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What is Clustering?

Clustering

Grouping a set of data objects into clusters (=collections of data
objects).

I Similar to one another within the same cluster

I Dissimilar to the objects in other clusters

Typical Usage

I As a stand-alone tool to get insight into data distribution

I As a preprocessing step for other algorithms
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General Applications of Clustering

I Preprocessing – as a data reduction (instead of sampling)
I Image data bases (color histograms for filter distances)
I Stream clustering (handle endless data sets for offline clustering)

I Pattern Recognition and Image Processing
I Spatial Data Analysis:

I create thematic maps in Geographic Information Systems by clustering feature spaces
I detect spatial clusters and explain them in spatial data mining

I Business Intelligence (especially market research)
I WWW

I Documents (Web Content Mining)
I Web-logs (Web Usage Mining)

I Biology, e.g. Clustering of gene expression data
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Application Example: Downsampling Images
I Reassign color values to k distinct colors

I Cluster pixels using color difference, not spatial data

65536 256 16

8 4 2
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Major Clustering Approaches

I Partitioning algorithms: Find k partitions, minimizing some
objective function

I Probabilistic Model-Based Clustering (EM)

I Density-based: Find clusters based on connectivity and density
functions

I Hierarchical algorithms: Create a hierarchical decomposition of
the set of objects

I Other methods:
I Grid-based
I Neural networks (SOMs)
I Graph-theoretical methods
I Subspace Clustering
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Partitioning Algorithms: Basic Concept

Partition

Given a set D, a partitioning C = {C1, . . . ,Ck} of D fulfils:

I Ci ⊆ D for all 1 ≤ i ≤ k

I Ci ∩ Cj = ∅ ⇐⇒ i 6= j

I
⋃

Ci = D

(i.e. each element of D is in exactly one set Ci )

Goal

Construct a partitioning of a database D of n objects into a set of k (k ≤ n) clusters
minimizing an objective function.

Exhaustively enumerating all possible partitionings into k sets in order to find the
global minimum is too expensive.
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Partitioning Algorithms: Basic Concept

Popular Heuristic Methods

I Choose k representatives for clusters, e.g., randomly
I Improve these initial representatives iteratively:

I Assign each object to the cluster it “fits best” in the current clustering
I Compute new cluster representatives based on these assignments
I Repeat until the change in the objective function from one iteration to the next

drops below a threshold

Example

I k-means: Each cluster is represented by the center of the cluster

I k-medoid: Each cluster is represented by one of its objects
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k-Means Clustering: Basic Idea

Idea1

Find a clustering such that the
within-cluster variation of each cluster is
small and use the centroid of a cluster as
representative.

Objective

For a given k , form k groups so that the
sum of the (squared) distances between the
mean of the groups and their elements is
minimal

Poor clustering

μ

μ

μ

clustermean
distance

μ Centroids

Good clustering

μ

μ

μ

μ Centroids

1
S.P. Lloyd: Least squares quantization in PCM. In IEEE Information Theory, 1982 (original version: technical report, Bell Labs, 1957)
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k-Means Clustering: Basic Notions

I Objects p = (p1, . . . , pd ) are points in a d-dimensional vector space (the mean µS

of a set of points S must be defined: µS = 1
|S|
∑

p∈S

p)

I Measure for the compactness of a cluster Cj (sum of squared distances):
SSE (Cj ) =

∑
p∈Cj

||p − µCj
||22

I Measure for the compactness of a clustering C:
SSE (C) =

∑
Cj∈C

SSE (Cj ) =
∑

p∈D

||p − µC(p)||22

I Optimal Partitioning: argmin
C

SSE (C)

I Optimizing the within-cluster variation is computationally challenging (NP-hard)
 use efficient heuristic algorithms

Unsupervised Methods Clustering January 25, 2019 196



k-Means Clustering: Algorithm

k-Means Algorithm: Lloyd’s algorithm

1: Given: k
2: Initialization: Choose k arbitrary representatives
3: repeat
4: Assign each object to the cluster with the nearest representative.
5: Compute the centroids of the clusters of the current partitioning.
6: until representatives do not change

Example

Start Update Reassign Update Reassign
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k-Means: Voronoi Model for Convex Cluster Regions

Voronoi Diagram

I For a given set of points P = {p1, . . . , pk} (here: cluster representatives), a
Voronoi diagram partitions the data space into Voronoi cells, one cell per point

I The cell of a point p ∈ P covers all points in the data space for which p is the
nearest neighbors among the points from P

Observations

I The Voronoi cells of two neighboring points
pi , pj ∈ P are separated by the perpendicular
hyperplane (”Mittelsenkrechte”) between pi and pj .

I Voronoi cells are intersections of half spaces and thus
convex regions
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k-Means: Discussion

Strength

I Relatively efficient: O(tkn) (n: #obj., k: #clus., t: #it.; typically: k, t � n)

I Easy implementation

Weaknesses

I Applicable only when mean is defined

I Need to specify k , the number of clusters, in advance

I Sensitive to noisy data and outliers

I Clusters are forced to convex space partitions (Voronoi Cells)

I Result and runtime strongly depend on the initial partition; often terminates at a
local optimum – however: methods for a good initialization exist
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Variants: Basic Idea

One Problem of k-Means

Applicable only when mean is defined (vector space)

Alternatives for Mean representatives

I Median: (Artificial) Representative object ”in the middle”

I Mode: Value that appears most often

I Medoid: Representative object ”in the middle”

Objective

Find k representatives so that the sum of total distances (TD) between objects and
their closest representative is minimal (more robust against outliers).
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k-Median

A B C D E F G H I J K
tiny

small

medium

large

huge

data point

median

Idea

I If there is an ordering on the data use median instead of mean.

I Compute median separately per dimension ( efficient computation)
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k-Mode

Technician Manager Cook Programmer Advisor

Cat

Dog

Snake

None

2

1

2

1

1

1 1 c
data point
(count=c)

mode

Mode

I Given: categorical data D ⊆ Ω = A1× · · ·×Ad where Ai are categorical attributes

I A mode of D is a vector M = (m1, . . . ,md ) ∈ Ω that minimizes
d(M,D) =

∑
p∈D d(p,M) where d is a distance function for categorical values

(e.g. Hamming distance)

I Note: M is not necessarily an element of D
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k-Mode

Theorem to determine a mode

Let f (c , j ,D) = 1
n |{p ∈ D | p[j ] = c}| be the relative frequency of category c of

attribute Aj in the data, then:

d(M,D) is minimal ⇔ ∀j ∈ {1, . . . , d}∀c ∈ Aj : f (mj , j ,D) ≥ f (c , j ,D)

I This allows to use the k-Means paradigm to cluster categorical data without
losing its efficiency

I k-Modes algorithm1 proceeds similar to k-Means algorithm

I Note: The mode of a dataset might be not unique

1
Huang, Z. ”A Fast Clustering Algorithm to Cluster very Large Categorical Data Sets in Data Mining” DMKD (1997)
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k-Medoid

Potential problems with previous methods:

I Artificial centroid object might not make sense (e.g. education=”high school”
and occupation=”professor”)

I There might only be a distance function available but no explicit attribute-based
data representations (e.g. Edit Distance on strings)

Partitioning Around Medoids 1: Initialization

Given k, the k-medoid algorithm is initialized as follows:

I Select k objects arbitrarily as initial medoids (representatives)

I Assign each remaining (non-medoid) object to the cluster with the nearest
representative

I Compute current TDcurrent

1
Kaufman, Leonard, and Peter Rousseeuw. ”Clustering by means of medoids.” (1987)
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k-Medoid

Partitioning Around Medoids (PAM) Algorithm

procedure PAM(Set D, Integer k)
Initialize k medoids
∆TD = −∞
while ∆TD < 0 do

Compute TDN↔M for each pair (medoid M, non-medoid N), i.e., TD after swapping M with N
Choose pair (M,N) with minimal ∆TD = TDN↔M − TDcurrent

if ∆TD < 0 then
Replace medoid M with non-medoid N
TDcurrent ← TDN↔M

Store current medoids and assignments as best partitioning so far
return medoids

I Problem with PAM: high complexity O
(
tk(n − k)2

)
I Several heuristics can be employed, e.g. CLARANS 1: randomly select (medoid,

non-medoid)-pairs instead of considering all pairs

1
Ng, Raymond T., and Jiawei Han. ”CLARANS: A method for clustering objects for spatial data mining.” IEEE TKDE (2002)
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K -Means/Median/Mode/Medoid Clustering: Discussion

k-Means k-Median k-Mode k-Medoid

data numerical (mean) ordinal categorical metric

efficiency high O (tkn) low O
(
tk(n − k)2

)
sensitivity
to outliers

high low

I Strength: Easy implementation (many variations and optimizations exist)
I Weaknesses

I Need to specify k in advance
I Clusters are forced to convex space partitions (Voronoi Cells)
I Result and runtime strongly depend on the initial partition; often terminates at a

local optimum – however: methods for good initialization exist
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Initialization of Partitioning Clustering Methods

I Naive
I Choose sample A of the dataset
I Cluster A and use centers as initialization

I k-means++1

I Select first center uniformly at random
I Choose next point with probability proportional to the

squared distance to the nearest center already chosen
I Repeat until k centers have been selected
I Guarantees an approximation ratio of O(log k) (standard

k-means can generate arbitrarily bad clusterings)

I In general: Repeat with different initial centers and
choose result with lowest clustering error

Bad initialization

Good initialization

1
Arthur, D., Vassilvitskii, S. ”k-means++: The Advantages of Careful Seeding.” ACM-SIAM Symposium on Discrete Algorithms (2007)
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Choice of the Parameter k

I Idea for a method:
I Determine a clustering for each k = 2, . . . , n − 1
I Choose the ”best” clustering

I But how to measure the quality of a clustering?
I A measure should not be monotonic over k
I The measures for the compactness of a clustering SSE and TD are monotonously

decreasing with increasing value of k .

Silhouette-Coefficient 1

Quality measure for k-means or k-medoid clusterings that is not monotonic over k.

1
Rousseeuw, P. ”Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis”. Computational and Applied

Mathematics (1987)
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The Silhouette Coefficient

Basic idea

I How good is the clustering = how appropriate is the mapping of objects to clusters
I Elements in cluster should be ”similar” to their representative

I Measure the average distance of objects to their representative: a(o)

I Elements in different clusters should be ”dissimilar”
I Measure the average distance of objects to alternative clusters (i.e. second closest

cluster): b(o)
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The Silhouette Coefficient

I a(o) = ”Avg. distance between o and objects
in its cluster A.”

a(o) =
1

|C (o)|
∑

p∈C(o)

d(o, p)

I b(o): ”Smallest avg. distance between o and
objects in other cluster.”

b(o) = min
Ci 6=C(o)

 1

|Ci |
∑
p∈Ci

d(o, p)


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The Silhouette Coefficient

I The silhouette of o is then defined as

s(o) =

{
0 if a(o) = 0, e.g. |Ci | = 1

b(o)−a(o)
max(a(o),b(o)) else

I The value range of the silhouette coefficient is [−1, 1]

I The silhouette of a cluster Ci is defined as

s(Ci ) =
1

|Ci |
∑
o∈Ci

s(o)

I The silhouette of a clustering C = (C1, . . . ,Ck ) is defined as

s(C) =
1

|D|
∑
o∈D

s(o)

where D denotes the whole dataset
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The Silhouette Coefficient

I ”Reading” the silhouette coefficient: Let a(o) 6= 0
I b(o)� a(o) =⇒ s(o) ≈ 1: good assignment of o to its cluster A
I b(o) ≈ a(o) =⇒ s(o) ≈ 0: o is in-between A and B
I b(o)� a(o) =⇒ s(o) ≈ −1: bad, on average o is closer to members of B

I Silhouette coefficient s(C) of a clustering: Average silhouette of all objects
I 0.7 < s(C) ≤ 1.0: strong structure
I 0.5 < s(C) ≤ 0.7: medium structure
I 0.25 < s(C) ≤ 0.5: weak structure
I s(C) ≤ 0.25: no structure
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Silhouette Coefficient: Example

dataset with 10 clusters

Image from Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
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Expectation Maximization (EM)

I Statistical approach for finding maximum likelihood
estimates of parameters in probabilistic models.

I Here: Using EM as clustering algorithm

I Approach: Observations are drawn from one of several
components of a mixture distribution.

I Main idea:
I Define clusters as probability distributions → each

object has a certain probability of belonging to each
cluster

I Iteratively improve the parameters of each distribution
(e.g. center, ”width” and ”height” of a Gaussian
distribution) until some quality threshold is reached

↓

↓

Additional Literature: C. M. Bishop ”Pattern Recognition and Machine Learning”, Springer, 2009
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Excursus: Gaussian Mixture Distributions

Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

Gaussian Distribution

I Univariate: single variable x ∈ R:

p(x | µ, σ2) = N (x | µ, σ2) =
1

√
2πσ2

exp

(
−

1

2σ2
(x − µ)2

)

with mean µ ∈ R and variance σ2 ∈ R
I Multivariate: d-dimensional vector x ∈ Rd :

p(x | µ,Σ) = N (x | µ,Σ) =
1√

(2π)d |Σ|
exp

(
−

1

2
(x − µ)T Σ−1(x − µ)

)

with mean vector µ ∈ Rd and covariance matrix Σ ∈ Rd×d
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Excursus: Gaussian Mixture Distributions

Gaussian mixture distribution with k components

I For d-dimensional vector x ∈ Rd :

p(x) =
k∑

l=1

πl · N (x | µl ,Σl )

with mixing coefficients πl ∈ R,
∑

l πl = 1 and 0 ≤ πl ≤ 1
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EM: Exemplary Application

Example taken from: C. M. Bishop ”Pattern Recognition and Machine Learning”, 2009
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EM: Clustering Model

Clustering

A clustering M = (C1, . . . ,Ck ) is represented by a mixture
distribution with parameters θ = (π1, µ1,Σ1, . . . , πk , µk ,Σk ):

p(x | θ) =
k∑

l=1

πl · N (x | µl ,Σl )

Cluster

Each cluster is represented by one component of the mixture
distribution:

p(x | µl ,Σl ) = N (x | µl ,Σl )
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EM: Maximum Likelihood Estimation

I Given a dataset X = {x1, . . . , xn} ⊆ Rd , the likelihood
that all data points xi ∈ X are generated (independently)
by the mixture model with parameters θ is given as:

p(X | θ) =
n∏

i=1

p(xi | θ)

Goal

Find the maximum likelihood estimate (MLE), i.e., the
parameters θML with maximal likelihood:

θML = argmax
θ
{p(X | θ)}
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EM: Maximum Likelihood Estimation

I Goal: Find MLE. For convenience, we use the log-likelihood:

θML = argmax
θ
{p(X | θ)}

= argmax
θ
{log p(X | θ)}

I The log-likelihood can be written as

log p(X | θ) = log
n∏

i=1

k∑
l=1

πl · p(xi | µl ,Σl )

=
n∑

i=1

log
k∑

l=1

πl · p(xi | µl ,Σl )
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EM: Maximum Likelihood Estimation

I Maximization w.r.t. the means:

∂ log p(X | θ)

∂µj
=

n∑
i=1

∂ log p(xi | θ)

∂µj
=

n∑
i=1

∂ log p(xi |θ)
∂µj

p(xi | θ)
=

n∑
i=1

∂ log p(xi |θ)
∂µj∑k

l=1 p(xi | µl ,Σl )

=
n∑

i=1

πj · Σ−1
j (xi − µj ) · N (xi | µj ,Σj )∑k

l=1 p(xi | µl ,Σl )

= Σ−1
j

n∑
i=1

(xi − µj )
πj · N (xi | µj ,Σj )∑k
l=1 πl · N (xi | µl ,Σl )

!
= 0

I Use ∂
∂µj
N (xi | µj ,Σj ) = Σ−1

j (xi − µj ) · N (xi | µj ,Σj )

I Define γj (xi ) := πj · N (xi | µj ,Σj ): Probability that component j generated xi
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EM: Maximum Likelihood Estimation

I Maximization w.r.t. the means yields

µj =

∑n
i=1 γj (xi )xi∑n

i=1 γj (xi )

I Maximization w.r.t. the covariance matrices yields

Σj =

∑n
i=1 γj (xi )(xi − µj )(xi − µj )

T∑n
i=1 γj (xi )

I Maximization w.r.t. the mixing coefficients yields

πj =

∑n
i=1 γj (xi )∑k

l=1

∑n
i=1 γl (xi )
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EM: Maximum Likelihood Estimation

Problem with finding the optimal parameters θML:

µj =

∑n
i=1 γj (xi )xi∑n

i=1 γj (xi )
and γj (xi ) =

πj · N (xi | µj ,Σj )∑k
l=1 πj · N (xi | µl ,Σk )

I Non-linear mutual dependencies

I Optimizing the Gaussian of cluster j depends on all other Gaussians.

I There is no closed-form solution!

I Approximation through iterative optimization procedures

I Break the mutual dependencies by optimizing µj and γj (xi ) independently
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EM: Iterative Optimization

Iterative Optimization

1. Initialize means µj , covariances Σj , and mixing coefficients πj and evaluate the
initial log-likelihood.

2. E-step: Evaluate the responsibilities using the current parameter values:

γnew
j (xi ) =

πj · N (xi | µj ,Σj )∑k
l=1 πj · N (xi | µl ,Σl )

3. M-step: Re-estimate the parameters using the current responsibilities:

µnew
j =

∑n
i=1 γ

new
j (xi )xi∑n

i=1 γ
new
j (xi )

...
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EM: Iterative Optimization

Iterative Optimization

...

Σnew
j =

∑n
i=1 γ

new
j (xi )(xi − µnew

j )(xi − µnew
j )T∑n

i=1 γ
new
j (xi )

πnew
j =

∑n
i=1 γ

new
j (xi )∑k

l=1

∑n
i=1 γ

new
l (xi )

4. Evaluate the new log-likelihood log p(X | θnew ) and check for convergence of
parameters or log-likelihood (| log p(X | θnew )− log p(X | θ)| ≤ ε). If the
convergence criterion is not satisfied, set θ = θnew and go to step 2.
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EM: Turning the Soft Clustering into a Partitioning

I EM obtains a soft clustering (each object belongs to each cluster with a certain
probability) reflecting the uncertainty of the most appropriate assignment

I Modification to obtain a partitioning variant: Assign each object to the cluster to
which it belongs with the highest probability

C (xi ) = argmax
l∈{1,...,k}

{γl (xi )}

Example taken from: C. M. Bishop ”Pattern Recognition and Machine Learning”, 2009
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EM: Discussion

I Superior to k-Means for clusters of varying size or clusters
having differing variances
I More accurate data representation

I Convergence to (possibly local) maximum
I Computational effort for t iterations: O(tnk)

I t is quite high in many cases

I Both, result and runtime, strongly depend on
I the initial assignment

I Do multiple random starts and choose the final estimate
with highest likelihood

I Initialize with clustering algorithms (e.g., k-Means): usually
converges much faster

I Local maxima and initialization issues have been addressed
in various extensions of EM

I a proper choice of k (next slide)
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EM: Model Selection for Determining Parameter k

Problem

Classical trade-off problem for selecting the proper number of components k :

I If k is too high, the mixture may overfit the data

I If k is too low, the mixture may not be flexible enough to approximate the data

Idea

Determine candidate models θk for k ∈ {kmin, . . . , kmax} and select the model
according to some quality measure qual :

θk∗ = max
k∈{kmin,...,kmax}

{qual(θk )}

I Silhouette Coefficient (as for k-Means) only works for partitioning approaches

I The likelihood is nondecreasing in k
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EM: Model Selection for Determining Parameter k

Solution

Deterministic or stochastic model selection methods 1 which try to balance the
goodness of fit with simplicity.

I Deterministic:
qual(θk ) = log p(X | θk ) + P(k)

where P(k) is an increasing function penalizing higher values of k

I Stochastic: Based on Markov Chain Monte Carlo (MCMC)

1G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.
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Density-Based Clustering

Basic Idea

Clusters are dense regions in the data space,
separated by regions of lower density

Results of a k-medoid algorithm for k = 4:
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Density-Based Clustering: Basic Concept

Note

Different density-based approaches exist in the literature. Here we discuss the ideas
underlying the DBSCAN algorithm.

Intuition for Formalization

I For any point in a cluster, the local point density around that point has to exceed
some threshold

I The set of points from one cluster is spatially connected
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Density-Based Clustering: Basic Concept

Local Point Density

Local point density at a point q defined by two parameters:

I ε-radius for the neighborhood of point q

Nε(q) = {p ∈ D | dist(p, q) ≤ ε} (1)

In this chapter, we assume that q ∈ Nε(q)!

I MinPts: minimum number of points in the given neighbourhood Nε(q).
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Density-Based Clustering: Basic Concept

q

Core Point

q is called a core object (or core point) w.r.t. ε, MinPts if |Nε(q)| ≥ minPts
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Density-Based Clustering: Basic Definitions

p

q

p

q

(Directly) Density-Reachable

p directly density-reachable from q w.r.t. ε, MinPts if:

1. p ∈ Nε(q) and

2. q is core object w.r.t. ε,MinPts

Density-reachable is the transitive closure of directly density-reachable
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Density-Based Clustering: Basic Definitions

p

qo

Density-Connected

p is density-connected to a point q w.r.t. ε, MinPts if there is a point o such that
both, p and q are density-reachable from o w.r.t. ε,MinPts
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Density-Based Clustering: Basic Definitions

Density-Based Cluster

∅ ⊂ C ⊆ D with database D satisfying:

Maximality: If q ∈ C and p is density-reachable from q then p ∈ C
Connectivity: Each object in C is density-connected to all other objects in C
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Density-Based Clustering: Basic Definitions

Core

Border
Noise

Density-Based Clustering

A partitioning {C1, . . . ,Ck ,N} of the database D where

I C1, . . . ,Ck are all density-based clusters

I N = D \ (C1 ∪ . . . ∪ Ck ) is called the noise (objects not in any cluster)
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Density-Based Clustering: DBSCAN Algorithm

Basic Theorem

I Each object in a density-based cluster C is density-reachable from any of its
core-objects

I Nothing else is density-reachable from core objects.
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Density-Based Clustering: DBSCAN Algorithm

Density-Based Spatial Clustering of Applications with Noise12

1: for all o ∈ D do
2: if o is not yet classified then
3: if o is a core-object then
4: Collect all objects density-reachable from o and assign them to a new cluster.
5: else
6: Assign o to noise N

Note

Density-reachable objects are collected by performing successive ε-neighborhood queries.

12
Ester M., Kriegel H.-P., Sander J., Xu X.: ”A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”, In

KDD 1996 , pp. 226-231.
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DBSCAN: Example
Parameters: ε = 1.75, minPts = 3. Clusters: C1, C2; Noise: N

ε ε
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Determining the Parameters ε and MinPts

Recap

Cluster: Point density higher than specified by ε and MinPts

Idea

Use the point density of the least dense cluster in the data set as parameters.

Problem

How to determine this?
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Determining the Parameters ε and MinPts

Heuristic

1. Fix a value for MinPts (default: 2d − 1 where d is the
dimension of the data space)

2. Compute the k-distance for all points p ∈ D (distance
from p to the its k-nearest neighbor), with k = minPts.

3. Create a k-distance plot, showing the k-distances of all
objects, sorted in decreasing order

4. The user selects ”border object” o from the
MinPts-distance plot: ε is set to MinPts-distance(o).

3
-d

is
ta

n
ce

"border object"

Objects

first "kink"
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Determining the Parameters ε and MinPts: Problematic Example

A

B

C

D

E

D

F

G

D1
D2

G1

G2
G3

A

B

C

E
F

G1

G2

D2
D1

D

G

G3

A, B, C

B

B, D, E

Objects

A,B,C

B,D,E

D1,D2,G1,
G2,G3

D,F,G
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Database Support for Density-Based Clustering

Standard DBSCAN evaluation is based on recursive database traversal. Böhm et al.13

observed that DBSCAN, among other clustering algorithms, may be efficiently built on
top of similarity join operations.

ε-Similarity Join

An ε-similarity join yields all pairs of ε-similar objects from two data sets Q, P:

Q ./ε P = {(q, p) ∈ Q × P | dist(q, p) ≤ ε}

SQL Query

SELECT ∗ FROM Q,P WHERE dist(Q,P) ≤ ε

13
Böhm C., Braunmüller, B., Breunig M., Kriegel H.-P.: High performance clustering based on the similarity join. CIKM 2000: 298-305.
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Database Support for Density-Based Clustering

ε-Similarity Self-Join

An ε-similarity self join yields all pairs of ε-similar objects from a database D.

D ./ε D = {(q, p) ∈ D × D | dist(q, p) ≤ ε}

SQL Query

SELECT ∗ FROM D q,D p WHERE dist(q, p) ≤ ε
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Database Support for Density-Based Clustering

The relation ”directly ε, MinPts-density reachable” may be expressed in terms of an
ε-similarity self join (abbreviate minPts with µ):

ddrε,µ = {(q, p) ∈ D × D | q is ε, µ-core-point ∧ p ∈ Nε(q)}
= {(q, p) ∈ D × D | dist(q, p) ≤ ε ∧ ∃≥µp′ ∈ D : dist(q, p′) ≤ ε}
= {(q, p) ∈ D × D | (q, p) ∈ D ./ε D ∧ ∃≥µp′(q, p′) ∈ D ./ε D}
= σ|πq(D./εD)|≥µ(D ./ε D) =: D ./ε,µ D

SQL Query

SELECT ∗ FROM D q,D p WHERE dist(q, p) ≤ ε GROUP BY q.id HAVING
count(q.id) ≥ µ

Afterwards, DBSCAN computes the connected components of D ./ε,µ D.
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Efficient Similarity Join Processing

For very large databases, efficient join techniques are available

I Block nested loop or index-based nested loop joins exploit secondary storage
structure of large databases.

I Dedicated similarity join, distance join, or spatial join methods based on spatial
indexing structures (e.g., R-Tree) apply particularly well. They may traverse their
hierarchical directories in parallel (see illustration below).

I Other join techniques including sort-merge join or hash join are not applicable.

Q

Q ./ε P

P
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DBSCAN: Discussion

Advantages

I Clusters can have arbitrary shape and size; no restriction to convex shapes

I Number of clusters is determined automatically

I Can separate clusters from surrounding noise

I Complexity: Nε-query: O(n), DBSCAN: O(n2).

I Can be supported by spatial index structures ( Nε-query: O(log n))

Disadvantages

I Input parameters may be difficult to determine

I In some situations very sensitive to input parameter setting
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Iterative Mode Search

Idea

Find modes in the point density.

Algorithm14

1. Select a window size ε, starting position m

2. Calculate the mean of all points inside the window W (m).

3. Shift the window to that position

4. Repeat until convergence.

14
K. Fukunaga, L. Hostetler: The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition, IEEE Trans

Information Theory, 1975
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Iterative Mode Search: Example
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Mean Shift: Core Algorithm

Algorithm15

Apply iterative mode search for each data point. Group those that converge to the
same mode (called Basin of Attraction).

15
D. Comaniciu, P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on pattern analysis and machine

intelligence, 2002

Unsupervised Methods Clustering January 25, 2019 251



Mean Shift: Extensions

Weighted Mean

Use different weights for the points in the window calculated by some kernel κ

m(i+1) =

∑
x∈W (m(i))

κ(x)x∑
x∈W (m(i))

κ(x)

Binning

First quantise data points to grid. Apply iterative mode seeking only once per bin.
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Mean Shift: Discussion

Disadvantages

I Relatively high complexity: Nε-query (=windowing): O(n). Algorithm: O(tn2)

Advantages

I Clusters can have arbitrary shape and size; no restriction to convex shapes

I Number of clusters is determined automatically

I Robust to outliers

I Easy implementation and parallelisation

I Single parameter: ε

I Support by spatial index: Nε-query (=windowing): O(log n). Algorithm:
O(tn log n)
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Clustering as Graph Partitioning

Approach

I Data is modeled by a similarity graph G = (V ,E )
I Vertices v ∈ V : Data objects
I Weighted edges {vi , vj} ∈ E : Similarity of vi and vj

I Common variants: ε-neighborhood graph, k-nearest
neighbor graph, fully connected graph

I Cluster the data by partitioning the similarity graph
I Idea: Find global minimum cut

I Only considers inter-cluster edges, tends to cut small
vertex sets from the graph

I Partitions graph into two clusters

I Instead, we want a balanced multi-way partitioning
I Such problems are NP-hard, use approximations

Unsupervised Methods Clustering January 25, 2019 254



Spectral Clustering

Given

Undirected graph G with weighted edges

I Let W be the (weighted) adjacency matrix of the graph

I And D its degree matrix with Dii =
∑n

j=1 Wij ; other
entries are 0

Aim

Partition G into k subsets, minimizing a function of the edge
weights between/within the partitions.
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Spectral Clustering

Idea

I Consider the indicator vector fC for the cluster C , i.e.

fC i =

{
1 if vi ∈ C

0 else

and the Laplacian matrix L = D −W
I Further, consider the function fLf T = 1

2

∑n
i=1

∑n
j=1 Wij (fi − fj )

2 (derivation on

next slide)
I Small if f corresponds to a good partitioning
I Given an indicator vector fC , the function fC Lf T

C measures the weight of the
inter-cluster edges!

I Since L is positive semi-definite we have fLf T ≥ 0
I Try to minimize fLf T
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Spectral Clustering

fLf T = fDf T − fWf T

=
∑

i

di f
2

i −
∑

ij

wij fi fj

=
1

2

∑
i

(
∑

j

wij )f 2
i − 2

∑
ij

wij fi fj +
∑

j

(
∑

i

wij )f 2
j


=

1

2

∑
ij

wij f
2

i − 2
∑

ij

wij fi fj +
∑

ij

wij f
2

j


=

1

2

∑
ij

wij (f 2
i − 2fi fj + f 2

j )

=
1

2

∑
ij

wij (fi − fj )
2
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Spectral Clustering: Example for Special Case

I Special case: The graph consists of k connected components (here: k = 3)

I The k components yield a ”perfect” clustering (no edges between clusters), i.e.
optimal clustering by indicator vectors fC1 = (1, 1, 1, 0, 0, 0, 0, 0, 0),
fC2 = (0, 0, 0, 1, 1, 1, 0, 0, 0) and fC1 = (0, 0, 0, 0, 0, 0, 1, 1, 1)

I Because of the block form of L, we get fC Lf T
C = 0 for each component C
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Connected Components and Eigenvectors

I General goal: find indicator vectors minimizing function fLf T besides the trivial
indicator vector fC = (1, . . . , 1)

I Problem: Finding solution is NP-hard (cf. graph cut problems)

I How can we relax the problem to find a (good) solution more efficiently?
I Observation: For the special case with k connected components, the k indicator

vectors fulfilling fC Lf T
C = 0 yield the perfect clustering

I The indicator vector for each component is an eigenvector of L with eigenvalue 0
I The k indicator vectors are orthogonal to each other (linearly independent)

Lemma

The number of linearly independent eigenvectors with eigenvalue 0 for L equals the
number of connected components in the graph.
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Spectral Clustering: General Case
I In general: L does not have zero-eigenvectors

I One large connected component, no perfect clustering
I Determine the (linear independent) eigenvectors with

the k smallest eigenvalues!

I Example: The 3 clusters are now connected by
additional edges

I Smallest eigenvalues of L: (0.23, 0.70, 3.43)

Eigenvectors of L
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Spectral Clustering: Data Transformation
I How to find the clusters based on the eigenvectors?

I Easy in special setting: 0-1 values; now: arbitrary real numbers
I Data transformation: Represent each vertex by a vector of its corresponding

components in the eigenvectors
I In the special case, the representations of vertices from the same connected

component are equal, e.g. v1, v2, v3 are transformed to (1, 0, 0)
I In general case only similar eigenvector representations

I Clustering (e.g. k-Means) on transformed data points yields final result
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Illustration: Embedding of Vertices to a Vector Space

Spectral layout of previous example
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Spectral Clustering: Discussion

Advantages

I No assumptions on the shape of the clusters
I Easy to implement

Disadvantages

I May be sensitive to construction of the similarity graph
I Runtime: k smallest eigenvectors can be computed in O(n3) (worst case)

I However: Much faster on sparse graphs, faster variants have been developed

I Several variations of spectral clustering exist, using different Laplacian matrices
which can be related to different graph cut problems 1

1
Von Luxburg, U.: A tutorial on spectral clustering, in Statistics and Computing, 2007
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From Partitioning to Hierarchical Clustering

Global parameters to separate all clusters with a partitioning clustering method may
not exist:

Need a hierarchical clustering algorithm in these situations
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Hierarchical Clustering: Basic Notions

I Hierarchical decomposition of the data set (with respect to a given similarity
measure) into a set of nested clusters

I Result represented by a so called dendrogram (greek δενδρo = tree)
I Nodes in the dendrogram represent possible clusters
I Dendrogram can be constructed bottom-up (agglomerative approach) or top down

(divisive approach)
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Hierarchical Clustering: Example

I Interpretation of the dendrogram
I The root represents the whole data set
I A leaf represents a single object in the data set
I An internal node represents the union of all objects in its sub-tree
I The height of an internal node represents the distance between its two child nodes
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Agglomerative Hierarchical Clustering

Generic Algorithm

1. Initially, each object forms its own cluster

2. Consider all pairwise distances between the initial
clusters (objects)

3. Merge the closest pair (A,B) in the set of the current
clusters into a new cluster C = A ∪ B

4. Remove A and B from the set of current clusters; insert
C into the set of current clusters

5. If the set of current clusters contains only C (i.e., if C
represents all objects from the database): STOP

6. Else: determine the distance between the new cluster C
and all other clusters in the set of current clusters and
go to step 3.
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Single-Link Method and Variants

I Agglomerative hierarchical clustering requires a distance function for clusters

I Given: a distance function dist(p, q) for database objects

I The following distance functions for clusters (i.e., sets of objects) X and Y are
commonly used for hierarchical clustering:

Single-Link: distsl (X ,Y ) = minx∈X ,y∈Y dist(x , y)
Complete-Link: distcl (X ,Y ) = maxx∈X ,y∈Y dist(x , y)
Average-Link: distal (X ,Y ) = 1

|X |·|Y |
∑

x∈X ,y∈Y dist(x , y)
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Divisive Hierarchical Clustering

General Approach: Top Down

I Initially, all objects form one cluster
I Repeat until all clusters are singletons

I Choose a cluster to split → how?
I Replace the chosen cluster with the sub-clusters and split into two → how to split?

Example solution: DIANA

I Select the cluster C with largest diameter for splitting
I Search the most disparate object o in C (highest average dissimilarity)

I Splinter group S = {o}
I Iteratively assign the o′ /∈ S with the highest D(o′) > 0 to the splinter group until

D(o′) ≤ 0 for all o′ /∈ S , where

D(o′) =
∑

oj∈C\S

d(o′, oj )

|C \ S |
−
∑
oi∈S

d(o′, oi )

|S |
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Discussion Agglomerative vs. Divisive HC

I Divisive and Agglomerative HC need n − 1 steps
I Agglomerative HC has to consider n(n−1)

2 =
(

n
2

)
combinations in the first step

I Divisive HC potentially has 2n−1 − 1 many possibilities to split the data in its first
step. Not every possibility has to be considered (DIANA)

I Divisive HC is conceptually more complex since it needs a second ”flat” clustering
algorithm (splitting procedure)

I Agglomerative HC decides based on local patterns

I Divisive HC uses complete information about the global data distribution  able
to provide better clusterings than Agglomerative HC?
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Density-Based Hierarchical Clustering

I Observation: Dense clusters are completely contained by less dense clusters

I Idea: Process objects in the ”right” order and keep track of point density in their
neighborhood
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Core Distance and Reachability Distance
Parameters: ”generating” distance ε, fixed value MinPts

core-distε,MinPts(o)

I ”smallest distance such that o is a core object”
I if core-dist > ε: undefined

reach-distε,MinPts(p, o)

I ”smallest dist. s.t. p is directly density-reachable from o”
I if reach-dist > ε: ∞

reach-dist(p, o) =


dist(p, o) , dist(p, o) ≥ core-dist(o)

core-dist(o) , dist(p, o) < core-dist(o)

∞ , dist(p, o) > ε
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The Algorithm OPTICS

OPTICS1: Main Idea

”Ordering Points To Identify the Clustering Structure”
I Maintain two data structures

I seedList: Stores all objects with shortest reachability
distance seen so far (”distance of a jump to that point”) in
ascending order; organized as a heap

I clusterOrder : Resulting cluster order is constructed
sequentially (order of objects + reachability-distances)

I Visit each point
I Always make a shortest jump

1
Ankerst M., Breunig M., Kriegel H.-P., Sander J. ”OPTICS: Ordering Points To Identify the Clustering Structure”. SIGMOD (1999)
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The Algorithm OPTICS

1: seedList = ∅
2: while there are unprocessed objects in DB do
3: if seedList = ∅ then
4: insert arbitrary unprocessed object into

clusterOrder with reach-dist =∞
5: else
6: remove first object from seedList and insert into

clusterOrder with its current reach-dist

7: // Let o be the last object inserted into clusterOrder
8: mark o as processed
9: for p ∈ range(o, ε) do

10: // Insert/update p in seedList
11: compute reach-dist(p, o)
12: seedList.update(p, reach-dist(p, o))
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OPTICS: Example
ε = 44,MinPts = 3
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OPTICS: The Reachability Plot
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OPTICS: The Reachability Plot

I Plot the points together with their reachability-distances. Use the order in which
they where returned by the algorithm
I Represents the density-based clustering structure
I Easy to analyze
I Independent of the dimensionality of the data
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OPTICS: Parameter Sensitivity

I Relatively insensitive to parameter settings

I Good result if parameters are just ”large enough”
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Hierarchical Clustering: Discussion

Advantages

I Does not require the number of clusters to be known in advance
I No (standard methods) or very robust parameters (OPTICS)
I Computes a complete hierarchy of clusters
I Good result visualizations integrated into the methods
I A ”flat” partition can be derived afterwards (e.g. via a cut through the

dendrogram or the reachability plot)

Disadvantages

I May not scale well
I Runtime for the standard methods: O(n2 log n2)
I Runtime for OPTICS: without index support O(n2)

I User has to choose the final clustering
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Evaluation of Clustering Results

Type Positive Negative

Expert’s
Opinion

may reveal new insight
into the data

very expensive, results
are not comparable

External
Measures

objective evaluation needs ”ground truth”

Internal
Measures

no additional informa-
tion needed

approaches optimizing
the evaluation criteria
will always be preferred

Expert’s Opinion

External Measure

Internal Measure
Unsupervised Methods Clustering January 25, 2019 280



External Measures

Notation

Given a data set D, a clustering C = {C1, . . . ,Ck} and ground truth G = {G1, . . . ,Gl}.

Problem

Since the cluster labels are ”artificial”, permuting them should not change the score.

Solution

Instead of comparing cluster and ground truth labels directly, consider all pairs of
objects. Check whether they have the same label in G and if they have the same in C.
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Formalisation as Retrieval Problem

C1 C2 C3
D

o

p

p′SC 3

∈ SC

With P = {(o, p) ∈ D × D | o 6= p} define:

I Same cluster label: SC = {(o, p) ∈ P | ∃Ci ∈ C : {o, p} ⊆ Ci}
I Different cluster label: SC = P \ SC

and analogously for G.
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Formalisation as Retrieval Problem

Define

I TP = |SC ∩ SG |
(same cluster in both, ”true positives”)

I FP = |SC ∩ SG |
(same cluster in C, different cluster in G, ”false
positives”)

I TN = |SC ∩ SG |
(different cluster in both, ”true negatives”)

I FN = |SC ∩ SG |
(different cluster in C, same cluster in G, ”false
negatives”)

SC SC

SG

SG

P

TP FN

FP TN
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External Measures

I Recall (0 ≤ rec ≤ 1, larger is better)

rec =
TP

TP + FN
=
|SC ∩ SG |
|SG |

I Precision (0 ≤ prec ≤ 1, larger is better)

prec =
TP

TP + FP
=
|SC ∩ SG |
|SC |

I F1-Measure (0 ≤ F1 ≤ 1, larger is better)

F1 =
2 · rec · prec

rec + prec
=

2|SC ∩ SG |
|SC |+ |SG |

SC SC

SG

SG

P

TP FN

FP TN
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External Measures

I Rand Index (0 ≤ RI ≤ 1, larger is better):

RI (C | G) =
TP + TN

TP + TN + FP + FN
=
|SC ∩ SG |+ |SC ∩ SG |

|P|

I Adjusted Rand Index (ARI): Compares RI (C,G) against
expected (R,G) of random cluster assignment R.

I Jaccard Coefficient (0 ≤ JC ≤ 1, larger is better):

JC =
TP

TP + FP + FN
=

|SC ∩ SG |
|P| − |SC ∩ SG |

SC SC

SG

SG

P

TP FN

FP TN
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External Measures

I Confusion Matrix / Contingency Table N ∈ Nk×l with Nij = |Ci ∩ Gj |
G1 . . . Gl

C1 |C1 ∩ G1| . . . |C1 ∩ Gl |
...

...
. . .

Ck |Ck ∩ G1| |Ck ∩ Gl |

I Define Ni =
l∑

j=1
Nij (i.e. Ni = |Ci |)

I Define N =
k∑

i=1
Ni (i.e. N = |D|)
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External Measures

I (Shannon) Entropy:

H(C) = −
∑
Ci∈C

p(Ci ) log p(Ci ) = −
∑
Ci∈C

|Ci |
|D|

log
|Ci |
|D|

= −
k∑

i=1

Ni

N
log

Ni

N

I Mutual Entropy:

H(C | G) = −
∑
Ci∈C

p(Ci )
∑
Gj∈G

p(Gj | Ci ) log p(Gj | Ci )

= −
∑
Ci∈C

|Ci |
|D|

∑
Gj∈G

|Ci ∩ Gj |
|Ci |

log
|Ci ∩ Gj |
|Ci |

= −
k∑

i=1

Ni

N

l∑
j=1

Nij

Ni
log

Nij

Ni
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External Measures

I Mutual Information:

I (C,G) = H(C)− H(C | G) = H(G)− H(G | C)

I Normalized Mutual Information (NMI) (0 ≤ NMI ≤ 1, larger is better):

NMI (C,G) =
I (C,G)√

H(C)H(G)

I Adjusted Mutual Information (AMI): Compares MI (C,G) against expected
MI (R,G) of random cluster assignment R.
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Internal Measures: Cohesion

Notation

Let D be a set of size n = |D|, and let C = {C1, . . . ,Ck} be a partitioning of D.

Cohesion

Average distance between objects of the same cluster.

coh(Ci ) =

(
|Ci |

2

)−1 ∑
o,p∈Ci ,o 6=p

d(o, p)

Cohesion of clustering is equal to weighted mean of the clusters’
cohesions.

coh(C) =
k∑

i=1

|Ci |
n

coh(Ci )
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Internal Measures: Separation

Separation

Separation between to clusters: Average distance between pairs

sep(Ci ,Cj ) =
1

|Ci ||Cj |
∑

o∈Ci ,p∈Cj

d(o, p)

Separation of one cluster: Minimum separation to another cluster:

sep(Ci ) = min
j 6=i

sep(Ci ,Cj )

Separation of clustering is equal to weighted mean of the clusters’
separations.

sep(C) =
k∑

i=1

|Ci |
n

sep(Ci )
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Evaluating the Distance Matrix
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(sorted by k-means cluster label)

after: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
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Evaluating the Distance Matrix

Distance matrices differ for different clustering approaches (here on random data)
k-means EM DBSCAN Complete Link
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after: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
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Cohesion and Separation

Problem

Suitable for convex cluster, but not for stretched clusters (cf. silhouette coefficient).
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Ambiguity of Clusterings

I Clustering according to: Color of shirt, direction of view, glasses, . . .
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Ambiguity of Clusterings

from: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)
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Ambiguity of Clusterings

”Philosophical” Problem

“What is a correct clustering?”

I Most approaches find clusters in every dataset,
even in uniformly distributed objects

I Are there clusters?
I Apply clustering algorithm
I Check for reasonability of clusters

I Problem: No clusters found 6= no clusters
existing
I Maybe clusters exists only in certain models,

but can not be found by used clustering
approach
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Hopkins Statistics

Sample

dataset
(n objects)

Random selection
(m objects) m<<n

m uniformly
distributed objects

w3

w4

w5

w6

w1
w2

u1

u2

u3
u4

u5

u6

H =

m∑
i=1

ui

m∑
i=1

ui +
m∑

i=1
wi

I wi : distance of selected objects to the next neighbor in dataset

I ui : distances of uniformly distributed objects to next neighbor in dataset

I 0 ≤ H ≤ 1;
I H ≈ 0: very regular data (e.g. grid);
I H ≈ 0.5: uniformly distributed data;
I H ≈ 1: strongly clusteredc
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Ensemble Clustering

Problem

I Many differing clustering models

I Different parameter choices, usually highly influences the result

What is a ”good” clustering?

Idea

Find a consensus solution (also ensemble clustering) that consolidates multiple
clustering solutions.
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Ensemble Clustering: Benefits

I Knowledge Reuse: Possibility to integrate the knowledge of multiple known, good
clusterings

I Improved Quality: Often ensemble clustering leads to ”better” results than its
individual base solutions.

I Improved Robustness: Combining several clustering approaches with differing data
modeling assumptions leads to an increased robustness across a wide range of
datasets.

I Model Selection: Novel approach for determining the final number of clusters

I Distributed Clustering: if data is inherently distributed (either feature-wise or
object-wise) and each clusterer has only access to a subset of objects and/or
features, ensemble methods can be used to compute a unifying result
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Ensemble Clustering: Basic Notions

Given

A set of L clusterings C = C1, . . . , CL for dataset D = {x1, . . . , xn} ∈ Rd .

Goal

Find a consensus clustering C∗.

How to define a consensus clustering?

Two categories:

I Approaches based on pairwise similarity: Find a consensus clustering C∗ for which
the similarity function Φ(C, C∗) =

∑
C∈C

φ(C, C∗) (φ is basically an external measure)

I Probabilistic approaches: Assume that the L labels for the objects xi ∈ D follow a
certain distribution.
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Similarity-Based Approaches

Goal

Find a consensus clustering C∗ for which the similarity function
Φ(C, C∗) =

∑
C∈C

φ(C, C∗) is maximal.

Choices for φ

I Pair counting-based measures: Rand Index (RI), Adjusted RI, Probabilistic RI

I Information theoretic measures: Mutual Information (I), Normalized Mutual
Information (NMI), Variation of Information (VI)

Problem

Minimising the objective for the above mentioned choices of φ in intractable.
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Similarity-Based Approaches

Solutions

I Methods based on the co-association matrix (related to RI)
I Methods using cluster labels without co-association matrix (often related to NMI)

I Mostly graph partitioning
I Cumulative voting
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Ensemble Clustering: Co-Association Matrix

Co-Association Matrix

The co-association matrix SC ∈ Rn×n represents the label similarity of object pairs:

SC
ij =

∑
C∈C

I[xi ∈ C ∧ xj ∈ C]

where I is the indicator function with I[False] = 0, and I[True] = 1.

Example

D = {1, 2, 3, 4, 5} (i.e. n = 5),
C = {C1, C2},
C1 = {{1, 2, 3}, {4, 5}},
C2 = {{1, 2}, {3, 4, 5}}.

S =


2 2 1 0 0
2 2 1 0 0
1 1 2 1 1
0 0 1 2 2
0 0 1 2 2


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Ensemble Clustering: Co-Association Matrix

Usage of Co-Association Matrix

I Use SC as similarity matrix to apply traditional clustering approach.

I By interpreting SC as weighted adjacency matrix, graph partitioning methods can
be applied.

Co-Association Matrix and Rand Index

In 16 a connection of consensus clustering based on the co-association matrix and the
optimization of the pairwise similarity based on the Rand Index has been proven:

Cbest = argmax
C∗

∑
C∈C

RI (C, C∗)

16
B. Mirkin: Mathematical Classification and Clustering. Kluwer, 1996.
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Information-Theoretic Approaches

Setting

Find a consensus clustering C∗ for which the similarity function Φ(C, C∗) =
∑
C∈C

φ(C, C∗)

is maximal, with φ chosen as (Normalised) Mutual Information.

Problem

Usually a hard optimization problem!

Solution 1

Use meaningful optimization approaches (e.g. gradient descent) or heuristics to
approximate the best clustering solution (e.g. 17)

17
A. Strehl, J. Ghosh: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning

Research, 3, 2002, pp. 583-617.

Unsupervised Methods Clustering January 25, 2019 305



Information-Theoretic Approaches

Solution 2

I Use a similar but solvable objective, e.g. 18:

I Use as objective

Cbest = argmax
C∗

∑
C∈C

I s(C, C∗)

where I s is the mutual information based on the generalized entropy of degree s:

Hs(X ) = (21−s − 1)−1
∑
xi∈X

(ps
i − 1)

For s = 2, I s(C, C∗) is equal to the category utility function whose maximization is
proven to be equivalent to the minimization of the square-error clustering
criterion. =⇒ Apply a simple label transformation and use e.g. K-Means

18
A. Topchy, A.K. Jain, W. Punch. Combining multiple weak clusterings. In ICDM, pages 331-339, 2003
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Probabilistic Approach

Assumptions

I All clusterings C ∈ C are partitionings of the dataset D.

I There are K∗ consensus clusters.

I With C(x) denoting the cluster label assigned to x in clustering C, the following dataset
Y given by

Y = {yi ∈ NL
0 | xi ∈ D,∀1 ≤ j ≤ L : (yi )j = Ci (xi )}

(labels of base clusterings) follows a multivariate mixture distribution:

p(Y | Θ) =
n∏

i=1

K∗∑
k=1

αk pk (yi | θk )
cond.ind.

=
n∏

i=1

K∗∑
k=1

αk

L∏
j=1

pkl (yij | θkl )

with pkl (yij | θkl ) ∼ M(1, (pkl1, . . . , pkl|Cl |)), i.e. pkl (yij | θkl ) =
|Cl |∏

k′=1

p
I(ynl =k′)
klk′
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Probabilistic Approach

Goal

Find the parameters Θ = (α1, θ1, . . . , αK∗, θK∗) such that the likelihood p(Y | Θ) is
maximized.

Solution 19

Optimize the parameters via the EM approach

19
Topchy, Jain, Punch: A mixture model for clustering ensembles. In ICDM, pp. 379-390, 2004.
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