Agenda

1. Introduction

2. Basics
 2.1 Data Representation
 2.2 Data Reduction
 2.3 Visualization
 2.4 Privacy

3. Unsupervised Methods

4. Supervised Methods

5. Advanced Topics
Why data reduction?

- Better perception of patterns
 - Raw (tabular) data is hard to understand
 - Visualization is limited to (hundreds of) thousands of objects
 - Reduction of data may help to identify patterns
- Computational complexity
 - Big data sets cause prohibitively long runtime for data mining algorithms
 - Reduced data sets are useful the more the algorithms produce (almost) the same analytical results

How to approach data reduction?

- Data aggregation (basic statistics)
- Data generalization (abstraction to higher levels)
Data Reduction Strategies

Numerosity Reduction
Reduce number of objects

- Sampling (loss of data)
- Aggregation (model parameters, e.g., center / spread)

Dimensionality Reduction
Reduce number of attributes

Quantization, Discretization
Reduce number of values per domain
Dimensionality reduction

Reduce number of attributes

- Linear methods: feature sub-selection, Principal Components Analysis, Random projections, Fourier transform, Wavelet transform
- Non-linear methods: Multidimensional scaling (force model)

Quantization, discretization

Reduce number of values per domain

- Binning (various types of histograms)
- Generalization along hierarchies (OLAP, attribute-oriented induction)
Quantization is a special case of generalization
- E.g., group age (7 bits) to age_range (4 bits)

Dimensionality reduction is degenerate quantization
- Dropping age reduces 7 bits to zero bits
- Corresponds to generalization of age to "all" = "any age" = no information
Data Aggregation

- Aggregation is numerosity reduction (= less tuples)
- Generalization yields duplicates: Merge duplicate tuples and introduce (additional) counter attribute

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>27</td>
<td>CS</td>
</tr>
<tr>
<td>Bob</td>
<td>26</td>
<td>CS</td>
</tr>
<tr>
<td>Eve</td>
<td>19</td>
<td>CS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>(any)</td>
<td>Twen</td>
<td>CS</td>
</tr>
<tr>
<td>(any)</td>
<td>Twen</td>
<td>CS</td>
</tr>
<tr>
<td>(any)</td>
<td>Teen</td>
<td>CS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>Major</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twen</td>
<td>CS</td>
<td>2</td>
</tr>
<tr>
<td>Teen</td>
<td>CS</td>
<td>1</td>
</tr>
</tbody>
</table>
Basic Aggregates

- Central tendency: Where is the data located? Where is it centered?
 - Examples: mean, median, mode, etc. (see below)
- Variation, spread: How much do the data deviate from the center?
 - Examples: variance / standard deviation, min-max-range, . . .

Examples

- Age of students is around 20
- Shoe size is centered around 40
- Recent dates are around 2020
- Average income is in the thousands
Distributive Aggregate Measures

Distributive Measures

The result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning.

Examples

- $\text{count}(D_1 \cup D_2) = \text{count}(D_1) + \text{count}(D_2)$
- $\text{sum}(D_1 \cup D_2) = \text{sum}(D_1) + \text{sum}(D_2)$
- $\text{min}(D_1 \cup D_2) = \text{min}(\text{min}(D_1), \text{min}(D_2))$
- $\text{max}(D_1 \cup D_2) = \text{max}(\text{max}(D_1), \text{max}(D_2))$
Algebraic Aggregate Measures

Algebraic Measures

Can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function.

Examples

$\text{avg}(D_1 \cup D_2) = \frac{\text{sum}(D_1 \cup D_2)}{\text{count}(D_1 \cup D_2)} = \frac{\text{sum}(D_1) + \text{sum}(D_2)}{\text{count}(D_1) + \text{count}(D_2)}$

$\neq \text{avg}(\text{avg}(D_1), \text{avg}(D_2))$

$\text{standard deviation}(D_1 \cup D_2)$
Holistic Aggregate Measures

Holistic Measures

There is no constant bound on the storage size which is needed to determine/describe a sub-aggregate.

Examples

- **median**: value in the middle of a sorted series of values (≈50% quantile)
 \[
 \text{median}(D_1 \cup D_2) \neq \text{simple_function}(\text{median}(D_1), \text{median}(D_2))
 \]

- **mode**: value that appears most often in a set of values

- **rank**: k-smallest / k-largest value (cf. quantiles, percentiles)
Measuring the Central Tendency

Mean – (weighted) arithmetic mean

Well-known measure for central tendency ("average").

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \\
\bar{x}_w = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}
\]

Mid-range

Average of the largest and the smallest values in a data set:

\[
(max + min)/2
\]

- Algebraic measures
- Applicable to numerical data only (sum, scalar multiplication)

What about categorical data?
Median

- Middle value if odd number of values
- For even number of values: average of the middle two values (numeric case), or one of the two middle values (non-numeric case)
- Applicable to ordinal data only (an ordering is required)
- Holistic measure

Examples

- never, never, never, rarely, rarely, often, usually, usually, always
- tiny, small, big, big, big, big, big, huge, huge
- tiny, tiny, small, medium, big, big, large, huge

What if there is no ordering?
Measuring the Central Tendency

Mode

- Value that occurs most frequently in the data
- Example: blue, red, blue, yellow, green, blue, red
- Unimodal, bimodal, trimodal, ...: There are 1, 2, 3, ... modes in the data (multi-modal in general), cf. mixture models
- There is no mode if each data value occurs only once
- Well suited for categorical (i.e., non-numerical) data
Measuring the Dispersion of Data

Variance

- Applicable to numerical data, scalable computation:

\[\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \right] \]

- Calculation by two passes: numerically much more stable
- Single pass: calculate sum of squares and square of sum in parallel

- Measures the spread around the mean
- It is zero if and only if all the values are equal
- Standard deviation: Square root of the variance
- Both the standard deviation and the variance are algebraic
Boxplot Analysis

Five-number summary of a distribution

- Minimum, Q1, Median, Q3, Maximum
- Represents 0%, 25%, 50%, 75%, 100%-quantile of the data
- Also called ”25-percentile”, etc.

Boxplot

- Boundaries: first and third quartiles
- Height: inter-quartile range (IQR)
- The median is marked by a line within the box
- Whiskers: minimum and maximum
- Outliers: usually values more than 1.5 \(\cdot \) IQR below Q1 or above Q3
Boxplot Example

Iris Dataset

sepal length (cm)

setosa versus virginica

class

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Basics Data Reduction

November 2, 2018
Data Generalization

- Which partitions of the data to aggregate?
 - All data
 - Overall mean, overall variance: too coarse (overgeneralized)
- Different techniques to form groups for aggregation
 - Binning – histograms, based on value ranges
 - Generalization – abstraction based on generalization hierarchies
 - Clustering (see later) – based on object similarity
Histograms use binning to approximate data distributions
- Divide data into bins and store a representative (sum, average, median) for each bin
- Popular data reduction and analysis method
- Related to quantization problems
Equi-width Histograms

- Divide the range into N intervals of equal size: uniform grid
- If A and B are the lowest and highest values of the attribute, the width of intervals will be $(B - A)/N$

Positive

- Most straightforward

Negative

- Outliers may dominate presentation
- Skewed data is not handled well
Equi-width Histograms

Example

- Sorted data, 10 bins: 5, 7, 8, 8, 9, 11, 13, 13, 14, 14, 14, 15, 17, 17, 17, 18, 19, 23, 24, 25, 26, 26, 26, 27, 28, 32, 34, 36, 37, 38, 39, 97

- Insert 999
Equi-height Histograms

Divide the range into N intervals, each containing approx. the same number of samples (*quantile-based approach*)

Positive
- Good data scaling

Negative
- If any value occurs often, the equal frequency criterion might not be met (intervals have to be disjoint!)
Equi-height Histograms

Example

- Same data, 4 bins: 5, 7, 8, 8, 9, 11, 13, 13, 14, 14, 14, 15, 17, 17, 17, 18, 19, 23, 24, 25, 26, 26, 26, 27, 28, 32, 34, 36, 37, 38, 39, 97

- Median = 50%-quantile
 - More robust against outliers (cf. value 999 from above)
 - Four bin example is strongly related to boxplot
Concept Hierarchies: Examples

No (real) hierarchies

- Name: all
 - A. Abbeck
 - ...
- Gender: all
 - W. White
 - male
 - female
- Phone: all
 - 158932
 - ...
 - 98763

Set grouping hierarchies

- Age: all
 - 15-19
 - 15
 - ...
 - 19
 - 20-24
 - ...
 - ...
 - 25
 - 25-30
 - ...
 - ...
 - 30
Concept Hierarchies: Examples

Schema hierarchies

- Place: all
 - North America
 - Canada
 - Vancouver
 - Asia
 - USA
 - Toronto
 - Europe
 - Germany
 - Aachen
 - France
 - Munich

- Major: all
 - Science
 - CS
 - Business
 - EE
 - Engineering
 - Civil Eng.
Concept Hierarchy for Categorical Data

- Concept hierarchies can be specified by experts or just by users

- Heuristically generate a hierarchy for a set of (related) attributes
 - based on the number of distinct values per attribute in the attribute set
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy

- Fails for counter examples: 20 distinct years, 12 months, 7 days_of_week, but not "year < month < days_of_week" with the latter on top

```
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Distinct Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>street</td>
<td>674,339</td>
</tr>
<tr>
<td>city</td>
<td>3567</td>
</tr>
<tr>
<td>province/state</td>
<td>65</td>
</tr>
<tr>
<td>country</td>
<td>15</td>
</tr>
</tbody>
</table>
```
Summarization-based Aggregation

Data Generalization

A process which abstracts a large set of task-relevant data in a database from low conceptual levels to higher ones.

- Example:
 - Conceptual levels:
 1. All
 2. Federal states
 3. States
 4. Countries
 5. Cities

- Approaches:
 - Data-cube approach (OLAP / Roll-up) – manual
 - Attribute-oriented induction (AOI) – automated
Basic OLAP Operations

Roll up

Summarize data by climbing up hierarchy or by dimension reduction.

Drill down

Reverse of roll-up. From higher level summary to lower level summary or detailed data, or introducing new dimensions.

Slice and dice

Selection on one (slice) or more (dice) dimensions.

Pivot (rotate)

Reorient the cube, visualization, 3D to series of 2D planes.
Example: Roll up / Drill down

Query

```
SELECT * 
FROM business 
GROUP BY country, quarter
```

Roll-Up

```
SELECT * 
FROM business 
GROUP BY continent, quarter

SELECT * 
FROM business 
GROUP BY country
```

Drill-Down

```
SELECT * 
FROM business 
GROUP BY city, quarter

SELECT * 
FROM business 
GROUP BY country, quarter, product
```
Example: Roll up in a Data Cube

Data Cube: Sales

- **Item (type):** TV, computer, phone, security
- **Location (cities):** Chicago, New York, Toronto, Vancouver
- **Time (quarters):** Q1, Q2, Q3, Q4
- **Profit margin**

Data Cube: Sales

- **Item (type):** TV, computer, phone, security
- **Location (countries):** USA, Canada
- **Time (quarters):** Q1, Q2, Q3, Q4
- **Profit margin**

Roll Up

Basics

Data Reduction

November 2, 2018
Example: Slice Operation

```
SELECT income 
FROM time t, product p, country c 
WHERE p.name = 'VCR'
```

VCR dimension is chosen
Example: Dice Operation

\[
\text{SELECT income FROM time t, product p, country c WHERE p.name = 'VCR' OR p.name = 'PC' AND t.quarter BETWEEN 2 AND 3}
\]

Sub-data cube over PC, VCR and quarters 2 and 3 is extracted.
Example: Pivot (rotate)

<table>
<thead>
<tr>
<th>year</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>product</td>
<td>TV</td>
<td>PC</td>
<td>VCR</td>
</tr>
</tbody>
</table>

↓ Pivot (rotate) ↓

<table>
<thead>
<tr>
<th>product</th>
<th>TV</th>
<th>PC</th>
<th>VCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>
Basic OLAP Operations

Other operations

- **Drill across**: involving (across) more than one fact table
- **Drill through**: through the bottom level of the cube to its back-end relational tables (using SQL)
Specifying Generalization by a Star-Net

- Each circle is called a *footprint*
- Footprints represent the granularities available for OLAP operations
Discussion of OLAP-based Generalization

Strength

- Efficient implementation of data generalization
- Computation of various kinds of measures, e.g., count, sum, average, max
- Generalization (and specialization) can be performed on a data cube by roll-up (and drill-down)

Limitations

- Handles only dimensions of simple non-numeric data and measures of simple aggregated numeric values
- Lack of intelligent analysis, can’t tell which dimensions should be used and what levels the generalization should reach
Attribute-Oriented Induction (AOI)

- Apply aggregation by merging identical, generalized tuples and accumulating their respective counts.
- *Data focusing:* task-relevant data, including dimensions, and the result is the initial relation
- *Generalization Plan:* Perform generalization by either *attribute removal* or *attribute generalization*
Attribute-Oriented Induction (AOI)

Attribute Removal

Remove attribute \(A \) if:

- there is a large set of distinct values for \(A \) but there is no generalization operator (concept hierarchy) on \(A \), or
- \(A \)'s higher level concepts are expressed in terms of other attributes (e.g. *street* is covered by *city*, *state*, *country*).

Attribute Generalization

If there is a large set of distinct values for \(A \), and there exists a set of generalization operators (i.e., a concept hierarchy) on \(A \), then select an operator and generalize \(A \).
Attribute Oriented Induction: Example

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Major</th>
<th>Birth place</th>
<th>Birth data</th>
<th>Residence</th>
<th>Phone</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Woodman</td>
<td>M</td>
<td>CS</td>
<td>Vancouver, BC, Canada</td>
<td>8-12-81</td>
<td>3511 Main St., Richmond</td>
<td>687-4598</td>
<td>3.67</td>
</tr>
<tr>
<td>Scott Lachance</td>
<td>M</td>
<td>CS</td>
<td>Montreal, Que, Canada</td>
<td>28-7-80</td>
<td>345 1st Ave., Richmond</td>
<td>253-9106</td>
<td>3.70</td>
</tr>
<tr>
<td>Laura Lee</td>
<td>F</td>
<td>Physics</td>
<td>Seattle, WA, USA</td>
<td>25-8-75</td>
<td>125 Austin Ave., Burnaby</td>
<td>420-5232</td>
<td>3.83</td>
</tr>
</tbody>
</table>

- **Name**: large number of distinct values, no hierarchy – removed
- **Gender**: only two distinct values – retained
- **Major**: many values, hierarchy exists – generalized to Sci., Eng., Biz.
- **Birth_place**: many values, hierarchy – generalized, e.g., to country
- **Birth_date**: many values – generalized to age (or age_range)
- **Residence**: many streets and numbers – generalized to city
- **Phone number**: many values, no hierarchy – removed
- **Grade_point_avg (GPA)**: hierarchy exists – generalized to good, ...
- **Count**: additional attribute to aggregate base tuples
Attribute Oriented Induction: Example

Initial Relation:

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Major</th>
<th>Birth place</th>
<th>Birth data</th>
<th>Residence</th>
<th>Phone</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Woodman</td>
<td>M</td>
<td>CS</td>
<td>Vancouver, BC, Canada</td>
<td>8-12-81</td>
<td>3511 Main St., Richmond</td>
<td>687-4598</td>
<td>3.67</td>
</tr>
<tr>
<td>Scott Lachance</td>
<td>M</td>
<td>CS</td>
<td>Montreal, Que, Canada</td>
<td>28-7-80</td>
<td>345 1st Ave., Richmond</td>
<td>253-9106</td>
<td>3.70</td>
</tr>
<tr>
<td>Laura Lee</td>
<td>F</td>
<td>Physics</td>
<td>Seattle, WA, USA</td>
<td>25-8-75</td>
<td>125 Austin Ave., Burnaby</td>
<td>420-5232</td>
<td>3.83</td>
</tr>
</tbody>
</table>

Prime Generalized Relation:

<table>
<thead>
<tr>
<th>Gender</th>
<th>Major</th>
<th>Birth region</th>
<th>Age Range</th>
<th>Residence</th>
<th>GPA</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Science</td>
<td>Canada</td>
<td>20-25</td>
<td>Richmond</td>
<td>Very good</td>
<td>16</td>
</tr>
<tr>
<td>F</td>
<td>Science</td>
<td>Foreign</td>
<td>25-30</td>
<td>Burnaby</td>
<td>Excellent</td>
<td>22</td>
</tr>
</tbody>
</table>

Crosstab for generalized relation:

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>Foreign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>16</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>36</td>
<td>62</td>
</tr>
</tbody>
</table>
Problem: How many distinct values for an attribute?

- **Overgeneralization**: values are too high-level
- **Undergeneralization**: level not sufficiently high
- Both yield tuples of poor usefulness

Two common approaches

- **Attribute-threshold control**: default or user-specified, typically 2-8 values
- **Generalized relation threshold control**: control the size of the final relation/rule, e.g., 10-30
Next Attribute Selection Strategies for Generalization

- **Aiming at minimal degree of generalization**
 - Choose attribute that reduces the number of tuples the most
 - Useful heuristic: choose attribute with highest number of distinct values.

- **Aiming at similar degree of generalization** for all attributes
 - Choose the attribute currently having the least degree of generalization

- **User-controlled**
 - Domain experts may specify appropriate priorities for the selection of attributes