

Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme

Knowledge Discovery in Databases WS 2017/18

Kapitel 3: Frequent Itemset Mining

Vorlesung: Prof. Dr. Peer Kröger

Übungen: Anna Beer, Florian Richter

Knowledge Discovery in Databases I: Data Representation

Kapitel 3: Frequent Itemset Mining

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 4) Further Topics
- 5) Extensions and Summary

Frequent Itemset Mining:

Finde häufige Muster, Assoziationen, Korrelationen, ... zwischen Mengen von Items oder Objekten in einer Datenbank.

- Gegeben:
 - Eine Menge von Items $I = \{i_1, i_2, \dots, i_m\}$
 - Eine Datenbank D von Transaktionen $T \subseteq I$ (= Menge von Items, Itemsets)
- <u>Task 1 (Freuqent Itemset Mining)</u>: Finde alle Teilmengen von Items (Itemsets), die zusammen in vielen Transaktionen vorkommen.
 - Z.B.: 85% aller Transaktionen enthalten das Itemset {milk, bread, butter}

=> Zählproblem; was kommt so häufig zusammen vor, dass es ein interessantes Muster ist

- <u>Task 2 (Association Rule Mining)</u>: Finde Regeln, die das Vorkommen eines Itemsets mit dem Vorkommen eines anderen Itemsets korreliert.
 - Z.B.: 98% der Kunden, die R\u00e4der und Autozubeh\u00f6r kaufen, lassen auch den Service machen
- Anwendungen:
 - Basket data analysis
 - Cross-marketing
 - Catalog design
 - Loss-leader analysis
 - Clustering
 - Classification
 - Recommendation systems

etc.

Beispiel: Basket Data Analysis

• Transaktionsdatenbank

D= {{butter, bread, milk, sugar};
 {butter, flour, milk, sugar};
 {butter, eggs, milk, salt};
 {eggs};
 {butter, flour, milk, salt, sugar}}

•	Fragestellung:	items	frequency
	– Wolche Items werden häufig miteinander gekauft?	{butter}	4
	- Weiche items werden naung initemander gekautt:	{milk}	4
		{butter, milk}	4
	Anwandung	{sugar}	3
•	Anwendung	{butter, sugar}	3
	 Ladenlayout-Optmierung 	{milk, sugar}	3
	 Cross marketing 	{butter, milk, sugar}	3
		{eggs}	2
	 Focused attached mailings / add-on sales 		

- ** ⇒ Maintenance Agreement* (What the store should do to boost Maintenance Agreement sales)
- Home Electronics \Rightarrow * (What other products should the store stock up?)

• Und das kommt dann dabei raus ...

Chapter 3: Frequent Itemset Mining

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 4) Further Topics
 - Hierarchical Association Rules
 - Motivation, notions, algorithms, interestingness
 - Quantitative Association Rules
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- 5) Extensions and Summary

- *Items I* = $\{i_1, i_2, ..., i_m\}$: a set of literals (denoting items)
- *Itemset X*: Set of items $X \subseteq I$
- *Database D*: Set of *transactions T*, each being a set of items $T \subseteq I$
- Transaction *T* contains an itemset $X: X \subseteq T$
- The items in transactions and itemsets are sorted lexicographically:
 - itemset $X = (x_1, x_2, ..., x_k)$, where $x_1 \le x_2 \le ... \le x_k$
- *Length* of an itemset: number of elements in the itemset
- *k-itemset:* itemset of length *k*
- The *support* of an itemset X is defined as: $support(X) = |\{T \in D | X \subseteq T\}|$
- Frequent itemset: an itemset X is called frequent for database D iff it is contained in more than minSup many transactions: support(X) ≥ minSup
- <u>Goal 1:</u> Given a database *D*and a threshold *minSup*, find all frequent itemsets X ∈ *Pot*(*I*).

Mining Frequent Itemsets: Basic Idea

• Naïve Algorithm

SYSTEMS GROUP

- count the frequency of all possible subsets of *I* in the database
- \rightarrow too expensive since there are 2^m such itemsets for |I| = m items

 \smile cardinality of power set

- The Apriori principle (anti-monotonicity): Any non-empty subset of a frequent itemset is frequent, too! $A \subseteq I$ with support(A) \geq minSup $\Rightarrow \forall A' \subset A \land A' \neq \emptyset$: support(A') \geq minSup Any superset of a non-frequent itemset is non-frequent, too! $A \subseteq I$ with support(A) < minSup $\Rightarrow \forall A' \supset A$: support(A') < minSup
- Method based on the Apriori principle
 - First count the 1-itemsets, then the 2-itemsets, then the 3-itemsets, and so on
 - When counting (k+1)-itemsets, only consider those
 (k+1)-itemsets where all subsets of length k have been determined as frequent in the previous step

	variable C_k : candidate itemsets of size k variable L_k : frequent itemsets of size k
produce candidates	$L_{1} = \{ \text{frequent items} \}$ for ($k = 1$; $L_{k} \mid = \emptyset$; $k++$) do begin // JOIN STEP: join L_{k} with itself to produce C_{k+1} // PRUNE STEP: discard ($k+1$)-itemsets from C_{k+1} that contain non-frequent k -itemsets as subsets $C_{k+1} = \text{candidates generated from } L_{k}$
prove candidates	for each transaction t in database do Increment the count of all candidates in C_{k+1} that are contained in t $L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support}$ return $\bigcup_k L_k$

Generating Candidates (Join Step)

- Requirements for set of all candidate (k + 1)-itemsets C_{k+1}
 - Completeness:

SYSTEMS GROUP

Must contain all frequent (k + 1)-itemsets (superset property $C_{k+1} \supseteq L_{k+1}$)

- Selectiveness:

Significantly smaller than the set of all (k + 1)-subsets

- Suppose the items are sorted by any order (e.g., lexicograph.)
- Step 1: Joining $(C_{k+1} = L_k \bowtie L_k)$
 - Consider frequent k-itemsets p and q
 - p and q are joined if they share the same first k 1 items

insert into C_{k+1} select $p.i_1, p.i_2, \dots, p.i_{k-1}, p.i_k, q.i_k$ from $L_k : p, L_k : q$ where $p.i_1=q.i_1, \dots, p.i_{k-1}=q.i_{k-1}, p.i_k < q.i_k$ $p \in L_{k=3}$ (A, C, F) (A, C, F, G) $\in C_{k+1=4}$ $\uparrow \uparrow \checkmark$ $q \in L_{k=3}$ (A, C, G)

Generating Candidates (Prune Step)

- Step 2: Pruning $(L_{k+1} = \{X \in C_{k+1} | support(X) \ge minSup\})$
 - Naïve: Check support of every itemset in $C_{k+1} \leftarrow$ inefficient for huge C_{k+1}
 - Instead, apply Apriori principle first: Remove candidate (*k*+1) -itemsets which contain a non-frequent *k*-subset *s*, i.e., s ∉ L_k

forall itemsets c in C_{k+1} do

forall k-subsets s of c do

if (s is not in L_k) then delete c from C_{k+1}

• Example 1

SYSTEMS GROUP

- $L_3 = \{(ACF), (ACG), (AFG), (AFH), (CFG)\}$
- Candidates after the join step: {(ACFG), (AFGH)}
- − In the pruning step: delete (AFGH) because (FGH) $\notin L_3$, i.e., (FGH) is not a frequent 3-itemset; also (AGH) $\notin L_3$
- → $C_4 = \{(ACFG)\}$ → check the support to generate L_4

Frequent Itemset Mining → Algorithms → Apriori Algorithm

- First obvious problem: the check if a candidate from C_{k+1} is frequent
- Why? This is simple counting!?!
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Solutuion: Hash-Tree
 - Candidate itemsets and their support are stored in a hash-tree that efficiently supports
 - Insertion of new itemsets
 - Search for itemsets (and their support)
 - Sketch of the data structure
 - Leaf nodes of hash-tree contain lists of itemsets and their support (i.e., counts)
 - Interior nodes contain hash tables
 - Subset function finds all the candidates contained in a transaction

- The core of the Apriori algorithm:
 - − Use frequent (*k* − 1)-itemsets to generate candidate frequent *k*-itemsets
 - Use database scan and pattern matching to collect counts for the candidate itemsets
- The bottleneck of Apriori: candidate generation
 - Huge candidate sets:
 - 10⁴ frequent 1-itemsets will generate 10⁷ candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g., {a₁, a₂, ..., a₁₀₀}, one needs to generate 2¹⁰⁰ ≈ 10³⁰ candidates.
 - Multiple scans of database:
 - Needs *n* or *n*+1 scans, *n* is the length of the longest pattern
- \rightarrow Is it possible to mine the complete set of frequent itemsets without candidate generation?

Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact, *Frequent-Pattern tree* (*FP-tree*) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!
- Idea:
 - Compress database into FP-tree, retaining the itemset association information
 - Divide the compressed database into conditional databases, each associated with one frequent item and mine each such database separately.

Construct FP-tree from a Transaction DB

Steps for compressing the database into a FP-tree:

- 1. Scan DB once, find frequent 1-itemsets (single items)
- 2. Order frequent items in frequency descending order

TID	items bought
100	{f, a, c, d, g, i, m, p}
200	{a, b, c, f, l, m, o}
300	{b, f, h, j, o}
400	{b, c, k, s, p}
500	{a, f, c, e, l, p, m, n}
	header table:

sort items in the order of descending support

Construct FP-tree from a Transaction DATABASE SYSTEMS GROUP

Steps for compressing the database into a FP-tree:

- 1. Scan DB once, find frequent 1-itemsets (single items)
- 2. Order frequent items in frequency descending order
- 3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Construct FP-tree from a Transaction DATABASE SYSTEMS GROUP

Steps for compressing the database into a FP-tree:

- 1. Scan DB once, find frequent 1-itemsets (single items)
- 2. Order frequent items in frequency descending order
- 3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Frequent Itemset Mining → Algorithms → FP-Tree

- Completeness:
 - never breaks a long pattern of any transaction
 - preserves complete information for frequent pattern mining
- Compactness
 - reduce irrelevant information—infrequent items are gone
 - frequency descending ordering: more frequent items are more likely to be shared
 - never be larger than the original database (if not count node-links and counts)
 - Experiments demonstrate compression ratios over 100

- General idea (divide-and-conquer)
 - Recursively grow frequent pattern path using the FP-tree
- Method
 - For each item, construct its conditional pattern-base (*prefix paths*), and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree ...
 - ...until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

- 1) Construct conditional pattern base for each node in the FP-tree
- 2) Construct conditional FP-tree from each conditional pattern-base
- 3) Recursively mine conditional FP-trees and grow frequent patterns obtained so far
 - If the conditional FP-tree contains a single path, simply enumerate all the patterns

Major Steps to Mine FP-tree: Conditional Pattern Base

- 1) Construct conditional pattern base for each node in the FP-tree
 - Starting at the frequent header table in the FP-tree
 - Traverse FP-tree by following the link of each frequent item (dashed lines)
 - Accumulate all of transformed prefix paths of that item to form a conditional pattern base
 - For each item its prefixes are regarded as condition for it being a suffix. These prefixes form the conditional pattern base. The frequency of the prefixes can be read in the node of the item.

conditional pattern base:

item	cond. pattern base
f	8
С	f:3, {}
а	fc:3
b	fca:1, f:1, c:1
т	fca:2, fcab:1
р	fcam:2, cb:1

Properties of FP-tree for ConditionalDATABASE
SYSTEMS
GROUPPattern Bases

- Node-link property
 - For any frequent item a_i , all the possible frequent patterns that contain a_i can be obtained by following a_i 's node-links, starting from a_i 's head in the FP-tree header
- Prefix path property
 - To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P needs to be accumulated, and its frequency count should carry the same count as node a_i.

Major Steps to Mine FP-tree: Conditional FP-tree

- 1) Construct conditional pattern base for each node in the FP-tree
- 2) Construct conditional FP-tree from each conditional pattern-base
 - The prefix paths of a suffix represent the conditional basis.
 →They can be regarded as transactions of a database.
 - − Those prefix paths whose support ≥ minSup, induce a conditional FP-tree
 - For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Frequent Itemset Mining → Algorithms → FP-Tree

- 1) Construct conditional pattern base for each node in the FP-tree
- 2) Construct conditional FP-tree from each conditional pattern-base

- 1) Construct conditional pattern base for each node in the FP-tree
- 2) Construct conditional FP-tree from each conditional pattern-base
- 3) Recursively mine conditional FP-trees and grow frequent patterns obtained so far
 - If the conditional FP-tree contains a single path, simply enumerate all the patterns (enumerate all combinations of sub-paths)

- Pattern growth property
 - Let α be a frequent itemset in DB, B be α 's conditional pattern base, and β be an itemset in B. Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B.
- "abcdef" is a frequent pattern, if and only if
 - "abcde" is a frequent pattern, and
 - "f" is frequent in the set of transactions containing "abcde"

- Performance study in [Han, Pei&Yin '00] shows
 - FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection

- Reasoning
 - No candidate generation, no candidate test
 - Apriori algorithm has to proceed breadth-first

Run time(sec.)

- Use compact data structure
- Eliminate repeated database scan
- Basic operation is counting and FP-tree building

- Big challenge: database contains potentially a huge number of frequent itemsets (especially if minSup is set too low).
 - A frequent itemset of length 100 contains 2¹⁰⁰-1 many frequent subsets
- Closed frequent itemset: An itemset X is closed in a data set D if there exists no proper superitemset Y such that support(X) = support(Y) in D.
 - The set of closed frequent itemsets contains complete information regarding its corresponding frequent itemsets.
- Maximal frequent itemset: An itemset X is maximal in a data set D if there exists no proper superitemset Y such that support(Y) ≥ minSup in D.
 - The set of maximal itemsets does not contain the complete support information
 - More compact representation

Chapter 3: Frequent Itemset Mining

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 4) Further Topics
 - Hierarchical Association Rules
 - Motivation, notions, algorithms, interestingness
 - Quantitative Association Rules
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- 5) Extensions and Summary

- Transaction database:
 - D= {{butter, bread, milk, sugar};
 - {butter, flour, milk, sugar};
 - {butter, eggs, milk, salt};
 - {eggs};
 - {butter, flour, milk, salt, sugar}}

• Frequent itemsets:

items	support
{butter}	4
{milk}	4
{butter, milk}	4
{sugar}	3
{butter, sugar}	3
{milk, sugar}	3
{butter, milk, sugar}	3

- Question of interest:
 - If milk and sugar are bought, will the customer always buy butter as well?
 milk, sugar ⇒ butter ?
 - In this case, what would be the probability of buying butter?

- *Items I* = $\{i_1, i_2, ..., i_m\}$: a set of literals (denoting items)
- *Itemset X*: Set of items $X \subseteq I$
- Database D: Set of transactions T, each transaction is a set of items $T \subseteq I$
- Transaction *T* contains an itemset $X: X \subseteq T$
- The items in transactions and itemsets are **sorted** lexicographically:
 - itemset $X = (x_1, x_2, ..., x_k)$, where $x_1 \le x_{2 \le} ... \le x_k$
- Length of an itemset: cardinality of the itemset (*k-itemset:* itemset of length k)
- The *support* of an itemset X is defined as: $support(X) = |\{T \in D | X \subseteq T\}|$
- *Frequent itemset: an itemset* X is called frequent iff *support*(X) ≥ *minSup*
- Association rule: An association rule is an implication of the form $X \Rightarrow Y$ where $X, Y \subseteq I$ are two itemsets with $X \cap Y = \emptyset$.
- Note: simply enumerating all possible association rules is not reasonable!
 → What are the interesting association rules w.r.t. D?

- Interestingness of an association rule: Quantify the interestingness of an association rule with respect to a transaction database D:
 - Support: frequency (probability) of the entire rule with respect to D $support(X \Rightarrow Y) = P(X \cup Y) = \frac{|\{T \in D | X \cup Y \subseteq T\}|}{|D|} = support(X \cup Y)/|D|$

"probability that a transaction in D contains the itemset $X \cup Y$ "

- Confidence: indicates the strength of implication in the rule $confidence(X \Rightarrow Y) = P(Y|X) = \frac{|\{T \in D | X \cup Y \subseteq T\}|}{|\{T \in D | X \subseteq T\}|} = \frac{support(X \cup Y)}{support(X)}$

"conditional probability that a transaction in *D* containing the itemset *X* also contains itemset *Y*"

- Rule form: "Body \Rightarrow Head [support, confidence]"
- Association rule examples:
 - buys diapers \Rightarrow buys beers [0.5%, 60%]
 - major in CS \land takes DB \Rightarrow avg. grade A [1%, 75%]

Task of mining association rules:

Given a database D, determine all association rules having a support \geq minSup and a $confidence \ge minConf$ (so-called strong association rules).

Key steps of mining association rules:

(1) Find *frequent itemsets*, i.e., itemsets that have at least support = *minSup*

- e.g. (P) I) Find inequality intervention (P) (P)
 - For each itemset X and every nonempty subset $Y \subset X$ generate rule $Y \Rightarrow (X X)$ Y) if *minSup* and *minConf* are fulfilled
 - we have $2^{|X|} 2$ many association rule candidates for each itemset X
 - Example ۲

frequent itemsets

1-itemset	count	2-itemset	count	3-itemset	count
{A}	3	{A, B}	3	{A, B, C}	2
{B}	4	{A, C}	2		
{C}	5	{B, C}	4		

rule candidates: $A \Rightarrow B$; $B \Rightarrow A$; $A \Rightarrow C$; $C \Rightarrow A$; $B \Rightarrow C$; $C \Rightarrow B$; $A, B \Rightarrow C; A, C \Rightarrow B; C, B \Rightarrow A; A \Rightarrow B, C; B \Rightarrow A, C; C \Rightarrow A, B$

Generating Rules from Frequent DATABASE Itemsets SYSTEMS GROUP

- For each frequent itemset X
 - For each nonempty subset Y of X, form a rule $Y \Rightarrow (X Y)$
 - Delete those rules that do not have minimum confidence Note: 1) support always exceeds *minSup*

2) the support values of the frequent itemsets suffice to calculate the confidence

- Example: $X = \{A, B, C\}, minConf = 60\%$ •
 - conf (A \Rightarrow B) = 3/3; \checkmark
 - conf (B \Rightarrow A) = 3/4; \checkmark
 - conf (A \Rightarrow C) = 2/3; \checkmark
 - conf (C \Rightarrow A) = 2/5; X
 - conf (B \Rightarrow C) = 4/4; \checkmark
 - conf (C \Rightarrow B) = 4/5; \checkmark
 - conf (A ⇒ B, C) = 2/3; \checkmark conf (B, C ⇒ A) = $\frac{1}{2}$ X
 - conf (B ⇒ A, C) = 2/4; X conf (A, C ⇒ B) = 1 \checkmark
 - conf (C \Rightarrow A, B) = 2/5; X conf (A, B \Rightarrow C) = 2/3 \checkmark

- Exploit anti-monotonicity for generating candidates for strong association rules!

{A}	3
{B}	4
{C}	5
{A, B}	3
{A, C}	2
{B, C}	4
{A, B, C}	2

count

itemset