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Initialization of Partitioning Clustering Methods

Just two examples:

[naïve]

– Choose sample ܣ of the dataset

– Cluster the sample and use centers as initialization

[Fayyad, Reina, and Bradley 1998]
– Choose m different (small) samples ܣ,… ܯ, of the dataset

– Cluster each sample to get m estimates for k representatives
A = (A1, A2, . . ., Ak), B = (B1,. . ., Bk), ..., M = (M1,. . ., Mk)

– Then, cluster the set DS = A  B  …  M m times. Each time
use the centers of A, B, ..., M as respective initial partitioning

– Use the centers of the best clustering as initialization for 
the partitioning clustering of the whole dataset

Clustering Partitioning Methods Choice of parameters 
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Fayyad U., Reina C., Bradley P. S., „Initialization of Iterative Refinement Clustering Algorithms“, In KDD 1998), pp. 194—198.
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Choice of the Parameter k

Clustering Partitioning Methods Choice of parameters 

 Idea for a method: 

– Determine a clustering for each k = 2, ... , Kmax ≤ n-1

– Choose the “best” clustering

 But how to measure the quality of a clustering?

– A measure should not be monotonic over k because the measures for the 

compactness of a clustering SSE and TD are monotonously decreasing 

with increasing value of k.

 Silhouette-Coefficient [Kaufman & Rousseeuw 1990]

– Measure for the quality of a k-means or a k-medoid clustering that is not 

monotonic over k.
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The Silhouette coefficient (1)

Clustering Partitioning Methods Choice of parameters 

 Basic idea: 

– How good is the clustering = how appropriate is the mapping of objects 

to clusters

– Elements in cluster should be „similar“ to their representative

 measure the average distance of objects to their representative: a(o)

– Elements in different clusters should be „dissimilar“

 measure the average distance of objects to alternative clusters

(i.e. second closest cluster): b(o)
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The Silhouette coefficient (2)

Clustering Partitioning Methods Choice of parameters 

 ܽሺ݋ሻ: average distance between object ݋ and the objects in its cluster A 

 ܾሺ݋ሻ: for each other cluster ܥ௜ compute the average distance between o
and the objects in ܥ௜. Then take the smallest average distance

 The silhouette of o is then defined as

 The values of the silhouette coefficient range from –1 to +1

a(o)

b(o)

B
A

ܽ ݋ ൌ
1

|ሻ݋ሺܥ| ෍ ,݋ሺݐݏ݅݀ ሻ݌
௣∈஼ሺ௢ሻ

ݏ ݋ ൌ 	൞
0 ݂݅	ܽ ݋ ൌ 0, ݁. ݃. |௜ܥ| ൌ 1

ܾ ݋ െ ܽሺ݋ሻ
max	ሼܽ ݋ , ܾ ݋ ሽ 																																							݁ݏ݈݁

ܾ ݋ ൌ min
஼೔ஷ஼ሺ௢ሻ

1
|௜ܥ|

෍ ,݋ሺݐݏ݅݀ ሻ݌
௣∈஼೔
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The Silhouette coefficient (3)

Clustering Partitioning Methods Choice of parameters 

 The silhouette of a cluster ܥ௜ is defined as:

݄݈݅ݏ ௜ܥ ൌ
1
|௜ܥ|

෍ ሻ݋ሺݏ
௢∈஼೔

 The silhouette of a clustering ࣝ ൌ ሺܥଵ, … , ௞ሻܥ is defined as:

݄݈݅ݏ ࣝ ൌ
1
෍|ܦ| ሻ݋ሺݏ

௢∈஽

,

where ܦ denotes the whole dataset.
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The Silhouette coefficient (4)

Clustering Partitioning Methods Choice of parameters 

 „Reading“ the silhouette coefficient:
Let ܽ ݋ ് 0. 

– ܾ ݋ ≫ ܽ ݋ ⇒ ݏ ݋ ൎ 1: good assignment of o to its cluster A

– ܾ ݋ ൎ ܽ ݋ ⇒ ݏ ݋ ൎ ݋ :0 is in-between A and B

– ܾ ݋ ≪ ܽ ݋ ⇒ ݏ ݋ ൎ െ1: bad, on average 	݋ is closer to members of B

 Silhouette Coefficient ࣝݏ of a clustering: average silhouette of all 
objects

– 0.7 < sC  1.0 strong structure, 0.5 < sC  0.7 medium structure

– 0.25 < sC  0.5 weak structure, sC  0.25 no structure
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

The Silhouette coefficient (5)

Silhouette Coefficient for points in ten clusters

in: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)

Knowledge Discovery in Databases I: Evaluation von unsupervised Verfahren
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Expectation Maximization (EM)

Statistical approach for  finding maximum likelihood estimates of parameters in 
probabilistic models

Here: using EM as clustering algorithm

Approach:
Observations are drawn from one of 
several components of a mixture distribution.

Main idea:
– Define clusters as probability distributions 
 each object has a certain probability of 

belonging to each cluster

– Iteratively improve the parameters of each 
distribution (e.g. center, “width” and “height” 
of a Gaussian distribution) until some quality 
threshold is reached

Clustering Expectation Maximization (EM) 

Additional Literature: C. M. Bishop „Pattern Recognition and Machine Learning“, Springer, 2009
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Excursus: Gaussian Mixture Distributions

Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

Gaussian distribution:
– Univariate: single variable x ∈ Թ:

݌ ݔ ,ߤ ଶߪ ൌ ࣨ ݔ ,ߤ ଶߪ ൌ ଵ
ଶగఙమ

⋅ ݁ି
భ

మ഑మ
	⋅ ௫ିఓ మ

– Multivariate: ݀-dimensional vector ࢞ ∈ Թௗ:

݌ ࢞ ,ࣆ ࢳ ൌ ࣨ ࢞ ,ࣆ ࢳ ൌ ଵ
ଶగ ೏ ࢳ

⋅ ݁ି
భ
మ⋅ ࣆି࢞

೅⋅ ࢳ షభ⋅ ࣆି࢞

Gaussian mixture distribution with ܭ components:

– ݀-dimensional vector ࢞ ∈ Թௗ:

݌ ࢞ ൌ ∑ ௞ߨ ⋅ ࣨ ,௞ࣆ|࢞ ௞௄ࢳ
௞ୀଵ

Clustering Expectation Maximization (EM) 

mean vector ∈ Թௗ covariance matrix ∈ Թௗൈௗ

mean ∈ Թ variance ∈ Թ

mixing coefficients ∈ Թ	: ∑ ௞௞ߨ ൌ 1 and 0 ൑ ௞ߨ ൑ 1



DATABASE
SYSTEMS
GROUP

Expectation Maximization (EM): 
Exemplary Application

Example taken from: C. M. Bischop „Pattern Recognition and Machine Learning“, 2009

Clustering Expectation Maximization (EM) 

iter. 1

iter. 2 iter. 5 iter. 
20
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Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

A clustering ࣧ ൌ …,ଵܥ , ௄ܥ 	is represented by a mixture distribution with parameters Θ ൌ
,ଵߨ ,ଵࣆ ઱ଵ, … , ,௄ߨ ,௄ࣆ ઱௄ :
݌ ߆|࢞ ൌ ∑ ௞ߨ ⋅ ࣨ ,௞ࣆ|࢞ ௞௄ࢳ

௞ୀଵ

Each cluster is represented by one 
component of the mixture distribution:
݌ ࢞ ,௞ࣆ ௞ࢳ ൌ ࣨ ࢞ ,௞ࣆ ௞ࢳ

Given a dataset ܆ ൌ ࢞ଵ,… , ࢞ே ⊆ Թௗ, we can write the likelihood 
that all data points ܠ௡ ∈ ܆ are generated (independently) 
by the mixture model with parameters Θ	as:

log ݌ Θ|܆ ൌ logෑ݌ሺݔ௡|Θሻ
ே

௡ୀଵ
Goal: Find the parameters ߆ெ௅ with 
maximal (log-)likelihood estimation (MLE)

Θெ௅ ൌ argmax
஀

log ݌ Θ|܆

Expectation Maximization (EM)

Clustering Expectation Maximization (EM) 
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Expectation Maximization (EM)

• Goal: Find the parameters ߆ெ௅ with the maximal (log-)likelihood estimation!
Θெ௅ ൌ argmax

஀
log ݌ Θ|܆

log ݌ Θ|܆ ൌ logෑ෍ߨ௞ ⋅ p ௡ܠ ,௞ࣆ ઱௞

௄

௞ୀଵ

ே

௡ୀଵ

ൌ ෍ log෍ߨ௞ ⋅ p ௡ܠ ,௞ࣆ ઱௞

௄

௞ୀଵ

ே

௡ୀଵ

• Maximization with respect to the means:

߲ log ݌ Θ|܆
௝ࣆ	߲

ൌ ෍
߲log ݌ ࢞௡|Θ

௝ࣆ	߲

ே

௡ୀଵ

ൌ ෍

݌߲ ࢞௡|Θ
௝ࣆ	߲

݌ ࢞௡|Θ

ே

௡ୀଵ

ൌ ෍

௝ߨ	߲ ⋅ ݌ ࢞௡ ,௝ࣆ ઱௝
௝ࣆ	߲

∑ ݌ ࢞௡ ,௞ࣆ ઱௞௄
௞ୀଵ

ே

௡ୀଵ

ൌ ෍
௝ߨ ⋅ ઱୨ିଵ ࢞௡ െ ௝ࣆ ࣨ ࢞௡ ,௝ࣆ ઱௝

∑ ݌ ࢞௡ ,௞ࣆ ઱௞௄
௞ୀଵ

ே

௡ୀଵ

߲ log ݌ Θ|܆
௝ࣆ	߲

ൌ ઱୨ିଵ ෍ ࢞௡ െ ௝ࣆ
௝ߨ ⋅ ࣨ ࢞௡ ,௝ࣆ ઱௝

∑ ௞ߨ ⋅ ࣨ ࢞௡ ,௞ࣆ ઱௞௄
௞ୀଵ

ே

௡ୀଵ

≝ ૙	

• Define
௝ߛ ௡ݔ 	≔ ௝ߨ ⋅ ࣨ ࢞௡ ,௝ࣆ ઱௝ .

௝ߛ ௡ݔ is the probability that component ݆ generated the object ࢞௡.

Clustering Expectation Maximization (EM) 

߲
௝ࣆ߲

ࣨ ࢞௡ ,௝ࣆ ઱௝ ൌ ઱୨ିଵ ࢞௡ െ ௝ࣆ ࣨ ࢞௡ ,௝ࣆ ઱௝
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Expectation Maximization (EM)

Maximization w.r.t. the means yields:

௝ࣆ ൌ
∑ ௝ߛ ࢞௡ 	࢞௡ே
௡ୀଵ

∑ ௝ߛ ࢞௡ே
௡ୀଵ

Maximization w.r.t. the covariance yields:

઱௝ ൌ
∑ ௝ߛ ࢞௡ ࢞௡ െ ௝ࣆ ࢞௡ െ ௝ࣆ

்ே
௡ୀଵ

∑ ௝ߛ ࢞௡ே
௡ୀଵ

Maximization w.r.t. the mixing coefficients yields:

௝ߨ ൌ
∑ ௝ߛ ࢞௡ே
௡ୀଵ

∑ ∑ ௞ߛ ࢞௡ே
௡ୀଵ

௄
௞ୀଵ

Clustering Expectation Maximization (EM) 

(weighted mean)
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Expectation Maximization (EM)

Problem with finding the optimal parameters ߆ெ௅:

௝ࣆ ൌ
∑ ఊೕ ࢞೙ 	࢞೙ಿ
೙సభ
∑ ఊೕ ࢞೙ಿ
೙సభ

and     ߛ௝ ࢞௡ ൌ
గೕ⋅ࣨ ࢞௡ ,௝ࣆ ઱௝

∑ గೖ⋅ࣨ ࢞௡ ,௞ࣆ ઱௞಼
ೖసభ

– Non-linear mutual dependencies.

– Optimizing the Gaussian of cluster ݆ depends on all other Gaussians.

There is no closed-form solution!

Approximation through iterative optimization procedures

Break the mutual dependencies by optimizing ࣆ௝ and ߛ௝ሺ࢞௡ሻ
independently

Clustering Expectation Maximization (EM) 
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Expectation Maximization (EM)

EM-approach: iterative optimization
1. Initialize means ௝, covariancesࣆ ઱௝, and mixing coefficients ߨ௝ and evaluate the initial 

log likelihood.

2. E step: Evaluate the responsibilities using the current parameter values:

௝௡௘௪	ߛ ࢞௡ ൌ
௝ߨ ⋅ ࣨ ࢞௡ ,௝ࣆ ઱௝

∑ ௞ߨ ⋅ ࣨ ࢞௡ ,௞ࣆ ઱௞௄
௞ୀଵ

3. M step: Re-estimate the parameters using the current responsibilities:

௝௡௘௪ࣆ ൌ
∑ ௝௡௘௪	ߛ  ࢞௡ 	࢞௡ே
௡ୀଵ

∑ ௝௡௘௪	ߛ  ࢞௡ே
௡ୀଵ

઱௝௡௘௪ ൌ
∑ ௝௡௘௪	ߛ ࢞௡ ࢞௡ െ ௝௡௘௪ࣆ ࢞௡ െ ௝௡௘௪ࣆ

்ே
௡ୀଵ

∑ ௝௡௘௪	ߛ ࢞௡ே
௡ୀଵ

௝௡௘௪ߨ ൌ
∑ ௝௡௘௪	ߛ ࢞௡ே
௡ୀଵ

∑ ∑ ௞௡௘௪	ߛ ࢞௡ே
௡ୀଵ

௄
௞ୀଵ

4. Evaluate the new log likelihood 	log	݌ Θ୬ୣ୵|܆ and check for convergence of 
parameters or log likelihood (|log	݌ Θ୬ୣ୵|܆ - log	݌ Θ|܆ | ൑ ߳). 
If the convergence criterion is not satisfied, set	Θ ൌ Θ୬ୣ୵ and go to step 2.

Clustering Expectation Maximization (EM) 
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EM: Turning the Soft Clustering into a Partitioning

EM obtains a soft clustering (each object belongs to each cluster with a 
certain probability) reflecting the uncertainty of the most appropriate 
assignment.

Modification to obtain a partitioning variant

– Assign each object to the cluster to which it belongs with the highest 
probability

Cluster obj݁ܿݐ௡ ൌ ߛ௞∈ሼଵ,…,௄ሽሼݔܽ݉݃ݎܽ ௡௞ݖ ሽ

Clustering Expectation Maximization (EM) 

Example taken from: C. M. Bishop „Pattern Recognition and Machine Learning“, 2009

a) input for EM b) soft clustering result of EM c) original data
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Discussion

Superior to k-Means for clusters of varying size 
or clusters having differing variances
 more accurate data representation

Convergence to (possibly local) maximum

Computational effort for N objects, K derived clusters, and ݐ iterations:
– ܱሺݐ ⋅ ܰ ⋅ 	ሻܭ
– #iterations is quite high in many cases

Both - result and runtime - strongly depend on 

– the initial assignment

 do multiple random starts and choose the final estimate with 
highest likelihood

 Initialize with clustering algorithms (e.g., K-Means usually converges much 
faster)

Local maxima and initialization issues have been addressed in various 
extensions of EM

– a proper choice of parameter K (= desired number of clusters)

 Apply principles of model selection (see next slide)

Clustering Expectation Maximization (EM) 
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EM: Model Selection for Determining Parameter K

Classical trade-off problem for selecting the proper number of components ܭ
– If ܭ is too high, the mixture may overfit the data

– If ܭ is too low, the mixture may not be flexible enough to approximate the data

Idea: determine  candidate models Θ୏ for a range of values of ܭ (from ܭ௠௜௡ to 
∗௠௔௫) and select the model Θ୏ܭ ൌ maxሼqualሺΘ௄ሻ|ܭ ∈ ሼܭ௠௜௡, … , ௠௔௫ሽሽܭ

– Silhouette Coefficient (as for ݇-Means) only works for partitioning approaches.

– The MLE (Maximum Likelihood Estimation) criterion is nondecreasing in ܭ

Solution: deterministic or stochastic model selection methods[MP’00] 

which try to balance the goodness of fit with simplicity.
– Deterministic: ݈ܽݑݍ Θ௄ ൌ log ݌ ܆ Θ௄ ൅ ࣪ሺܭሻ

where ࣪ሺܭሻ is an increasing function penalizing higher values of ܭ
– Stochastic: based on Markov Chain Monte Carlo (MCMC)

Clustering Expectation Maximization (EM) 

[MP‘00] G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.


