Knowledge Discovery in Databases
WiSe 2017/18

Kapitel 4: Clustering

Vorlesung: Prof. Dr. Peer Kroger

Ubungen: Anna Beer, Florian Richter



1)  Introduction to Clustering

2)  Partitioning Methods

— K-Means
— Variants: K-Medoid, K-Mode, K-Median
— Choice of parameters: Initialization, Silhouette coefficient

3)  Probabilistic Model-Based Clusters: Expectation Maximization
4)  Density-based Methods: DBSCAN

5)  Hierarchical Methods

— Agglomerative and Divisive Hierarchical Clustering
— Density-based hierarchical clustering: OPTICS

6)  Evaluation of Clustering Results

7)  Further Clustering Topics

— Ensemble Clustering
— Discussion: an alternative view on DBSCAN
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Grouping a set of data objects into clusters

— Cluster: a collection of data objects
1) Similar to one another within the same cluster
2) Dissimilar to the objects in other clusters

Clustering = unsupervised “classification” (no predefined classes)
Typical usage

— As a stand-alone tool to get insight into data distribution
— As a preprocessing step for other algorithms
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Preprocessing — as a data reduction (instead of sampling), e.g.
— Image data bases (color histograms for filter distances)

— Stream clustering (handle endless data sets for offline clustering)
Pattern Recognition and Image Processing

Spatial Data Analysis

— create thematic maps in Geographic Information Systems
by clustering feature spaces

— detect spatial clusters and explain them in spatial data mining
Business Intelligence (especially market research)
WWW (Documents for Web Content Mining, Web-logs for Web Usage Mining, ...)

Biology
— Clustering of gene expression data
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Satellite images of a region in different wavelengths (bands)

— Each point on the surface maps to a high-dimensional feature vector p = (x;,,
..., Xg) where x; Is the recorded intensity at the surface point in band I.

— Assumption: each different land-use reflects and emits light of different
wavelengths in a characteristic way.
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Reassign color values to k distinct colors

Cluster pixels using color difference,
not spatial data

58483 KB

19496 KB
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Partitioning algorithms
— Find k partitions, minimizing some objective function

Probabilistic Model-Based Clustering (EM)

Density-based

— Find clusters based on connectivity and density functions
Hierarchical algorithms

— Create a hierarchical decomposition of the set of objects
Other methods

— Grid-based

— Neural networks (SOM’s)

— Graph-theoretical methods

— Subspace Clustering



1)  Introduction to clustering
2) Partitioning Methods

— K-Means
— K-Medoid
— Choice of parameters: Initialization, Silhouette coefficient

3) Expectation Maximization: a statistical approach
4)  Density-based Methods: DBSCAN

5) Hierarchical Methods

— Agglomerative and Divisive Hierarchical Clustering
— Density-based hierarchical clustering: OPTICS

6)  Evaluation of Clustering Results

7)  Further Clustering Topics

— Ensemble Clustering
— Discussion: an alternative view on DBSCAN
— Qutlier Detection



= Goal: Construct a partition of a database D of n objects into a set of k (k < n) clusters
C1,...,.C (GG D,C;NC =0 < C; # C;,UC; = D) minimizing an objective function.

— Exhaustively enumerating all possible partitions into k sets in order to find the global
minimum is too expensive.

= Popular heuristic methods:

— Choose k representatives for clusters, e.g., randomly

— Improve these initial representatives iteratively: /\

— Assign each object to the cluster it “fits best” in the current clustering
— Compute new cluster representatives based on these assignments

— Repeat until the change in the objective function from one iteration to the next drops below a threshold

= Examples of representatives for clusters
— k-means: Each cluster is represented by the center of the cluster

— k-medoid: Each cluster is represented by one of its objects




1) Introduction to clustering

2)  Partitioning Methods

— K-Means
— Variants: K-Medoid, K-Mode, K-Median
— Choice of parameters: Initialization, Silhouette coefficient

3)  Probabilistic Model-Based Clusters: Expectation Maximization
4)  Density-based Methods: DBSCAN

5)  Hierarchical Methods

— Agglomerative and Divisive Hierarchical Clustering
— Density-based hierarchical clustering: OPTICS

6)  Evaluation of Clustering Results

7)  Further Clustering Topics

— Scaling Up Clustering Algorithms
— Outlier Detection
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ldea of K-means: find a clustering such that the within-cluster variation of each
cluster is small and use the centroid of a cluster as representative.

Objective: For a given k, form k groups so that the sum of the (squared) distances
between the mean of the groups and their elements is minimal.
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S.P. Lloyd: Least squares quantization in PCM. In [EEE Information Theory, 1982 (original version: technical report, Bell Labs, 1957)
J. MacQueen: Some methods for classification and analysis of multivariate observation, In Proc. of the 5th Berkeley Symp. on Math.
Statist. and Prob., 1967.
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Objectsp = (py, -.-,py) are points in a d-dimensional vector space

(the mean ug of a set of points § must be defined: us = ézpesp)

C(p): the cluster p is assigned to

Measure for the compactness of a cluster C; (sum of squared errors):

SSE(C]-) = Z dist (p,,ucj)z

PEC;

Measure for the compactness of a clustering C:

_ 2
SSE(C) = Z SSE(C) = Z dist(p, ucp))
cjec pEDB
Optimal Partitioning: argmin SSE(C)
C

Optimizing the within-cluster variation is computationally challenging
(NP-hard) = use efficient heuristic algorithms



k-Means algorithm (Lloyd’s algorithm):

Given k, the k-means algorithm is implemented in 2 main steps:

Initialization: Choose k arbitrary representatives

Repeat until representatives do not change:
1. Assign each object to the cluster with the nearest representative.
2. Compute the centroids of the clusters of the current partitioning.
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Strengths

— Relatively efficient: O(tkn), where n=# objects, k= # clusters, and t=#
iterations

— Typically: k, t<<n
— Easy implementation
Weaknesses
— Applicable only when mean is defined
— Need to specify k, the number of clusters, in advance
— Sensitive to noisy data and outliers
— Clusters are forced to convex space partitions (Voronoi Cells)

— Result and runtime strongly depend on the initial partition; often
terminates at
a local optimum — however: methods for a good initialization exist

Several variants of the k-means method exist, e.g., ISODATA

— Extends k-means by methods to eliminate very small clusters, merging
and split of clusters; user has to specify additional parameters
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Problems with K-Means:
— Applicable only when mean is defined (vector space)
— Qutliers have a strong influence on the result

The influence of outliers is intensified by the use of the

squared error = use the absolute error (total distance instead):

TD(C) = Lpec dist(p,Mep)) and TD(C) = X¢,ec TD(C;)
Three alternatives for using the Mean as representative:
— Medoid: representative object “in the middle”
— Mode: value that appears most often
— Median: (artificial) representative object “in the middle”

Objective as for k-Means: Find k representatives so that,
the sum of the distances between objects and their
closest representative is minimal.
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Partitioning Around Medoids [Kaufman and Rousseeuw, 1990]
= Given k, the k-medoid algorithm is implemented in 3 steps:

Initialization: Select k objects arbitrarily as initial medoids
(representatives); assign each remaining (non-medoid) object to the
cluster with the nearest representative, and compute TD_, ent-
Repeat

1. For each pair (medoid M, non-medoid N)

- compute the value TD\ u,
i.e., the value of TD for the partition that results when “swapping” M

with N
2. Select the best pair (M, N) for which TD,_,, IS minimal
3‘ If TDN<—>M < TDcurrent
- Swap N with M
- Set TDcurrent = TDN<—>M
Until nothing changes

* Problem of PAM: high complexity (O(tk(n — k)"2))

Kaufman L., Rousseeuw P. J., Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, 1990.
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Optimization: CLARANS [Ng & Han 1994]

Trading accuracy for speed
Two additional tuning parameters: maxneighbor und numlocal

At most maxneighbor of pairs (M,N) are considered in each iteration
(Step 1)

Best first: take the first pair (M,N) that reduces the TD-value instead
of evaluating all (maxneighbor) pairs (worst-case still maxneighbor)

Termination after numlocal iteration even if convergence is not yet
reached

Kaufman L., Rousseeuw P. J., Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, 1990.



Problem: Sometimes, data is not numerical

|dea: If there is an ordering on the data X = {x4, x5, x3,..., X}, use median
Instead of mean
Median({x}) = x
Median({x,y}) € {x, y}
Median(X) = Median(X — min X — max X), if | X|>2

« A median is computed in each dimension independently and can thus be a
combination of multiple instances
= median can be efficiently computed for ordered data

« Different strategies to determine the “middle” in an array of even length

possible
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Given: X € Q=A4, XA, XX A, Is a set of n objects, each described by
d categorical attributes 4; (1 <i<d)

Mode: a mode of X is a vector M = [m, m,, ---,m4] € Q that minimizes

d(M, X) = Z d(x;, M)

Xi€X
where d is a distance function for categorical values (e.g. Hamming Dist.)

— Note: M is not necessarily an element of X
- For Hamming: the mode is determined by the most frequent value in each attribute

Huang, Z.: A Fast Clustering Algorithm to Cluster very Large Categorical Data Sets in Data Mining, In DMKD, 1997.



Theorem to determine a Mode:

Let f(c,j,X) = % |{x € X| x[j] = c}| be the relative frequency of category c of
attribute 4; in the data, then:

d(M,X) is minimal & Vj € {1, ...,d}:Vc € Aj:f(mj,j,X) > f(c,j,X)

—> this allows to use the k-means paradigm to cluster
categorical data without loosing its efficiency

- Note: the mode of a dataset might be not unique

K-Modes algorithm proceeds similar to k-Means algorithm

Huang, Z.: A Fast Clustering Algorithm to Cluster very Large Categorical Data Sets in Data Mining, In DMKD, 1997.
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Employee-ID Household Pets

#133
#134
#135
#136
#137
#138
#139
#140
#141

Technician
Manager
Cook
Programmer
Programmer
Technician
Programmer
Cook

Advisor

Profession: (Programmer: 3, Technician: 2, Cook: 2, Advisor: 1, Manager:1)

Household Pet: (Cat: 4, Dog: 2, None: 2, Snake: 1)

Mode is (Programmer, Cat)
Remark: (Programmer, Cat) € DB

=
Uvels
Cat
None
Cat
Dog
None
Cat
Snake
Cat
Dog
22
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Age
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Shoe size

mean #133 Technician
#134 Manager 41
#135 Cook 46
#136 Programmer 40
#137 Programmer 41
] #138 Technician 43
. #139 Programmer 39
11 #140 Cook 38
. * @ : #141 Advisor 40
b 3

37 38 39 40 41 42 43 44 45 46 47
Shoe size

median

45
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33
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37 38 39 40 41 42 43 44 45 46 47
Shoe size

medoid

Profession: Programmer
Shoe size: 40/41
Age: n.a.

mode
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K-Means/Median/Mode/Medoid Clustering:
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k-Means k-Median K-Mode K-Medoid
data numerical ordered categorical metric data
data (mean) | attribute data | attribute data
- high high high low
sifflelemney 0(tkn) 0 (tkn) 0 (tkn) 0(tk(n — k)?)
sensitivity to high low low low
outliers
= Strength

— Easy implementation (= many variations and optimizations in the literature)
=  Weakness

— Need to specify k, the number of clusters, in advance

— Clusters are forced to convex space partitions (Voronoi Cells)

— Result and runtime strongly depend on the initial partition; often terminates at a
local optimum — however: methods for a good initialization exist

Clustering—> Partitioning Methods—> Variants: K-Medoid, K-Mode, K-Median
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Definition: Voronoi diagram

— For a given set of points P = {p;| i = 1...k} (here:
cluster representatives), a Voronoi diagram
partitions the data space in Voronoi cells, one
cell per point.

— The cell of a point p € P covers all points in the
data space for which p is the nearest neighbors
among the points from P.

Observations
— The Voronoi cells of two neighboring points
pi,pj € P are separated by the perpendicular
hyperplane (,,Mittelsenkrechte”) between p; and
pj-
— As Voronoi cells are intersections of half spaces,
they are convex regions.
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