

- *Objective* measures
 - Two popular measurements:
 - support and
 - confidence
- Subjective measures [Silberschatz & Tuzhilin, KDD95]
 - A rule (pattern) is interesting if it is
 - unexpected (surprising to the user) and/or
 - actionable (the user can do something with it)

Example 1 [Aggarwal & Yu, PODS98]

- Among 5000 students
 - 3000 play basketball (=60%)
 - 3750 eat cereal (=75%)
 - 2000 both play basket ball and eat cereal (=40%)
- Rule play basketball ⇒ eat cereal [40%, 66.7%] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%
- Rule *play basketball* ⇒ *not eat cereal* [20%, 33.3%] is far more accurate, although with lower support and confidence
- Observation: *play basketball* and *eat cereal* are *negatively correlated*
- Not all strong association rules are interesting and some can be misleading.

 \rightarrow augment the support and confidence values with interestingness measures such as the correlation $A \Rightarrow B$ [supp, conf, corr]

• **Lift** is a simple correlation measure between two items A and B:

$$corr_{A,B} = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(B|A)}{P(B)} = \frac{conf(A \Rightarrow B)}{supp(B)}$$

! The two rules $A \Rightarrow B$ and $B \Rightarrow A$ have the same correlation coefficient.

- take both P(A) and P(B) in consideration
- $corr_{A,B} > 1$ the two items A and B are positively correlated
- $corr_{A,B} = 1$ there is no correlation between the two items A and B
- $corr_{A,B} < 1$ the two items A and B are negatively correlated

• Example 2:

- X and Y: positively correlated
- X and Z: negatively related
- support and confidence of X=>Z dominates
- but items X and Z are negatively correlated
- Items X and Y are positively correlated

rule	support	confidence	correlation
$X \Rightarrow Y$	25%	50%	2
$X \Rightarrow Z$	37.5%	75%	0.86
$Y \Rightarrow Z$	12.5%	50%	0.57

Chapter 3: Frequent Itemset Mining

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 4) Further Topics
 - Hierarchical Association Rules
 - Motivation, notions, algorithms, interestingness
 - Quantitative Association Rules
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- 5) Extensions and Summary

Hierarchical Association Rules: Motivation

- Problem of association rules in plain itemsets
 - High minsup: apriori finds only few rules
 - Low minsup: apriori finds unmanagably many rules
- Exploit item taxonomies (generalizations, *is-a* hierarchies) which exist in many applications

- New task: find all generalized association rules between generalized items → Body and Head of a rule may have items of any level of the hierarchy
- <u>Generalized association rule</u>: $X \Rightarrow Y$ with $X, Y \subset I, X \cap Y = \emptyset$ and no item in Y is an ancestor of any item in X e.g. *jackets* \Rightarrow *clothes* is essentially trivial

- Examples
 - Jeans \Rightarrow boots
 - jackets \Rightarrow boots
- Support < minSup
- $\mathsf{Outerwear} \Rightarrow \mathsf{boots}$
- Support > minsup

- Characteristics
 - Support("outerwear ⇒ boots") is not necessarily equal to the sum support("jackets ⇒ boots") + support("jeans ⇒ boots")
 e.g. if a transaction with jackets, jeans and boots exists
 - Support for sets of generalizations (e.g., product groups) is higher than support for sets of individual items
 If the support of rule "outerwear ⇒ boots" exceeds minsup, then the support of rule "clothes ⇒ boots" does, too

- A *top_down*, *progressive deepening* approach:
 - First find high-level strong rules:
 - $milk \Rightarrow bread$ [20%, 60%].
 - Then find their lower-level "weaker" rules:
 - 1.5% milk \Rightarrow wheat bread [6%, 50%].

- Different min_support threshold across multi-levels lead to different algorithms:
 - adopting the same min_support across multi-levels
 - adopting reduced min_support at lower levels

+ the search procedure is simplified (monotonicity)

+ the user is required to specify only one support threshold

+ takes the lower frequency of items in lower levels into consideration

Multilevel Association Mining using Reduced Support

- A top_down, progressive deepening approach:
 - First find high-level strong rules:
 - $milk \Rightarrow bread$ [20%, 60%].
 - Then find their lower-level "weaker" rules:
 - 1.5% milk \Rightarrow wheat bread [6%, 50%].

level-wise processing (breadth first)

SYSTEMS GROUP

3 approaches using reduced Support:

- Level-by-level independent method:
 - Examine each node in the hierarchy, regardless of whether or not its parent node is found to be frequent
- Level-cross-filtering by single item:
 - Examine a node only if its parent node at the preceding level is frequent
- Level-cross- filtering by k-itemset:
 - Examine a k-itemset at a given level only if its parent k-itemset at the preceding level is frequent

- A *top_down*, *progressive deepening* approach:
 - First find high-level strong rules:
 - $milk \Rightarrow bread$ [20%, 60%].
 - Then find their lower-level "weaker" rules:
 - 1.5% milk \Rightarrow wheat bread [6%, 50%].

level-wise processing (breadth first)

- Variations at mining multiple-level association rules.
 - Level-crossed association rules:
 - 1.5 % $milk \Rightarrow$ Wonder wheat bread
 - Association rules with multiple, alternative hierarchies:
 - 1.5 % milk \Rightarrow Wonder bread

- Some rules may be redundant due to "ancestor" relationships between items.
- Example
 - R_1 : milk \Rightarrow wheat bread [support = 8%, confidence = 70%]
 - R_2 : 1.5% milk \Rightarrow wheat bread [support = 2%, confidence = 72%]
- We say that rule 1 is an ancestor of rule 2.
- Redundancy:

A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor

(See [SA'95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.)

Expected Support and Expected Confidence

 How to compute the expected support? Given the rule for X ⇒ Y and its ancestor rule X' ⇒ Y' the expected support of X ⇒ Y is defined as:

$$E_{Z'}[P(Z)] = \frac{P(z_1)}{P(z'_1)} \times \dots \times \frac{P(z_j)}{P(z'_j)} \times P(Z')$$

where $Z = X \cup Y = \{z_1, \dots, z_n\}, Z' = X' \cup Y' = \{z'_1, \dots, z'_j, z_{j+1}, \dots, z_n\}$ and each $z'_i \in Z'$ is an ancestor of $z_i \in Z$

[SA'95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.

Frequent Itemset Mining → Further Topics → Hierarchical Association Rules

Expected Support and Expected Confidence

How to compute the expected confidence?
 Given the rule for X ⇒ Y and its ancestor rule X' ⇒ Y', then the expected confidence of X ⇒ Y is defined as:

$$E_{X' \Rightarrow Y'}[P(Y|X)] = \frac{P(y_1)}{P(y_1')} \times \dots \times \frac{P(y_j)}{P(y_j')} \times P(Y'|X')$$

where $Y = \{y_1, \dots, y_n\}$ and $Y' = \{y'_1, \dots, y'_j, y_{j+1}, \dots, y_n\}$ and each $y'_i \in Y'$ is an ancestor of $y_i \in Y$

[SA'95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.

Frequent Itemset Mining → Further Topics → Hierarchical Association Rules

Chapter 3: Frequent Itemset Mining

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 3) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 4) Further Topics
 - Hierarchical Association Rules
 - Motivation, notions, algorithms, interestingness
 - Multidimensional and Quantitative Association Rules
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- 5) Summary

- Single-dimensional rules:
 - buys milk \Rightarrow buys bread
- Multi-dimensional rules: ≥ 2 dimensions
 - Inter-dimension association rules (*no repeated dimensions*)
 - age between 19-25 \wedge status is student \Rightarrow buys coke
 - hybrid-dimension association rules (repeated dimensions)
 - age between $19-25 \land$ buys popcorn \Rightarrow buys coke

Techniques for Mining Multi-TABASE **Dimensional Associations** SYSTEMS

- Search for frequent *k*-predicate set:
 - Example: {age, occupation, buys} is a 3-predicate set.
 - Techniques can be categorized by how age is treated.
- 1. Using static discretization of quantitative attributes
 - Quantitative attributes are statically discretized by using predefined concept hierarchies.
- 2. Quantitative association rules

GROUP

- Quantitative attributes are dynamically discretized into "bins" based on the distribution of the data.
- 3. Distance-based association rules
 - This is a dynamic discretization process that considers the distance between data points.

- Up to now: associations of *boolean* attributes only
- Now: numerical attributes, too
- Example:
 - Original database

ID	age	marital status	# cars
1	23	single	0
2	38	married	2

– Boolean database

ID	age: 2029	age: 3039	m-status: single	m-status: married	
1	1	0	1	0	
2	0	1	0	1	

Quantitative Association Rules: Ideas

- Static discretization
 - Discretization of all attributes *before* mining the association rules
 - E.g. by using a generalization hierarchy for each attribute
 - Substitute numerical attribute values by ranges or intervals
- Dynamic discretization
 - Discretization of the attributes *during* association rule mining
 - Goal (e.g.): maximization of confidence
 - Unification of neighboring association rules to a generalized rule

Partitioning of Numerical Attributes

- Problem: Minimum support
 - Too many intervals \rightarrow too small support for each individual interval
 - Too few intervals \rightarrow too small confidence of the rules
- Solution
 - First, partition the domain into many intervals
 - Afterwards, create new intervals by merging adjacent interval
- Numeric attributes are *dynamically* discretized such that the confidence or compactness of the rules mined is maximized.

Quantitative Association Rules

- 2-D quantitative association rules: $A_{quan1} \wedge A_{quan2} \Rightarrow A_{cat}$
- Cluster "adjacent" association rules to form general rules using a 2-D grid.

Chapter 3: Frequent Itemset Mining

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 4) Further Topics
 - Hierarchical Association Rules
 - Motivation, notions, algorithms, interestingness
 - Quantitative Association Rules
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- 5) Summary

- Mining frequent itemsets
 - Apriori algorithm, hash trees, FP-tree
- Simple association rules
 - support, confidence, rule generation, interestingness measures (correlation), ...
- Further topics
 - Hierarchical association rules: algorithms (top-down progressive deepening), multilevel support thresholds, redundancy and Rinterestingness
 - Quantitative association rules: partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- Extensions: multi-dimensional association rule mining

Further Applications

- Customer analysis
- Facilitator for other data mining techniques
- Indexing and retrieval: provide a concise data representation
- Web mining tasks: sequential pattern mining for traversal patterns which help in designing and organizing web sites
- Temporal applications, e.g. event detection
- Spatial and spatiotemporal analysis: association rules can characterize useful relationships between spatial and non-spatial properties
- Image and multimedia data mining: frequent image features help in several mining tasks for image data
- Chemical and biological applications: often important motifs correspond to frequent patterns in graphs and structured data (toxicological analysis, chemical compound prediction, RNA analysis ...)

Outlook to KDD 2

- <u>Task 1:</u> find all subsets of items that occur with a specific sequence in many transactions.
 - E.g.: 97% of transactions contain the sequence {jogging \rightarrow high ECG \rightarrow sweating}
- <u>Task 2:</u> find all rules that correlate the **order** of one set of items after that of another set of items in the transaction database.
 - E.g.: 72% of users who perform a web search *then* make a long eye gaze over the ads *follow that* by a successful add-click
- The order of the items matters, thus all possible permutations of items must be considered when checking possible frequent sequences, not only the combinations of items
- Applications: data with temporal order (streams), e.g.: bioinformatics, Web mining, text mining, sensor data mining, process mining etc.

Sequential Pattern Mining vs. TABASE **Frequent Itemset Mining** SYSTEMS

- Both can be applied on similar dataset
 - Each customer has a customer id and aligned with transactions.
 - Each transaction has a transaction id and belongs to one customer.
 - Based on the transaction id, each customer also aligned to a transaction sequence.

Cid	Tid	Item	
	1	{butter}	
1	2	{milk}	
	3	{sugar}	
2	4	{butter, sugar}	
	5	{milk, sugar}	
	6	{butter, milk, sugar}	
	7	{eggs}	
3	8	{sugar}	
	9	{butter, milk}	
	10	{eggs}	
	11	{milk}	

Cid	ltem
1	{butter} ,{milk}, {sugar}
2	{butter, sugar}, {milk, sugar}, {butter, milk, sugar}, {eggs}
3	{sugar}, {butter, milk}, {eggs}, {milk}

Frequent itemset mining

GROUP

No temporal importance in the order of items happening together

items	frequency
{butter}	4
{milk}	5
{butter. milk}	2

Sequential pattern mining

The order of items matters

sequences	frequency
{butter}	4
{butter, milk}	2
{butter},{milk}	4
{milk},{butter}	1
{butter},{butter,milk}	1
• • •	

- Breadth-first search based
 - GSP (Generalized Sequential Pattern) algorithm¹
 - SPADE²
 - ...
- Depth-first search based
 - PrefixSpan³
 - SPAM⁴
 - ...

¹Sirkant & Aggarwal: Mining sequential patterns: Generalizations and performance improvements. EDBT 1996 ²Zaki M J. SPADE: An efficient algorithm for mining frequent sequences[J]. Machine learning, 2001, 42(1-2): 31-60. ³Pei at. al.: Mining sequential patterns by pattern-growth: PrefixSpan approach. TKDE 2004 ⁴Ayres, Jay, et al: Sequential pattern mining using a bitmap representation. SIGKDD 2002.