
DATABASE
SYSTEMS
GROUP

Knowledge Discovery in Databases I: Data Representation 1

Knowledge Discovery in Databases
WS 2017/18

Vorlesung: Prof. Dr. Peer Kröger

Übungen: Anna Beer, Florian Richter

Ludwig-Maximilians-Universität München
Institut für Informatik
Lehr- und Forschungseinheit für Datenbanksysteme

Kapitel 3: Frequent Itemset Mining

DATABASE
SYSTEMS
GROUP

Kapitel 3: Frequent Itemset Mining

1) Introduction
– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets
– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules
– Basic notions, rule generation, interestingness measures

4) Further Topics

5) Extensions and Summary

Outline 2

DATABASE
SYSTEMS
GROUP

Was ist Frequent Itemset Mining?

Frequent Itemset Mining:

Finde häufige Muster, Assoziationen, Korrelationen, … zwischen Mengen
von Items oder Objekten in einer Datenbank.

• Gegeben:
– Eine Menge von Items ܫ ൌ ሼ݅ଵ, ݅ଶ, … , ݅௠ሽ
– Eine Datenbank ܦ von Transaktionen ܶ ⊆ ܫ (= Menge von Items, Itemsets)

• Task 1 (Freuqent Itemset Mining): Finde alle Teilmengen von Items
(Itemsets), die zusammen in vielen Transaktionen vorkommen.

– Z.B.: 85% aller Transaktionen enthalten das Itemset {milk, bread, butter}

=> Zählproblem; was kommt so häufig zusammen vor, dass es ein
interessantes Muster ist

Frequent Itemset Mining  Introduction 3

DATABASE
SYSTEMS
GROUP

Was ist Frequent Itemset Mining?

• Task 2 (Association Rule Mining): Finde Regeln, die das Vorkommen
eines Itemsets mit dem Vorkommen eines anderen Itemsets korreliert.

– Z.B.: 98% der Kunden, die Räder und Autozubehör kaufen, lassen auch den Service
machen

• Anwendungen:
– Basket data analysis

– Cross-marketing

– Catalog design

– Loss-leader analysis

– Clustering

– Classification

– Recommendation systems

etc.

Frequent Itemset Mining  Introduction 4

DATABASE
SYSTEMS
GROUP

Beispiel: Basket Data Analysis

• Transaktionsdatenbank
D= {{butter, bread, milk, sugar};

{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};
{butter, flour, milk, salt, sugar}}

• Fragestellung:
– Welche Items werden häufig miteinander gekauft?

• Anwendung
– Ladenlayout-Optmierung
– Cross marketing
– Focused attached mailings / add-on sales
– *  Maintenance Agreement

(What the store should do to boost Maintenance Agreement sales)
– Home Electronics  * (What other products should the store stock up?)

Frequent Itemset Mining  Introduction 5

items frequency
{butter} 4
{milk} 4
{butter, milk} 4
{sugar} 3
{butter, sugar} 3
{milk, sugar} 3
{butter, milk, sugar} 3
{eggs} 2
…

DATABASE
SYSTEMS
GROUP

Beispiel: Basket Data Analysis

• Und das kommt dann dabei raus …

Frequent Itemset Mining  Introduction 6

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction
– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets
– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules
– Basic notions, rule generation, interestingness measures

4) Further Topics
– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 7

DATABASE
SYSTEMS
GROUP

Mining Frequent Itemsets: Basics

 Items ܫ ൌ ሼ݅ଵ, ݅ଶ, … , ݅௠ሽ : a set of literals (denoting items)

• Itemset ܺ: Set of items ܺ ⊆ 	ܫ
• Database :ܦ Set of transactions ܶ, each being a set of items 	T ⊆ 	ܫ
• Transaction ܶ contains an itemset ܺ: ܺ ⊆ ܶ	
• The items in transactions and itemsets are sorted lexicographically:

– itemset ܺ ൌ ሺ1ݔ, ,2ݔ … , …	2ݔ		1ݔ ሻ, where	݇ݔ 		݇ݔ	
• Length of an itemset: number of elements in the itemset

• k-itemset: itemset of length k
• The support of an itemset X	is defined as: ݐݎ݋݌݌ݑݏ ܺ ൌ ܶ ∈ ܺ|ܦ ⊆ ܶ
• Frequent itemset: an itemset X	is called frequent for database ܦ iff it is

contained in more than ݌ݑܵ݊݅݉ many transactions: ݐݎ݋݌݌ݑݏሺܺሻ ൒
݌ݑܵ݊݅݉

• Goal 1: Given a database find all frequent	,	݌ݑܵ݊݅݉ and a thresholdܦ
itemsets X ∈ .ሻܫሺݐ݋ܲ

Frequent Itemset Mining  Algorithms 8

DATABASE
SYSTEMS
GROUP

Mining Frequent Itemsets: Basic Idea

• Naïve Algorithm
– count the frequency of all possible subsets of ܫ in the database

 too expensive since there are 2m such itemsets for |ܫ| 	ൌ 	݉		items

• The Apriori principle (anti-monotonicity):
Any non-empty subset of a frequent itemset is frequent, too!
A ⊆ I	with	support A ൒ minSup	 ⇒ ∀Aᇱ ⊂ A ∧ Aᇱ ് ∅: support Aᇱ ൒ minSup
Any superset of a non-frequent itemset is non-frequent, too!
A ⊆ I	with	support A ൏ minSup	 ⇒ ∀Aᇱ ⊃ A: support Aᇱ ൏ minSup

• Method based on the Apriori principle
– First count the 1-itemsets, then the 2-itemsets,

then the 3-itemsets, and so on
– When counting (k+1)-itemsets, only consider those

(k+1)-itemsets where all subsets of length k have been
determined as frequent in the previous step

Frequent Itemset Mining  Algorithms  Apriori Algorithm 9

cardinality of power set

✗
Ø

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD not frequent

DATABASE
SYSTEMS
GROUP

The Apriori Algorithm

variable Ck: candidate itemsets of size k
variable Lk: frequent itemsets of size k

L1 = {frequent items}
for (k = 1; Lk !=; k++) do begin

// JOIN STEP: join Lk with itself to produce Ck+1

// PRUNE STEP: discard (k+1)-itemsets from Ck+1 that
contain non-frequent k-itemsets as subsets
Ck+1 = candidates generated from Lk

for each transaction t in database do
Increment the count of all candidates in Ck+1

that are contained in t
Lk+1 = candidates in Ck+1 with min_support

return k Lk

Frequent Itemset Mining  Algorithms  Apriori Algorithm 10

produce
candidates

prove
candidates

DATABASE
SYSTEMS
GROUP

Generating Candidates (Join Step)

• Requirements for set of all candidate ݇ ൅ 1 -itemsets ܥ௞ାଵ
– Completeness:

Must contain all frequent ݇ ൅ 1 -itemsets (superset property (௞ାଵܮ		௞ାଵܥ

– Selectiveness:
Significantly smaller than the set of all ݇ ൅ 1 -subsets

– Suppose the items are sorted by any order (e.g., lexicograph.)

• Step 1: Joining ௞ାଵܥ) ൌ ௞ܮ ⋈ (௞ܮ

– Consider frequent ݇-itemsets ݌ and ݍ
– ݌ and ݍ are joined if they share the same first ݇ െ 1 items

insert into Ck+1

select p.i1, p.i2, …, p.ik–1, p.ik, q.ik
from Lk : p, Lk : q

where p.i1=q.i1, …, p.ik –1 =q.ik–1, p.ik < q.ik

Frequent Itemset Mining  Algorithms  Apriori Algorithm 11

p  Lk=3 (A, C, F)

(A, C, F, G)  Ck+1=4

q  Lk=3 (A, C, G)

DATABASE
SYSTEMS
GROUP

Generating Candidates (Prune Step)

• Step 2: Pruning (ܮ௞ାଵ ൌ ሼX ∈ ݐݎ݋݌݌ݑݏ|௞ାଵܥ ܺ ൒ ሽ݌ݑܵ݊݅݉)
– Naïve: Check support of every itemset in ܥ௞ାଵ  inefficient for huge ܥ௞ାଵ
– Instead, apply Apriori principle first: Remove candidate (k+1) -itemsets

which contain a non-frequent k-subset s, i.e., s  Lk

forall itemsets c in Ck+1 do
forall k-subsets s of c do

if (s is not in Lk) then delete c from Ck+1

• Example 1
– L3 = {(ACF), (ACG), (AFG), (AFH), (CFG)}

– Candidates after the join step: {(ACFG), (AFGH)}

– In the pruning step: delete (AFGH) because (FGH)  L3, i.e., (FGH) is not a
frequent 3-itemset; also (AGH)  L3

 C4 = {(ACFG)}  check the support to generate L4

Frequent Itemset Mining  Algorithms  Apriori Algorithm 12

DATABASE
SYSTEMS
GROUP

Apriori Algorithm – Full Example

TID items
100 1 3 4 6
200 2 3 5
300 1 2 3 5
400 1 5 6

Frequent Itemset Mining  Algorithms  Apriori Algorithm 13

itemsetcount
{1} 3
{2} 2
{3} 3
{4} 1
{5} 3
{6} 2

database D
scan D

minSup=0.5 C1 itemsetcount
{1} 3
{2} 2
{3} 3
{5} 3
{6} 2

L1

ଵܮ ⋈ ଵܮ

itemset
{1 2}
{1 3}
{1 5}
{1 6}
{2 3}
{2 5}
{2 6}
{3 5}
{3 6}
{5 6}

C2

prune C1 scan D

C2 C2 itemsetcount
{1 3} 2
{1 5} 2
{1 6} 2
{2 3} 2
{2 5} 2
{3 5} 2

L2
itemset

{1 2}
{1 3}
{1 5}
{1 6}
{2 3}
{2 5}
{2 6}
{3 5}
{3 6}
{5 6}

itemsetcount
{1 2} 1
{1 3} 2
{1 5} 2
{1 6} 2
{2 3} 2
{2 5} 2
{2 6} 0
{3 5} 2
{3 6} 1
{5 6} 1

ଶܮ ⋈ ଶܮ

itemset
{1 3 5}
{1 3 6}
{1 5 6}
{2 3 5}

C3

prune C2

itemset
{1 3 5}
{1 3 6} ✗
{1 5 6} ✗
{2 3 5}

C3

scan D

itemsetcount
{1 3 5} 1
{2 3 5} 2

C3 itemsetcount
{2 3 5} 2

L3

ଷܮ ⋈ ଷܮ
C4 is empty

DATABASE
SYSTEMS
GROUP

Performance?

• First obvious problem: the check if a candidate from Ck+1 is frequent

• Why? This is simple counting!?!
– The total number of candidates can be very huge

– One transaction may contain many candidates

• Solutuion: Hash-Tree
– Candidate itemsets and their support are stored in a hash-tree that

efficiently supports
• Insertion of new itemsets

• Search for itemsets (and their support)

– Sketch of the data structure
• Leaf nodes of hash-tree contain lists of itemsets and their support (i.e., counts)

• Interior nodes contain hash tables

• Subset function finds all the candidates contained in a transaction

14

DATABASE
SYSTEMS
GROUP

Performance?

• The core of the Apriori algorithm:
– Use frequent (k – 1)-itemsets to generate candidate frequent k-itemsets

– Use database scan and pattern matching to collect counts for the candidate
itemsets

• The bottleneck of Apriori: candidate generation
– Huge candidate sets:

• 104 frequent 1-itemsets will generate 107 candidate 2-itemsets

• To discover a frequent pattern of size 100, e.g., {a1, a2, …, a100}, one
needs to generate 2100  1030 candidates.

– Multiple scans of database:

• Needs n or n+1 scans, n is the length of the longest pattern

 Is it possible to mine the complete set of frequent itemsets without
candidate generation?

Frequent Itemset Mining  Algorithms  Apriori Algorithm 15

DATABASE
SYSTEMS
GROUP

Mining Frequent Patterns Without
Candidate Generation

• Compress a large database into a compact, Frequent-Pattern tree (FP-
tree) structure
– highly condensed, but complete for frequent pattern mining

– avoid costly database scans

• Develop an efficient, FP-tree-based frequent pattern mining method
– A divide-and-conquer methodology: decompose mining tasks into smaller

ones

– Avoid candidate generation: sub-database test only!

• Idea:
– Compress database into FP-tree, retaining the itemset association

information

– Divide the compressed database into conditional databases, each associated
with one frequent item and mine each such database separately.

Frequent Itemset Mining  Algorithms  FP-Tree 16

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

Frequent Itemset Mining  Algorithms  FP-Tree 17

item frequency
f 4
c 4
a 3
b 3
m 3
p 3

1&2
header table:

TID items bought
100 {f, a, c, d, g, i, m, p}
200 {a, b, c, f, l, m, o}
300 {b, f, h, j, o}
400 {b, c, k, s, p}
500 {a, f, c, e, l, p, m, n}

sort items in the order
of descending support

minSup=0.5

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Frequent Itemset Mining  Algorithms  FP-Tree 18

item frequency
f 4
c 4
a 3
b 3
m 3
p 3

header table:

TID items bought (ordered) frequent
items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

for each transaction only
keep its frequent items
sorted in descending
order of their frequencies

1&2
3a

for each transaction build a path in the FP-tree:
- If a path with common prefix exists:

increment frequency of nodes on this path
and append suffix

- Otherwise: create a new branch

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Frequent Itemset Mining  Algorithms  FP-Tree 19

item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

header table:

TID items bought (ordered) frequent
items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1&2 3a

3b

header table
references the
occurrences of the
frequent items in the
FP-tree

DATABASE
SYSTEMS
GROUP

Benefits of the FP-tree Structure

• Completeness:
– never breaks a long pattern of any transaction

– preserves complete information for frequent pattern mining

• Compactness
– reduce irrelevant information—infrequent items are gone

– frequency descending ordering: more frequent items are more likely to be
shared

– never be larger than the original database (if not count node-links and
counts)

– Experiments demonstrate compression ratios over 100

Frequent Itemset Mining  Algorithms  FP-Tree 20

DATABASE
SYSTEMS
GROUP

Mining Frequent Patterns Using
FP-tree

• General idea (divide-and-conquer)
– Recursively grow frequent pattern path using the FP-tree

• Method
– For each item, construct its conditional pattern-base (prefix paths), and then

its conditional FP-tree

– Repeat the process on each newly created conditional FP-tree …

– …until the resulting FP-tree is empty, or it contains only one path (single
path will generate all the combinations of its sub-paths, each of which is a
frequent pattern)

Frequent Itemset Mining  Algorithms  FP-Tree 21

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree

2) Construct conditional FP-tree from each conditional pattern-base

3) Recursively mine conditional FP-trees and grow frequent patterns
obtained so far
– If the conditional FP-tree contains a single path, simply enumerate all the

patterns

Frequent Itemset Mining  Algorithms  FP-Tree 22

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional Pattern Base

1) Construct conditional pattern base for each node in the FP-tree
– Starting at the frequent header table in the FP-tree

– Traverse FP-tree by following the link of each frequent item (dashed lines)

– Accumulate all of transformed prefix paths of that item to form a conditional
pattern base

• For each item its prefixes are regarded as condition for it being a suffix. These
prefixes form the conditional pattern base. The frequency of the prefixes can be
read in the node of the item.

Frequent Itemset Mining  Algorithms  FP-Tree 23

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

header table:

item cond. pattern base
f {}
c f:3, {}
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

conditional pattern base:

DATABASE
SYSTEMS
GROUP

Properties of FP-tree for Conditional
Pattern Bases

• Node-link property
– For any frequent item ai, all the possible frequent patterns that contain ai

can be obtained by following ai's node-links, starting from ai's head in the
FP-tree header

• Prefix path property
– To calculate the frequent patterns for a node ai in a path P, only the prefix

sub-path of ai in P needs to be accumulated, and its frequency count should
carry the same count as node ai.

Frequent Itemset Mining  Algorithms  FP-Tree 24

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔
2) Construct conditional FP-tree from each conditional pattern-base

– The prefix paths of a suffix represent the conditional basis.
They can be regarded as transactions of a database.

– Those prefix paths whose support ൒ minSup, induce a conditional FP-tree

– For each pattern-base
• Accumulate the count for each item in the base

• Construct the FP-tree for the frequent items of the pattern base

Frequent Itemset Mining  Algorithms  FP-Tree 25

conditional pattern base: m-conditional FP-tree
{}|m

f:3

c:3

a:3

item frequency
f 3 ..
c 3 ..
a 3 ..
b 1✗

item cond. pattern base
f {}
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔
2) Construct conditional FP-tree from each conditional pattern-base

Frequent Itemset Mining  Algorithms  FP-Tree 26

conditional pattern base:

{}|m

f:3

c:3

a:3

item cond. pattern base
f {}
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}|f = {} {}|c

f:3

{}|a

f:3

c:3

{}|b = {} {}|p

c:3

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔
2) Construct conditional FP-tree from each conditional pattern-base ✔
3) Recursively mine conditional FP-trees and grow frequent patterns

obtained so far
– If the conditional FP-tree contains a single path, simply enumerate all the

patterns (enumerate all combinations of sub-paths)

Frequent Itemset Mining  Algorithms  FP-Tree 27

example:
m-conditional FP-tree

{}|m

f:3

c:3

a:3

All frequent patterns
concerning m
m,
fm, cm, am,
fcm, fam, cam,
fcam

just a single path

DATABASE
SYSTEMS
GROUP

FP-tree: Full Example

Frequent Itemset Mining  Algorithms  FP-Tree 28

item frequency head
f 4
b 3
c 3

{}

b:1

c:1

header table:

TID items bought (ordered) frequent items
100 {b, c, f} {f, b, c}
200 {a, b, c} {b, c}
300 {d, f} {f}
400 {b, c, e, f} {f, b, c}
500 {f, g} {f}

minSup=0.4
f:4

b:2

c:2

database:

item cond. pattern base
f {}
b f:2, {}
c fb:2, b:1

conditional pattern base:

DATABASE
SYSTEMS
GROUP

FP-tree: Full Example

Frequent Itemset Mining  Algorithms  FP-Tree 29

{}

b:1

c:1

f:4

b:2

c:2

item cond. pattern base
f {}
b f:2
c fb:2, b:1

conditional pattern base 1:

{}|f = {} {}|b

f:2

{}|c

b:1f:2

b:2

item cond. pattern base
b f:2
f {}

conditional pattern base 2:

{}|fc = {} {}|bc

f:2

{{f}}
{{b},{fb}}

{{fc}} {{bc},{fbc}}

DATABASE
SYSTEMS
GROUP

Principles of Frequent Pattern
Growth

• Pattern growth property
– Let  be a frequent itemset in DB, B be 's conditional pattern base, and 

be an itemset in B. Then    is a frequent itemset in DB iff  is frequent
in B.

• “abcdef ” is a frequent pattern, if and only if

– “abcde ” is a frequent pattern, and

– “f ” is frequent in the set of transactions containing “abcde ”

Frequent Itemset Mining  Algorithms  FP-Tree 30

DATABASE
SYSTEMS
GROUP

0

10

20

30

40

50

60

70

80

90

100

0 0,5 1 1,5 2 2,5 3
Support threshold(%)

Ru
n

tim
e(

se
c.

)

D1 FP-grow th runtime

D1 Apriori runtime

Why Is Frequent Pattern Growth
Fast?

• Performance study in [Han, Pei&Yin ’00] shows
– FP-growth is an order of

magnitude faster than Apriori,
and is also faster than
tree-projection

• Reasoning
– No candidate generation, no candidate test

• Apriori algorithm has to proceed breadth-first

– Use compact data structure

– Eliminate repeated database scan

– Basic operation is counting and FP-tree building

Frequent Itemset Mining  Algorithms  FP-Tree 31

Data set T25I20D10K:
T 25 avg. length of transactions
I 20 avg. length of frequent itemsets
D 10K database size (#transactions)

DATABASE
SYSTEMS
GROUP

Maximal or Closed Frequent Itemsets

• Big challenge: database contains potentially a huge number of frequent
itemsets (especially if minSup is set too low).
– A frequent itemset of length 100 contains 2100-1 many frequent subsets

• Closed frequent itemset:
An itemset X is closed in a data set D if there exists no proper super-
itemset Y such that ݐݎ݋݌݌ݑݏሺܺሻ ൌ ሺܻሻݐݎ݋݌݌ݑݏ in D.
– The set of closed frequent itemsets contains complete information regarding

its corresponding frequent itemsets.

• Maximal frequent itemset:
An itemset X is maximal in a data set D if there exists no proper super-
itemset Y such that ݐݎ݋݌݌ݑݏ ܻ ൒ ݌ݑܵ݊݅݉ in D.
– The set of maximal itemsets does not contain the complete support

information

– More compact representation

Frequent Itemset Mining  Algorithms Maximal or Closed Frequent Itemsets 32

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction
– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets
– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules
– Basic notions, rule generation, interestingness measures

4) Further Topics
– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 33

DATABASE
SYSTEMS
GROUP

Simple Association Rules:
Introduction

• Transaction database:
D= {{butter, bread, milk, sugar};

{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};
{butter, flour, milk, salt, sugar}}

• Frequent itemsets:

• Question of interest:
– If milk and sugar are bought, will the customer always buy butter as well?

݈݉݅݇, 	ݎܽ݃ݑݏ ⇒ ݎ݁ݐݐݑܾ ?
– In this case, what would be the probability of buying butter?

Frequent Itemset Mining  Simple Association Rules 34

items support
{butter} 4
{milk} 4
{butter, milk} 4
{sugar} 3
{butter, sugar} 3
{milk, sugar} 3
{butter, milk, sugar} 3

DATABASE
SYSTEMS
GROUP

Simple Association Rules: Basic
Notions

 Items ܫ ൌ ሼ݅ଵ, ݅ଶ, … , ݅௠ሽ : a set of literals (denoting items)

• Itemset ܺ: Set of items ܺ ⊆ 	ܫ
• Database :ܦ Set of transactions ܶ, each transaction is a set of items 	T ⊆ 	ܫ
• Transaction ܶ contains an itemset ܺ: ܺ ⊆ ܶ	
• The items in transactions and itemsets are sorted lexicographically:

– itemset ܺ ൌ ሺ1ݔ, ,2ݔ … , 		2ݔ		1ݔ ሻ, where	݇ݔ … 		݇ݔ	
• Length of an itemset: cardinality of the itemset (k-itemset: itemset of length

k)
• The support of an itemset X is defined as: ݐݎ݋݌݌ݑݏ ܺ ൌ ܶ ∈ ܺ|ܦ ⊆ ܶ
• Frequent itemset: an itemset X	is called frequent iff ሺܺሻݐݎ݋݌݌ݑݏ ൒ ݌ݑܵ݊݅݉

• Association rule: An association rule is an implication of the form ܺ ⇒ ܻ
where ܺ, ܻ ⊆ ܫ are two itemsets with ܺ ∩ ܻ ൌ ∅.

• Note: simply enumerating all possible association rules is not reasonable!
What are the interesting association rules w.r.t. ܦ?

Frequent Itemset Mining  Simple Association Rules 35

DATABASE
SYSTEMS
GROUP

Interestingness of Association Rules

• Interestingness of an association rule:
Quantify the interestingness of an association rule with respect to a
transaction database D:
– Support: frequency (probability) of the entire rule with respect to D

ݐݎ݋݌݌ݑݏ ܺ ⇒ ܻ ൌ ܲ ܺ ∪ ܻ ൌ
ሼܶ ∈ ܺ|ܦ ∪ ܻ ⊆ ܶሽ

ܦ ൌ ሺܺݐݎ݋݌݌ݑݏ ∪ ܻሻ/|ܦ|

“probability that a transaction in ܦ contains the itemset ܺ ∪ ܻ”

– Confidence: indicates the strength of implication in the rule

݂݁ܿ݊݁݀݅݊݋ܿ ܺ ⇒ ܻ ൌ ܲ ܻ|ܺ ൌ
ሼܶ ∈ ܺ|ܦ ∪ ܻ ⊆ ܶሽ
ሼܶ ∈ ܺ|ܦ ⊆ ܶሽ ൌ

ሺܺݐݎ݋݌݌ݑݏ ∪ ܻሻ
ሺܺሻݐݎ݋݌݌ݑݏ

“conditional probability that a transaction in ܦ containing the itemset ܺ also
contains itemset ܻ”

– Rule form: “ݕ݀݋ܤ ⇒ ,ݐݎ݋݌݌ݑݏሾ	݀ܽ݁ܪ ”ሿ݂݁ܿ݊݁݀݅݊݋ܿ
• Association rule examples:

– buys diapers  buys beers [0.5%, 60%]

– major in CS ∧ takes DB  avg. grade A [1%, 75%]

Frequent Itemset Mining  Simple Association Rules 36

buys beer

buys diapers
buys both

DATABASE
SYSTEMS
GROUP

Mining of Association Rules

• Task of mining association rules:
Given a database ܦ, determine all association rules having a ݐݎ݋݌݌ݑݏ ൒
݌ݑܵ݊݅݉ and a ݂ܿ݁ܿ݊݁݀݅݊݋ ൒ ݂݊݋ܥ݊݅݉ (so-called strong association
rules).

• Key steps of mining association rules:
1) Find frequent itemsets, i.e., itemsets that have at least support ൌ ݌ݑܵ݊݅݉
2) Use the frequent itemsets to generate association rules

• For each itemset ܺ and every nonempty subset Y ⊂ ܺ generate rule Y ⇒ ሺܺ െ
ܻሻ if ݉݅݊ܵ݌ݑ and ݂݉݅݊݊݋ܥ are fulfilled

• we have 2|௑| െ 2 many association rule candidates for each itemset ܺ

• Example
frequent itemsets

rule candidates: A ⇒ ܤ;ܤ ⇒ ;ܣ 	A ⇒ ;ܥ ܥ	 ⇒ A; ܤ	 ⇒ ;ܥ 	C ⇒ ;ܤ
,ܣ ܤ ⇒ ;ܥ ,ܣ ܥ ⇒ ;ܤ ,ܥ ܤ ⇒ ;ܣ ܣ ⇒ ,ܤ ;ܥ ܤ ⇒ ,ܣ ;ܥ ܥ ⇒ ܤ,ܣ

Frequent Itemset Mining  Simple Association Rules 37

1-itemset count 2-itemset count 3-itemset count
{A}
{B}
{C}

3
4
5

{A, B}
{A, C}
{B, C}

3
2
4

{A, B, C} 2

DATABASE
SYSTEMS
GROUP

Generating Rules from Frequent
Itemsets

• For each frequent itemset ܺ
– For each nonempty subset ܻ of ܺ, form a rule ܻ ⇒ ሺܺ െ ܻሻ
– Delete those rules that do not have minimum confidence

Note: 1) support always exceeds ݉݅݊ܵ݌ݑ
2) the support values of the frequent itemsets suffice to calculate the

confidence

• Example: ܺ	 ൌ 	 ሼܣ, ,ܤ ݂݊݋ܥ݊݅݉ ,ሽܥ ൌ 60%
– conf (A  B) = 3/3; ✔
– conf (B  A) = 3/4; ✔
– conf (A  C) = 2/3; ✔
– conf (C  A) = 2/5; ✗
– conf (B  C) = 4/4; ✔
– conf (C  B) = 4/5; ✔
– conf (A  B, C) = 2/3; ✔ conf (B, C  A) = ½ ✗
– conf (B  A, C) = 2/4; ✗ conf (A, C  B) = 1 ✔
– conf (C  A, B) = 2/5; ✗ conf (A, B  C) = 2/3 ✔

• Exploit anti-monotonicity for generating candidates for strong
association rules!

Frequent Itemset Mining  Simple Association Rules 38

itemset count
{A}
{B}
{C}

3
4
5

{A, B}
{A, C}
{B, C}

3
2
4

{A, B, C} 2

