1) Introduction to clustering
2)  Partitioning Methods

— K-Means
— Variants: K-Medoid, K-Mode, K-Median
— Choice of parameters: Initialization, Silhouette coefficient

3)  Probabilistic Model-Based Clusters: Expectation Maximization
4)  Density-based Methods: DBSCAN

5)  Hierarchical Methods

— Agglomerative and Divisive Hierarchical Clustering
— Density-based hierarchical clustering: OPTICS

6)  Evaluation of Clustering Results

7)  Further Clustering Topics
— Scaling Up Clustering Algorithms
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Just two examples:
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[Fayya

Initialization of Partitioning Clustering Methods

whole dataset
k=3

i

Choose sample A of the dataset

Cluster the sample and use centers as initialization

d, Reina, and Bradley 1998]

Choose m different (small) samples 4, ..., M of the dataset m =4 samples A, B, C, D

¥ true cluster centers

Cluster each sample to get m estimates for k representatives A D3
A=A, A, ..., A), B=(B,,...,B), .. M=(M,,..., M) a x O
Then, cluster theset DS=A U Bu ... U M mtimes. Each time o D2 B3
use the centers of A, B, ..., M as respective initial partitioning Al B2 x

: e x C2
Use the centers of the best clustering as initialization for . br A2
the partitioning clustering of the whole dataset >

Fayyad U., Reina C., Bradley P. S., , Initialization of Iterative Refinement Clustering Algorithms”, In KDD 1998), pp. 194—198.
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= |dea for a method:

— Determine a clustering for each k=2, ..., K__ < n-1

max —

— Choose the “best” clustering

= But how to measure the quality of a clustering?

— A measure should not be monotonic over k because the measures for the
compactness of a clustering SSE and TD are monotonously decreasing
with increasing value of k.

=  Silhouette-Coefficient [Kaufman & Rousseeuw 1990]

— Measure for the quality of a k-means or a k-medoid clustering that is not
monotonic over k.



= Basic idea:

— How good is the clustering = how appropriate is the mapping of objects
to clusters

— Elements in cluster should be ,,similar” to their representative
- measure the average distance of objects to their representative: a(o)

— Elements in different clusters should be , dissimilar”
- measure the average distance of objects to alternative clusters
(i.e. second closest cluster): b(o)




w

amaeasel T he Silhouette coefficient (2)

SYSTEMS
GROUP

a(o): average distance between object o and the objects in its cluster A

1 .

a(o) = )] Z dist(o,p)
peC(o)

b(o): for each other cluster C; compute the average distance between o

and the objects in C;. Then take the smallest average distance

b(0) = mi 1 di
(o) = cmin mz ist(o,p)

PEC;

The silhouette of o is then defined as 5

0 if a(lo) =0,e.g.|C;| =1
s(o) = b(o) — a(o)
max{a(o), b(0)}

The values of the silhouette coefficient range from -1 to +1

else
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= The silhouette of a cluster C; is defined as:

1
silh(C) = 1~ Z 5(0)

0€E(;

= The silhouette of a clustering C = (C4, ..., Cy) is defined as:

1
silh(€) = 77 Z 5(0),

O€ED

where D denotes the whole dataset.
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= Reading” the silhouette coefficient:
Let a(o) # 0.

— b(o) » a(o) = s(o) = 1: good assignment of o to its cluster A
— b(0) = a(o) 2 s(o) = 0: o is in-between A and B

— b(0) < a(o) = s(o) = —1: bad, on average o is closer to members of B

= Silhouette Coefficient s of a clustering: average silhouette of all
objects

— 0.7 < 5. < 1.0 strong structure, 0.5 < s- < 0.7 medium structure

— 0.25 <5, <0.5 weak structure, s- < 0.25 no structure
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Silhouette Coefficient for points in ten clusters

woH WO E
o . (Y L -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Silhouette Coefficient

in: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)



1)  Introduction to clustering

2)  Partitioning Methods

— K-Means
— K-Medoid
— Choice of parameters: Initialization, Silhouette coefficient

3) Expectation Maximization: a statistical approach
4) Density-based Methods: DBSCAN

5) Hierarchical Methods

— Agglomerative and Divisive Hierarchical Clustering
— Density-based hierarchical clustering: OPTICS

6)  Evaluation of Clustering Results

7)  Further Clustering Topics

— Ensemble Clustering
— Discussion: an alternative view on DBSCAN
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Statistical approach for finding maximum likelihood estimates of parameters in
probabilistic models

Here: using EM as clustering algorithm

Approach:
Observations are drawn from one of
several components of a mixture distribution.

> A"—-,—.
Lo
et

Main idea: o

— Define clusters as probability distributions
—> each object has a certain probability of
belonging to each cluster

— lteratively improve the parameters of each
distribution (e.g. center, “width” and “height”
of a Gaussian distribution) until some quality
threshold is reached

Additional Literature: C. M. Bishop , Pattern Recognition and Machine Learning”, Springer, 2009
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Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

Gaussian distribution:

=
@

— Univariate: single variable x € R: >
1 §0.6
2y — 2y _ 1 o (x-p)? -
Pl o) = Nalp,0%) = e
mean € R variance € R % 2
— Multivariate: d-dimensional vector x € R%:
1 — G- @O -z
x|l 2)=N(x|ut)=—-¢e 2
p(/ly,{ (xlp, ) = e -

o

mean vector € R®  covariance matrix € R%*¢
Gaussian mixture distribution with K components:

- d-dimensional vector x € R%:

p(x) = Yi=q Ty - N (x| pye, i)

mixing coefficients ER: Y, m, =1 and 0 <m, <1

Clustering> Expectation Maximization (EM) 37
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Expectation Maximization (EM):
Exemplary Application

Example taken from: C. M. Bischop , Pattern Recognition and Machine Learning”, 2009

Q

‘."i' ’

°2%
O
0

b) 2

Clustering—> Expectation Maximization (EM)
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Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

A clustering M = {Cy, ..., Cx} is represented by a mixture distribution with parameters 0 =
{1, 0, 2, oo, g, Ui, T}
p(x]0) = Y=y mp - N (x| pye, Zi)

Each cluster is represented by one
component of the mixture distribution:

p(x|py, Zy) = N (x|pg, Zy)

Given a dataset X = {x4, ..., xy} S R%, we can write the likelihood
that all data points x,, € X are generated (independently)
by the mixture model with parameters © as:

N
logp(X|0) = lognp(xnIG)
n=1

Goal: Find the parameters 0, with
maximal (log-)likelihood estimation (MLE)

Oy, = argmax{logp(X|0)}

Clustering> Expectation Maximization (EM) 39
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Goal: Find the parameters 0,,; with the maximal (log-)likelihood estimation!
Oy, = argmax{logp(X|0)}

K

N K N
logp(X|0) =log| | > mic pOxalite B) = Y 1og ) - pkalstis Zi)
k

n=1k=1 n=1 =1

Maximization with respect to the means: -
a_ujN(x“|”f‘Z") = 2 (20 — )V (0|, %)
Ip(x,|©) 9 m; - p(xn|p; %)
dlogp(X|©) _ i dlogp(x,|0) _ i ou; _ i ou; _ i mj - Zj_l(xn — uj)]\f(xn|uj,2j)
d ﬂj 0 Ilj 1 p(xnlg) =1 2115:1 p(xnlﬂkvzk) =i 2115:1 p(xnlﬂkv zk)

“

N
dlogp(X|®) 51 Z(x —w) 0 -J\f(xn|uj,2j)
-4 n j
n=1

a ”] Ik(=1 T[k : N(xnlﬂk: zk)

Define /

Vi) =1 N (|1, 25).
vj(xy) is the probability that component j generated the object x,,.

Clustering—> Expectation Maximization (EM)
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Maximization w.r.t. the means yields:

Hi = — j( ) (weighted mean)
' 5 eighted mean
J nNzln(xll) W Ig

Maximization w.r.t. the covariance yields:

_ Y= ¥y () (%0 — ;) (2, — ﬂj)T

Y.
ﬁ=1 Vi (xn)

J

Maximization w.r.t. the mixing coefficients yields:

Z%’:l 4 (xn)
II§=1 Zﬁ=1 Vi (xn)

Tl'j=



Problem with finding the optimal parameters 0,; :

_ 211¥=1 Vj(xn) xp

| - (Xn 1)) Z)
”J B Z1I¥=1Yj(xn)

ZIk{=1 ”k'N(xnlﬂk» zk)

and  yj(xy) =

— Non-linear mutual dependencies.
— Optimizing the Gaussian of cluster j depends on all other Gaussians.
—> There is no closed-form solution!

= Approximation through iterative optimization procedures

— Break the mutual dependencies by optimizing u; and y;(xy)
iIndependently
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EM-approach: iterative optimization

1. Initialize means u;, covariances ¥;, and mixing coefficients r; and evaluate the initial
log likelihood.

2. E step: Evaluate the responsibilities using the current parameter values:

neW(x ) _ Iy - N(xnlﬂj’zj)
yj n’ = K
x=1Tk * N (x| g, Z)

3. M step: Re-estimate the parameters using the current responsibilities:

N

”new _ 4&mn=1 yrjlew(xn) Xn
J T §yN

n=1 yr;ew (xn)

. Zﬁ:l yr}ew (xn)(xn - ”;'lew)(xn - M?ew)T

Z}Lew N new
N
new _ n=1 yr}ew (xn)
! Ik(:1 Zg=1 Y?cew (xn)

4. Evaluate the new log likelihood log p(X|0™¢") and check for convergence of
parameters or log likelihood (|log p(X|@"¢Y) - log p(X|®)| < €).
If the convergence criterion is not satisfied, set @ = ©™*W and go to step 2.

Clustering—> Expectation Maximization (EM)
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EM: Turning the Soft Clustering into a Partitioning

EM obtains a soft clustering (each object belongs to each cluster with a
certain probability) reflecting the uncertainty of the most appropriate

assignment.

Example taken from: C. M. Bishop ,,Pattern Recognition and Machine Learning”, 2009

1} oy | 1

° . 3% 4 8%
- % ‘-.\.
05 = e 0.5 o . ::’ﬁ:
..

?
?

057

0 0.5 1 0 0.5 1 0 0.5 1

a) input for EM b) soft clustering result of EM ¢) original data

Modification to obtain a partitioning variant

— Assign each object to the cluster to which it belongs with the highest
probability

CIUSter(Obj eCtn) = argmaXge(s,.. K} {V (an)}

Clustering—> Expectation Maximization (EM)
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Superior to k-Means for clusters of varying size - k',mf"' clurtrig
or clusters having differing variances : ﬁwﬁ
- more accurate data representation . ";’{- ;‘? '
Convergence to (possibly local) maximum o l".:ff,‘.{;:'s'-'-"
Computational effort for N objects, K derived clusters, and t iterations: N I
- O(t-N-K) . &M C ustaring
—  #iterations is quite high in many cases
Both - result and runtime - strongly depend on '_' &:‘““\!"
— the initial assignment Jﬁ%‘{'i
- do multiple random starts and choose the final estimate with . R .
highest likelihood T
- Initialize with clustering algorithms (e.g., K-Means usually converges much

faster)

- Local maxima and initialization issues have been addressed in various
extensions of EM

— a proper choice of parameter K (= desired number of clusters)

= Apply principles of model selection (see next slide)
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Classical trade-off problem for selecting the proper number of components K
— If K is too high, the mixture may overfit the data
— If K is too low, the mixture may not be flexible enough to approximate the data
|dea: determine candidate models Ok for a range of values of K (from K,,,;;, to
Konax) and select the model O+ = max{qual(Ok)|K € {Knmin, - » Kmax}}
— Silhouette Coefficient (as for k-Means) only works for partitioning approaches.
— The MLE (Maximum Likelihood Estimation) criterion is nondecreasing in K
Solution: deterministic or stochastic model selection methodsMP00!
which try to balance the goodness of fit with simplicity.

— Deterministic: qual(0g) = logp(X|0k) + P(K)
where P(K) is an increasing function penalizing higher values of K

— Stochastic: based on Markov Chain Monte Carlo (MCMC(C)

[MP*00] G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.
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