Ludwig-Maximilians-Universität München Lehrstuhl für Datenbanksysteme und Data Mining Prof. Dr. Thomas Seidl

Knowledge Discovery and Data Mining I

Winter Semester 2018/19

Agenda

1. Introduction

2. Basics

- 2.1 Data Representation
- 2.2 Data Reduction
- 2.3 Visualization
- 2.4 Privacy
- 3. Unsupervised Methods
- 4. Supervised Methods
- 5. Advanced Topics

Data Privacy

Situation

- Huge volume of data is collected
- From a variety of devices and platforms (e.g. Smartphones, Wearables, Social Networks, Medical systems)
- Capturing human behaviors, locations, routines, activities and affiliations
- Providing an opportunity to perform data analytics

Data Abuse is inevitable

- It compromises individual's privacy
- Or breaches the security of an institution

Data Privacy

- These privacy concerns need to be mitigated
- They have prompted huge research interest to protect data

But,

Challenge

Find a good trade-off between Data Utility and Privacy

Data Privacy

Objectives of Privacy Preserving Data Mining

Ensure data privacy

Maintain a good trade-off between data utility and privacy

Paradigms

I-Diversity

Differential Privacy

Linkage Attack

Method

Different public records can be linked to it to breach privacy

Hospital Records							
Private	Public						
Name	Sex	Age	Zip	Disease			
Alice	F	29	52062	Breast Cancer			
Janes	F	27	52064	Breast Cancer			
Jones	M	21	52066	Lung Cancer			
Frank	M	35	52072	Heart Disease			
Ben	M	33	52078	Fever			
Betty	F	37	52080	Nose Pains			

Public Records from Sport Club

Public				
Name	Sex	Age	Zip	Sport
Alice	F	29	52062	Tennis
Theo	M	41	52066	Golf
John	M	24	52062	Soccer
Betty	F	37	52080	Tennis
James	М	34	82066	Soccer

k-Anonymity

k-Anonymity

Privacy paradigm for protecting data records before publication

Three kinds of attributes:

- 1. *Key Attributes*: Uniquely identifiable attributes (e.g., Name, Social Security Number, Telephone Number)
- 2. *Quasi-identifier*: Groups of attributes that can be combined with external data to uniquely re-identify an individual (e.g. (Date of Birth, Zip Code, Gender))
- 3. *Sensitive Attributes*: An attacker should not be able to combine these with the key attributes. (e.g. Disease, Salary, Habit, Location etc.)

k-Anonymity

Attention

Hiding key attributes alone does not guarantee privacy.

An attacker may be able to break the privacy by combining the quasi-identifiers from the data with those from publicly available information.

Definition: *k*-Anonymity

Given a set of quasi-identifiers in a database table, the database table is said to be k-Anonymous, if the sequence of records in each quasi-identifier exists at least k times.

Ensure privacy by *Suppression* or *Generalization* of quasi-identifiers.

k-Anonymity: Suppression

Suppression

Accomplished by replacing a part or the entire attribute value by placeholder, e.g. "?" (= generalization)

Example

- Suppress Postal Code: $52062 \mapsto 52???$
- Suppress Gender: Male \mapsto ?; Female \mapsto ?

k-Anonymity: Generalization

Generalization

Accomplished by aggregating values from fine levels to coarser resolution using generalisation hierarchy.

Shortcomings: Background Knowledge Attack

Background Knowledge Attack

Lack of diversity of the sensitive attribute values (homogeneity)

Example

- Background Knowledge: Alice is (i) 29 years old and (ii) female
- Homogeneity: All 2*-aged females have Breast Cancer.
 - \implies Alice has BC!

Release					
Q	Quasi Identifier		Sensitive		
Sex	Age	Zip	Disease		
F	2?	520??	Breast Cancer		
F	2?	520??	Breast Cancer		
M	2?	520??	Lung Cancer		
M	3?	520??	Heart Disease		
M	3?	520??	Fever		
F	3?	520??	Nose Pains		

This led to the creation of a new privacy model called *I*-diversity

I-Diversity

Distinct *I*-Diversity

An quasi-identifier is *I*-diverse, if there are at least *I* different values. A dataset is *I*-diverse, if all QIs are *I*-diverse.

Example

Not diverse			
Quasi Identifier	Sensitive		
QI 1	Headache		
QI 1	Headache		
QI 1	Headache		
QI 2	Cancer		
QI 2	Cancer		

"

AL . 11 11

2-diverse

Quasi Identifier	Sensitive
QI 1	Headache
QI 1	Cancer
QI 1	Headache
QI 2	Headache
QI 2	Cancer

I-Diversity

Other Variants

- Entropy I-Diversity: For each equivalent class, the entropy of the distribution of its sensitive values must be at least I
- Probabilistic I-Diversity: The most frequent sensitive value of an equivalent class must be at most 1/I

Limitations

- Not necessary at times
- Difficult to achieve: For large record size, many equivalent classes will be needed to satisfy *I*-Diversity
- Does not consider the distribution of sensitive attributes

Background Attack Assumption

- k-Anonymity and I-Diversity make assumptions about the adversary
- They at times fall short of their goal to prevent data disclosure
- There is another privacy paradigm which does not rely on background knowledge, called *Differential Privacy*

Differential Privacy

Core Idea

Privacy through data perturbation.

- The addition or removal of one record from a database should not reveal any information to an adversary, i.e. your *presence* or *absence* does not reveal or leak any information.
- Use a randomization mechanism to perturb query results of count, sum, mean functions, as well as other statistical query functions.

Differential Privacy

Definition

A randomized mechanism R(x) provides ϵ -differential privacy if for any two databases D_1 and D_2 that differ on at most one element, and all outputs $S \subseteq Range(R)$

$$\frac{\Pr[R(D_1) \in S]}{\Pr[R(D_2) \in S]} \le \exp(\epsilon)$$

 ϵ is a parameter called *privacy budget/level*.

Basics

Data perturbation is achieved by noise addition.

Some Kinds of Noise

Laplace noise

Gaussian noise

Exponential Mechanism