitioning {T1, . . . ,Tm} of T . The
Misclassification Error of attribute A w.r.t. T is defined as

ErrorA(T ) =
m∑

i=1

|Ti |
|T |

Error(Ti )
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Attribute Selection Measures: Comparison
For two-class problems:
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Split Strategies: Types of Splits

I Categorical attributes
I Split criteria based on equality ”attribute = a”
I Based on subset relationships ”attribute ∈ set”
 many possible choices (subsets)
I Choose the best split according to, e.g., gini index

I Numerical attributes
I Split criteria of the form ”attribute < a”
 many possible choices for the split point
I One approach: Order test samples w.r.t. their

attribute value; consider every mean value between
two adjacent samples as possible split point; choose
best one according to, e.g., gini index

I Partition the attribute value into a discrete set of
intervals (Binning)
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Avoid Overfitting in Classification

I The generated tree may overfit the
training data
I Too many branches, some may

reflect anomalies due to noise or
outliers

I Result has poor accuracy for unseen
samples

I Two approaches to avoid overfitting for decision trees:

1. Post-pruning = pruning of overspecialized branches
2. Pre-pruning = halt tree construction early

Supervised Methods Classification January 25, 2019 437



Avoid Overfitting in Classification

Post-pruning

Pruning of overspecialized branches:

I Remove branches from a ”fully grown” tree and get a sequence of progressively
pruned trees

I Use a set of data different from the training data to decide which is the “best
pruned tree”
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Avoid Overfitting in Classification

Pre-pruning

Halt tree construction early, do not split a node if this would result in the goodness
measure falling below a threshold.
I Choice of an appropriate value for minimum support

I Minimum support: minimum number of data objects a leaf node contains
I In general, minimum support � 1

I Choice of an appropriate value for minimum confidence
I Minimum confidence: minimum fraction of the majority class in a leaf node
I Typically, minimum confidence � 100%
I Leaf nodes can absorb errors or noise in data records

I Discussion
I With Pre-pruning it is difficult to choose appropriate thresholds
I Pre-pruning has less information for the pruning decision than post-pruning  can

be expected to produce decision trees with lower classification quality
I Tradeoff: tree construction time vs. classification quality
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Pruning of Decision Trees: Approach Post-pruning

Reduced-Error Pruning 1

I Decompose classified data into training set and test set

I Create a decision tree E for the training set
I Prune E using the test set T

I Determine the interior node v of E whose pruning reduces the number of
misclassified data points on T the most (i.e., replace the subtree S with root v by a
leaf. Determine the value of the leaf by majority voting)

I Prune
I Finish if no such interior node exists

I Only applicable if a sufficient number of classified data is available

1J.R. Quinlan. Rule induction with statistical data – a comparison with multiple regression. In
Journal of the Operational Research Society, 38, pages 347-352, 1987
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Pruning of Decision Trees: Approach Post-pruning

Minimal Cost Complexity Pruning 1

I Does not require a separate test set
I Applicable to small training sets as well

I Pruning of the decision tree by using the training set
I Classification error is no appropriate quality measure

I New quality measure for decision trees:
I Trade-off of classification error and tree size
I Weighted sum of classification error and tree size

I General observation
I The smaller decision trees yield the better generalization

1L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth International Group, 1984
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Minimal Cost Complexity Pruning: Notions

I Size |E | of a decision tree E : number of leaf nodes

I Cost-complexity quality measure of E with respect to training set T , classification
error FT and complexity parameter α ≥ 0:

CCT (E , α) = FT (E ) + α|E |

I For the smallest minimal subtree E (α) of E w.r.t. α, it is true that:

1. There is no subtree of E with a smaller cost complexity
2. If E (α) and B both fulfill (1), then is E (α) a subtree of B

I α = 0: E (α) = E
I Only error matters

I α→∞: E (α) = root node of E
I Only tree size matters

I 0 < α <∞: E (α) is a proper substructure of E
I The root node or more than the root node
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Extracting Classification Rules from Trees

I Represent the knowledge in the form of IF-THEN rules

I One rule is created for each path from the root to a leaf

I Each attribute-value pair along a path forms a conjunction

I The leaf node holds the class prediction

I Rules are easier for humans to understand

Example

if forecast = ”overcast” then playing tennis = ”yes”
if forecast = ”sunny” and humidity = ”high” then playing tennis = ”no”
if forecast = ”sunny” and humidity = ”normal” then playing tennis = ”yes”
if forecast = ”rainy” and wind = ”strong” then playing tennis = ”no”
if forecast = ”rainy” and wind = ”weak” then playing tennis = ”yes”
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Enhancement: Handle Missing Attribute Values

I If node n tests attribute A:
I Assign most common value of A among other examples sorted to node n
I Assign the most common value of the attribute among other examples with the

same target value sorted to node n
I Assign probability pi to each of the possible values vi of attribute A among other

examples sorted to node n
I Assign fraction pi of example to each descendant in tree
I Classify new examples in the same fashion: Classification decision is the one with the

highest probability (sum over all instance fragments of each class decision)
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Decision Tree Classifiers: Summary

Pro

I Relatively fast learning speed (in comparison to other classification methods)

I Fast classification speed

I Convertible to simple and easy to understand classification rules

I Often comparable classification accuracy with other classification methods

Contra

I Not very stable, small changes of the data can lead to large changes of the tree
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Nearest Neighbor Classifiers

Motivation

I Assume data in a non-vector representation: graphs, forms, XML-files, etc.

I No simple way to use linear classifiers or decision trees

Solutions

I Use appropriate kernel function for kernel machines (e.g. kernel SVM)
 Not always clear how to define a kernel

I Transformation of objects to some vector space (e.g. representation learning)
 Difficult to determine appropriate transformation & vector space

I Here: Nearest neighbor classifier
 Direct usage of the similarity of objects for classification
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Nearest Neighbor Classifiers

Procedure

Assign query object q to the class cj of the closest training object x ∈ D:

class(q) = class(NN(q)) NN(q) = {x ∈ D | ∀x ′ ∈ D : d(q, x) ≤ d(q, x ′)}

 Instance-Based Learning

Example

q
dog

dog

dog wolf

wolfcat

cat

cat

cat

Classifier decides that query object q is a dog.
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Instance-Based Methods

Eager Evaluation

I Create models from data (training phase) and then use these models for
classification (test phase)

I Examples: Decision tree, Bayes classifier

Instance-Based Learning

I Store training examples and delay the processing (“lazy evaluation”) until a new
instance must be classified

I Typical Approaches: k-nearest neighbor approach:
I Instances represented as points in a metric space (e.g. Euclidean)
I Classification by label of NN  requires fast NN queries
I  Training phase = Index construction (e.g. R-tree)
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Nearest Neighbor Classifiers: Notions

Notions

I Distance Function: Defines the (dis-)similarity for pairs of objects

I Decision Set: The set of k nearest neighboring objects to be used in the decision
rule

Decision Rule

Given the class labels of the objects from the decision set, how to determine the class
label to be assigned to the query object?
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Decision Rules

Majority Vote (Default)

Choose majority class in the decision set, i.e. the class with the most representatives in
the decision set

Weighted Decision Rules

Choose weighted majority of decision set class labels. Weight variants:

I Reciprocal squared distance: d(q, x)−2

I Inverse A-Priori Probability: Use inverse frequency of classes in the training set
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Example: k = 5 – Influence of Weighting

Majority Vote
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Example: Majority Vote – Influence of k

k = 1
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k = 5
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NN Classifier: Parameter k

Choosing an appropriate k : Tradeoff between overfitting and generalization:

Influence of k

I k too small: High sensitivity against outliers

I k too large: Decision set contains many objects from other classes

Rules of Thumb

I Based on theoretical considerations: Choose k , such that it grows slowly with n,
e.g. k ≈

√
n or k ≈ log n

I Empirically, 1� k < 10 yields a high classification accuracy in many cases
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NN Classifier: Variants

I k-NN Classifier: Consider the k nearest neighbors for the class assignment decision

I Weighted k-NN Classifier: Use weights for the classes of the k nearest neighbors

I Mean-based NN Classifier: Determine mean vector mi for each class cj (in
training phase); Assign query object to the class cj of the nearest mean vector mi

I Generalization: Representative-based NN Classifier; Use more than one
representative per class
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NN Classifier: Discussion

Pro
I Applicability: Training data and distance function required only

I High classification accuracy in many applications

I Easy incremental adaptation to new training objects useful also for prediction

I Robust to noisy data by averaging k-nearest neighbors

Contra
I Näive implementation is inefficient: Requires k-nearest neighbor query processing  

support by database techniques may help to reduce from O(n) to O(log n)

I Does not produce explicit knowledge about classes, but provides some explanation
information

I Curse of dimensionality: Distance between neighbors could be dominated by irrelevant
attributes  Apply dimensionality reduction first
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Ensemble Classification

Problem

I No single classifier performs good on every problem

I For some techniques, small changes in the training set lead to very different
classifiers

Idea

Improve performance by combining different classifiers  ensemble classification.
Different possibilities exist. Discussed here:

I Bagging (Bootstrap aggregation)

I Boosting
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Bagging

How to obtain different classifiers?

Easiest way: Train the same classifier K on different datasets

Bagging (or Bootstrap Aggregation)

I Randomly select m different subsets from the training set

I On each subset, independently train a classifier Ki (i = 1, . . . ,m)

I Overall decision:

K (x) = sign

(
1

m

m∑
i=1

Ki (x)

)
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Boosting

Boosting

I Linear combination of several weak learners (different classifiers)

I Given m weak learners Ki and weights αi for i = 1, . . . ,m

I Overall decision

K (x) = sign

(
m∑

i=1

αi Ki (x)

)
I Important difference: classifiers are trained in sequence!

I Repeatedly misclassified points are weighted stronger
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AdaBoost

Widely used boosting method: AdaBoost 21: Meta-algorithm that iteratively generates
a chain of weak learners

General Idea

I Assume (t − 1) weak learners are already given. The tth learner should focus on
instances that were previously misclassified.

I Assign a weight wi to each instance xi to represent its importance

I Start with equal weight for each instance, adapt weights according to the
performance of previously trained classifiers

21
Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of

Computer and System Sciences, 55(1):119–139, 1996.
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AdaBoost – Algorithm
Given: n data points x1, . . . , xn, labels y1, . . . , yn

Initialize w1 = . . . = wn = 1
n

for i = 1, . . . ,m do
Fit a classifier Ki (x) to the training data by minimizing weighted error function

Ji =
n∑

j=1

wj I(Ki (xj ) 6= yj )

where I is the indicator function
Compute weighting coefficient

αi = ln

(
1− εi

εi

)
where εi =

Ji
n∑

j=1
wj

Update all data weights:
wj := wj exp

(
αi I(Ki (xj ) 6= yj )

)
Final Model

K(x) = sign

(
m∑

i=1

αi Ki (x)

)
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Classification: Summary
Model Compactness Model Interpretability Decision Interpretability

Linear Model hyperplane compact (# dims) medium/low
low

SVM hyperplane/non-
linear(kernel)

compact (# SV) medium/low
low

Decision Tree set of (axis-parallel)
hyperplanes

compact (pruned) good
good (rules)

kNN no model no model no model
medium/good (example)

Bayes statistical density
distribution

model dependent model dependent
medium/good (probabili-
ties)

Data Types Robustness Training Time Test Time

Linear Model arbitrary (kernel) low high
low/high (for high-dim)

SVM arbitrary (kernel) high medium
low/medium

Decision Tree categorical & vector low low/medium
low

kNN arbitrary (distance) high no training
low (index)/ very high

Bayes arbitrary (probabil-
ity distribution)

high model-dependent model-dependent; often low

Supervised Methods Classification January 25, 2019 461



Classification: Conclusion

I Classification is an extensively studied problem (mainly in statistics and machine
learning)

I Classification is probably one of the most widely used data mining techniques with
a lot of extensions

I Scalability is an important issue for database applications: thus combining
classification with database techniques should be a promising topic

I Research directions: classification of complex data, e.g., text, spatial, multimedia,
etc.;
Example: kNN-classifiers rely on distances but do not require vector
representations of data

I Results can be improved by ensemble classification
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