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Data Privacy

Situation

I Huge volume of data is collected

I From a variety of devices and platforms (e.g. Smartphones, Wearables, Social
Networks, Medical systems)

I Capturing human behaviors, locations, routines, activities and affiliations

I Providing an opportunity to perform data analytics

Data Abuse is inevitable

I It compromises individual’s privacy

I Or breaches the security of an institution

Basics Privacy November 2, 2018 101



Data Privacy

I These privacy concerns need to be mitigated

I They have prompted huge research interest to protect data

I But,

Strong Privacy Protection =⇒ Poor Data Utility

Good Data Utility =⇒ Weak Privacy Protection

Privacy
Data Utility

Challenge

Find a good trade-off between Data Utility and Privacy
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Data Privacy

Objectives of Privacy Preserving Data Mining

I Ensure data privacy

I Maintain a good trade-off between data utility and privacy

Paradigms

I k-Anonymity

I l-Diversity

I Differential Privacy
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Linkage Attack

Method

Different public records can be linked to it to breach privacy

Hospital Records
Private Public
Name Sex Age Zip Disease
Alice F 29 52062 Breast Cancer
Janes F 27 52064 Breast Cancer
Jones M 21 52066 Lung Cancer
Frank M 35 52072 Heart Disease
Ben M 33 52078 Fever

Betty F 37 52080 Nose Pains

Public Records from Sport Club
Public

Name Sex Age Zip Sport
Alice F 29 52062 Tennis
Theo M 41 52066 Golf
John M 24 52062 Soccer
Betty F 37 52080 Tennis
James M 34 82066 Soccer
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k-Anonymity

k-Anonymity

Privacy paradigm for protecting data records before publication

Three kinds of attributes:

1. Key Attributes: Uniquely identifiable attributes (e.g., Name, Social Security
Number, Telephone Number)

2. Quasi-identifier: Groups of attributes that can be combined with external data to
uniquely re-identify an individual (e.g. (Date of Birth, Zip Code, Gender))

3. Sensitive Attributes: An attacker should not be able to combine these with the
key attributes. (e.g. Disease, Salary, Habit, Location etc.)
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k-Anonymity

Attention

Hiding key attributes alone does not guarantee privacy.

An attacker may be able to break the privacy by combining the quasi-identifiers from
the data with those from publicly available information.

Definition: k-Anonymity

Given a set of quasi-identifiers in a database table, the database table is said to be
k-Anonymous, if the sequence of records in each quasi-identifier exists at least k times.

Ensure privacy by Suppression or Generalization of quasi-identifiers.
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k-Anonymity: Suppression

Suppression

Accomplished by replacing a part or the entire attribute value by placeholder, e.g. “?”
(= generalization)

Example

I Suppress Postal Code: 52062 7→ 52???

I Suppress Gender: Male 7→ ?; Female 7→ ?
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k-Anonymity: Generalization

Generalization

Accomplished by aggregating values from fine levels to coarser resolution using
generalisation hierarchy.

Example

Generalize exam grades:

Not Available

PassedFailed

{Good, Average} Very Good ExcellentSickPoorVery Poor
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Shortcomings: Background Knowledge Attack

Background Knowledge Attack

Lack of diversity of the sensitive attribute values (homogeneity)

Example

I Background Knowledge: Alice is (i) 29
years old and (ii) female

I Homogeneity: All 2*-aged females
have Breast Cancer.
=⇒ Alice has BC!

Release
Quasi Identifier Sensitive

Sex Age Zip Disease
F 2? 520?? Breast Cancer
F 2? 520?? Breast Cancer
M 2? 520?? Lung Cancer
M 3? 520?? Heart Disease
M 3? 520?? Fever
F 3? 520?? Nose Pains

This led to the creation of a new privacy model called l-diversity
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l-Diversity

Distinct l-Diversity

An quasi-identifier is l-diverse, if there are at least l different values. A dataset is
l-diverse, if all QIs are l-diverse.

Example
Not ”diverse”

Quasi Identifier Sensitive
QI 1 Headache
QI 1 Headache
QI 1 Headache
QI 2 Cancer
QI 2 Cancer

2-diverse

Quasi Identifier Sensitive
QI 1 Headache
QI 1 Cancer
QI 1 Headache
QI 2 Headache
QI 2 Cancer
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l-Diversity

Other Variants

I Entropy l-Diversity: For each equivalent class, the entropy of the distribution of
its sensitive values must be at least l

I Probabilistic l-Diversity: The most frequent sensitive value of an equivalent class
must be at most 1/l

Limitations

I Not necessary at times

I Difficult to achieve: For large record size, many equivalent classes will be needed
to satisfy l-Diversity

I Does not consider the distribution of sensitive attributes
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Background Attack Assumption

I k-Anonymity and l-Diversity make assumptions about the adversary

I They at times fall short of their goal to prevent data disclosure

I There is another privacy paradigm which does not rely on background knowledge,
called Differential Privacy
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Differential Privacy

Core Idea

Privacy through data perturbation.

I The addition or removal of one record from a database should not reveal any
information to an adversary, i.e. your presence or absence does not reveal or leak
any information.

I Use a randomization mechanism to perturb query results of count, sum, mean
functions, as well as other statistical query functions.
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Differential Privacy

D 
Queries

Answers
S R

Definition

A randomized mechanism R(x) provides ε-differential privacy if for any two databases
D1 and D2 that differ on at most one element, and all outputs S ⊆ Range(R)

Pr [R(D1) ∈ S ]

Pr [R(D2) ∈ S ]
≤ exp(ε)

ε is a parameter called privacy budget/level.
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Data Perturbation

Data perturbation is achieved by noise addition.

Some Kinds of Noise

I Laplace noise

I Gaussian noise

I Exponential Mechanism
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