Knowledge Discovery in Databases
WS 2017/18

Kapitel 3: Frequent Itemset Mining

Vorlesung: Prof. Dr. Peer Kroger

Ubungen: Anna Beer, Florian Richter



1)

2)

3)

4)
5)

Introduction

— Transaction databases, market basket data analysis
Mining Frequent ltemsets

— Apriori algorithm, hash trees, FP-tree

Simple Association Rules

— Basic notions, rule generation, interestingness measures
Further Topics

Extensions and Summary



Frequent ltemset Mining:

Finde haufige Muster, Assoziationen, Korrelationen, ... zwischen Mengen
von Items oder Objekten in einer Datenbank.

« Gegeben:
— Eine Menge von Items I = {iy, i5, ..., i;y }
— Eine Datenbank D von Transaktionen T < I (= Menge von ltems, ltemsets)

« Task 1 (Freugent Itemset Mining): Finde alle Teilmengen von Items
(ltemsets), die zusammen in vielen Transaktionen vorkommen.

— Z.B.: 85% aller Transaktionen enthalten das Itemset {milk, bread, butter}

=> Zahlproblem; was kommt so haufig zusammen vor, dass es ein
Interessantes Muster ist



« Task 2 (Association Rule Mining): Finde Regeln, die das Vorkommen

eines Iltemsets mit dem Vorkommen eines anderen ltemsets korreliert.

Z.B.: 98% der Kunden, die Rader und Autozubehor kaufen, lassen auch den Service
machen

 Anwendungen:

Basket data analysis
Cross-marketing

Catalog design
Loss-leader analysis
Clustering

Classification
Recommendation systems

etc.



Transaktionsdatenbank
D= {{butter, bread, milk, sugar};

{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};

{butter, flour, milk, salt, sugar}}

Fragestellung:

— Welche Items werden hiufig miteinander gekauft? \oter

Anwendu nd - {butterisagarlis i i 81 T
— Ladenlayout-Optmierung {milk, sugar} 3

— Cross marketing i;l;tse}r,milk, uga i
— Focused attached mailings / add-on sales eo9s) | .

* = Maintenance Agreement
(What the store should do to boost Maintenance Agreement sales)

Home Electronics = * (What other products should the store stock up?)



w

DATABASE
SYSTEMS
GROUP

Beispiel: Basket Data Analysis

« Und das kommt dann dabei raus ...

- 7 4h
n
“1" [} M
-

LMU

1

ft/l(/mjs Udays

Frequent Itemset Mining = Introduction




1) Introduction

— Transaction databases, market basket data analysis
2) Mining Frequent ltemsets

— Apriori algorithm, hash trees, FP-tree
3) Simple Association Rules

— Basic notions, rule generation, interestingness measures
4) Further Topics

— Hierarchical Association Rules

« Motivation, notions, algorithms, interestingness
— Quantitative Association Rules

« Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary



Items I = {iy,i,, .., 0} :asetof literals (denoting items)
[temset X: Set of items X € |
Database D: Set of transactions T, each being a set of items T € |
Transaction T contains an itemsetX: X C T
The items in transactions and itemsets are sorted lexicographically:
— itemset X = (x4, %y, ..., x; ), Wwhere x;<x,<... <x,
Length of an itemset: number of elements in the itemset
k-itemset: itemset of length k
The support of an itemset X is defined as: support(X) = |{T € D|X € T}|

Frequent itemset: an itemset X is called frequent for database D iff it is
contained in more than minSup many transactions: support(X) =
minSup

Goal 1: Given a database Dand a threshold minSup, find all frequent
itemsets X € Pot(I).



w

wmesll  MiINiNG Frequent Itemsets: Basic Idea

SYSTEMS
GROUP

* Naive Algorithm
— count the frequency of all possible subsets of I in the database
—> too expensive since there are 2™ such itemsets for |[I| = m items
\Jcardina//ty of power set
« The Apriori principle (anti-monotonicity):
Any non-empty subset of a frequent itemset is frequent, too!
A € I with support(A) = minSup = VA' € AAA" # @: support(A’) = minSup
Any superset of a non-frequent itemset is non-frequent, too!
A € I with support(A) < minSup = VA’ D A:support(A’) < minSup

CABCD) hot frequent

 Method based on the Apriori principle

— First count the 1-itemsets, then the 2-itemsets,
then the 3-itemsets, and so on

— When counting (k+1)-itemsets, only consider those
(k+1)-itemsets where all subsets of length k have been
determined as frequent in the previous step

Frequent Itemset Mining - Algorithms > Apriori Algorithm 9



produce |

candidates

prove
candigates

—

variable C.: candidate itemsets of size k
variable L,: frequent itemsets of size k

L, = {frequent items}
for (k=1; L, '=0; k++) do begin
// JOIN STEP: join L, with itself to produce C,,,
// PRUNE STEP: discard (k+1)-itemsets from C,,, that
contain non-frequent k-itemsets as subsets
C..; = candidates generated from L,

for each transaction t in database do

Increment the count of all candidates in C;
that are contained in t

L., = candidates in C,; with min_support
return u, L,



« Requirements for set of all candidate (k + 1)-itemsets Cy41

— Completeness:
Must contain all frequent (k + 1)-itemsets (superset property Cy1+1 2 Li4+1)

— Selectiveness:
Significantly smaller than the set of all (k + 1)-subsets

— Suppose the items are sorted by any order (e.qg., lexicograph.)
« Step 1: Joining (Cy 41 = Ly ™ Ly)

— Consider frequent k-itemsets p and g

- p and q are joined if they share the same first k — 1 items

pel,.; (A C F)
insert into C, Lo
select p.i;, p.i5, ..., P-lxq, P-Ii, Q.1 (A, C,F.G eC,,
from L, :p, L,:q t /S
where p.i.=q.i., ..., p.iy_1=G.i,1, p-ix< q.i LIS Lis (A C, G)




« Step 2: Pruning (L1 = {X € Cyy1|support(X) = minSup})
— Naive: Check support of every itemset in C,,, € inefficient for huge Ci 4

— Instead, apply Apriori principle first: Remove candidate (k+17) -itemsets
which contain a non-frequent k-subset s, i.e., s ¢ L,

forall itemsets c in C,,, do
forall k-subsets s of c do
if (sisnotinL,)then delete ¢ from C,,,

« Example 1
- L; ={(ACF), (ACG), (AFG), (AFH), (CFG)}
— Candidates after the join step: {(ACFG), (AFGH)}

— In the pruning step: delete (AFGH) because (FGH) ¢ L, i.e., (FGH) is not a
frequent 3-itemset; also (AGH) ¢ L,

- C, ={(ACFQG)} -> check the support to generate L,



w

DATABASE
SYSTEMS
GROUP

Apriori Algorithm — Full Example

minSup=0.5

database D C, |te{n1‘|}setco§nt L, |te{n11}setco§nt
TID _[items scan D 2y | 2 5| @ | 2
100 (1346 {3} 3 {3) 3
200 (235 {4} 1 {5} 3 Ly ™ Ly
300 {1235 {5} 3 {6} 2
400 [156 {6} 2
<>C2 itemset C, |itemset C, [itemsetjcount L, itemsetlcount
{12} {12} 124 1 13| 2
{13} |prune C, | {13} |scanD | {13} | 2 {15y | 2
{15 |=——> | (15} |=———2 {15} | 2 |=—2>| (16} | 2
{16} {16} {16y | 2 23] 2
{2 3} {2 3} 23} | 2 25| 2
{2 5} {2 5} {25} | 2 {35 | 2
{2 6} {2 6} 26y | 0
{3 5} {3 5} {350 2
{3 6} {3 6} 36} | 1
{5 6} {5 6} 56} | 1
< C, litemset Cjlitemset C,litemseticount|  L,jitemseticount
{135} =——>[{135} |=——2>[{(135}] 1 |—>[{235}] 2 )
{136} prune C,[{136} X| scanD [{235}] 2
{156} {156} X Lz ™ L
{235} {235} gc4 IS empty

MU

Frequent Itemset Mining - Algorithms > Apriori Algorithm

L, ™ L,




« First obvious problem: the check if a candidate from C,,; is frequent
 Why? This is simple counting!?!
— The total number of candidates can be very huge

— One transaction may contain many candidates
» Solutuion: Hash-Tree

— Candidate itemsets and their support are stored in a hash-tree that
efficiently supports
« Insertion of new itemsets

« Search for itemsets (and their support)
— Sketch of the data structure
« Leaf nodes of hash-tree contain lists of itemsets and their support (i.e., counts)
 Interior nodes contain hash tables
« Subset function finds all the candidates contained in a transaction



« The core of the Apriori algorithm:
— Use frequent (k — 1)-itemsets to generate candidate frequent k-itemsets

— Use database scan and pattern matching to collect counts for the candidate
itemsets

« The bottleneck of Apriori: candidate generation

— Huge candidate sets:
« 10% frequent 1-itemsets will generate 107 candidate 2-itemsets

« To discover a frequent pattern of size 100, e.g., {a;, a,, ..., @490}, ONE
needs to generate 2199~ 103° candidates.

— Multiple scans of database:
* Needs nor n+1 scans, n is the length of the longest pattern

- Is it possible to mine the complete set of frequent itemsets without
candidate generation?



« Compress a large database into a compact, Frequent-Pattern tree (FP-
tree) structure

— highly condensed, but complete for frequent pattern mining
— avoid costly database scans

« Develop an efficient, FP-tree-based frequent pattern mining method

— A divide-and-conquer methodology: decompose mining tasks into smaller
ones

— Avoid candidate generation: sub-database test only!

 |dea:

— Compress database into FP-tree, retaining the itemset association
information

— Divide the compressed database into conditional databases, each associated
with one frequent item and mine each such database separately.



w

DATABASE
SYSTEMS D B

GROUP

Construct FP-tree from a Transaction

LMU

Steps for compressing the database into a FP-tree:

1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

TID | items bought

100 ({f,a,¢c d g,1, m,
200 ({a, b, c, f, |, m, o}
300 | {b, f, h, j, o}
400 | {b, ¢, k, s, p}
500 ({a, f,c,e I, p,m,

p}

n}

header table:

@ item | frequency
f 4
C 4
a 3
minSup=0.5 | b 3
m 3
p 3

Frequent Itemset Mining > Algorithms - FP-Tree

sort items in the order
of descending support

17



w

Construct FP-tree from a Transaction
22 DB MU

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)
2. Order frequent items in frequency descending order
3. Scan DB again, construct FP-tree starting with most frequent item per transaction

TID | items bought (ordered) frequent

items for each transaction only
100 |{f a,¢c d g, i, mpt |{fc a m, p} keep its frequent items
200 ({a, b, ¢ f, 1, m, o} {f, c, a, b, m} sorted in descending
300 |1{b, 1, h, J, o} tf, b} order of their frequencies
400 |{b, c, k, s, p} {c, b, p}
500 ({a, f,c,e I, p,m nt |{f c, a m, p}

header table: ~\

item | frequency . 3a
\JEZ/ z j for each transaction build a path in the FP-tree:
5 3 - If a path with common prefix exists:
b 3 increment frequency of nodes on this path
m 3 and append suffix
p 3 - Otherwise: create a new branch

Frequent Itemset Mining = Algorithms > FP-Tree 18



Construct FP-tree from a Transaction
22 DB MU

w

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)
2. Order frequent items in frequency descending order
3. Scan DB again, construct FP-tree starting with most frequent item per transaction

TID | items bought i({)err%%red) frequent - 3b 0
100 | acdg i, mp |(ca m,p /\
200 ({a, b, c, f, 1, m, o} {f c,a b, m N
300 |{b, f, h,j, o} {f, b} _—-tfi4| > cil
400 | {b, ¢, k, s, p} {c, b, p) P |
500 ({a, fce I, p,mn |{fc a m, p} ///// > C:3’/ b'1- b 1
, header table: ~———4« 3-/ -7 | |
. 182 -~ /// '
\J item | frequency | head | ~ >l a3 I 1
f 4 P //// ////// . : p.
header table c 4 o« T - =T | /7
references the 3 3 - T :/,,,; m:2{| b:1/
occurrences of the b 3 o1 -7 ) /I’///
frequentitemsin the| 3 1 M
FP-tree b 3 .- > p:2fym:l

Frequent Itemset Mining = Algorithms > FP-Tree 19



« Completeness:
never breaks a long pattern of any transaction
preserves complete information for frequent pattern mining

« Compactness
reduce irrelevant information—infrequent items are gone

frequency descending ordering: more frequent items are more likely to be
shared

never be larger than the original database (if not count node-links and
counts)

Experiments demonstrate compression ratios over 100



* General idea (divide-and-conquer)
— Recursively grow frequent pattern path using the FP-tree

« Method

— For each item, construct its conditional pattern-base (prefix paths), and then
its conditional FP-tree

— Repeat the process on each newly created conditional FP-tree ...

— ...until the resulting FP-tree is empty, or it contains only one path (single
path will generate all the combinations of its sub-paths, each of which is a
frequent pattern)



1)
2)
3)

Construct conditional pattern base for each node in the FP-tree
Construct conditional FP-tree from each conditional pattern-base

Recursively mine conditional FP-trees and grow frequent patterns
obtained so far

— If the conditional FP-tree contains a single path, simply enumerate all the
patterns



w

Major Steps to Mine FP-tree: Eial
«sews | Conditional Pattern Base IMU

GROUP

1) Construct conditional pattern base for each node in the FP-tree
— Starting at the frequent header table in the FP-tree
— Traverse FP-tree by following the link of each frequent item (dashed lines)
— Accumulate all of transformed prefix paths of that item to form a conditional

pattern base

« For each item its prefixes are regarded as condition for it being a suffix. These
prefixes form the conditional pattern base. The frequency of the prefixes can be
read in the node of the item.

{
heaciltgntatz‘igduency Fead| f:{) o1 conditional pattern base:
f 4 -1~ . | item [ cond. pattern base
c 4 —1— "7 % b:13 b:1 f |0
2 3 e NN T [ C f:3, {}
b 3 ._—--—~\\\/a.3 : e‘.l a fc:3
m 3 ._——-~\>| m-éz' b'1’! / b fca:1, f:1, c:1
D 3 4. . \' A s m fca:2, fcab:1
N /..n/i.’ p | fcam:2, cb:1
p:27 m:1

Frequent Itemset Mining > Algorithms - FP-Tree 23



* Node-link property
— For any frequent item a;, all the possible frequent patterns that contain a;

can be obtained by following a;'s node-links, starting from a;'s head in the
FP-tree header

» Prefix path property
— To calculate the frequent patterns for a node a; in a path P, only the prefix

sub-path of a; in P needs to be accumulated, and its frequency count should
carry the same count as node a,.



£ | Major Steps to Mine FP-tree: flé;q
DATABASE o o \1
ssews | Conditional FP-tree MU

1) Construct conditional pattern base for each node in the FP-tree

2) Construct conditional FP-tree from each conditional pattern-base

— The prefix paths of a suffix represent the conditional basis.

—->They can be regarded as transactions of a database.
— Those prefix paths whose support = minSup, induce a conditional FP-tree
— For each pattern-base

« Accumulate the count for each item in the base
» Construct the FP-tree for the frequent items of the pattern base

conditional pattern base: m-conditional FP-tree
item | cond. pattern base item | frequency {3m
f {1 f 3 |
c |f3 C 3
a |fc3 a 3 1.3
b fca:1, f:1, c:1 b 1X |
m | fca:2, fcab:1 —— c.3
p fcam:2, cb:1 |
a:s

Frequent Itemset Mining = Algorithms > FP-Tree

25




1) Construct conditional pattern base for each node in the FP-tree
2) Construct conditional FP-tree from each conditional pattern-base

conditional iattern base:

{}

f:3

fc:3

fca:1 f:1 c:1
fca:2, fcab:1
fcam:2, cb:1

Glf={ {}|IC {}|Ia Gl ={} {}llm {}‘IIO

T ST O 0 -

3 3 3 c:3
l l
c.3 c:3
|
a.3



1) Construct conditional pattern base for each node in the FP-tree
2) Construct conditional FP-tree from each conditional pattern-base

3) Recursively mine conditional FP-trees and grow frequent patterns
obtained so far

— If the conditional FP-tree contains a single path, simply enumerate all the
patterns (enumerate all combinations of sub-paths)

example:

m-conditional FP-tree All frequent patterns

{}m concerning m
| | m,
f_,.3 justa single path ¢ oo
c:3 me, fam, Cam/
| fcam

as



w

DATABASE
SYSTEMS
GROUP

FP-tree: Full Example

database:
TID | items bought | (ordered) frequent items
100 |{b, c, 1} {f, b, ¢}
200 |{a, b, ¢} {b, c}
300 |f{d, f#} {f
400 |{b, c, e 1} {f, b, c}
500 |({f, g} {f
minSup=0.4 header table: ——
p=vy. item | frequency | head >
f 4 -
b 3 -~
c 3 I~ 7
-

Frequent Itemset Mining > Algorithms - FP-Tree

conditional pattern base:

item | cond. pattern base
f {}
b f:2, {}
C fb:2, b:1

f:4

b:2

C:2

MU

b:1

c:1l

28



w

DATABASE FP'tFEEZ FU” Example

MU
GROUP :

{ conditional pattern base 1:
item | cond. pattern base
. . f {}
f.\4 bil b £
02 o1 C fb:2, b:1
|
c:2
C conditional pattern base 2:
Ul
item | cond. pattern base
{if={} {}Ib . . b |12
I f.|2 b:1 . 0

{n = 2
(b} (b}

oiic=0] [Blbe
e L fgoc) giocy

Frequent Itemset Mining = Algorithms > FP-Tree 29



« Pattern growth property

— Let a be a frequent itemset in DB, B be a's conditional pattern base, and 8
be an itemset in B. Then oo U B is a frequent itemset in DB iff B is frequent
in B.

« “abcdef” is a frequent pattern, if and only if

— "abcde " is a frequent pattern, and
— “f" is frequent in the set of transactions containing “abcde ”



« Performance study in [Han, Pei&Yin "00] shows

— FP-growth is an order of
magnitude faster than Apriori,
and is also faster than
tree-projection

« Reasoning

Run time(sec.)

Data set T25120D10K:

i| T25 avg. length of transactions
! 1 20 avg. length of frequent itemsets
I D 10K  database size (#transactions)
\
X
\
1
\
‘\ ——&—— D1 FP-grow th runtime
‘\ — =¥~ — D1 Apriori runtime
\\
X\
\\
\\
T - f qﬁ — §\F_ m——— \_ _—-*\
0 0,5 1 1,5 2 2,5 3

Support threshold(%)

No candidate generation, no candidate test

« Apriori algorithm has to proceed breadth-first

Use compact data structure

Eliminate repeated database scan
Basic operation is counting and FP-tree building




« Big challenge: database contains potentially a huge number of frequent
itemsets (especially if minSup Is set too low).

— A frequent itemset of length 100 contains 2'°°-1 many frequent subsets

» Closed frequent itemset:
An itemset X is closed in a data set D if there exists no proper super-
itemset Y such that support(X) = support(Y) in D.

— The set of closed frequent itemsets contains complete information regarding
its corresponding frequent itemsets.

« Maximal frequent itemset:
An itemset X is maximal in a data set D if there exists no proper super-
itemset Y such that support(Y) = minSup in D.

— The set of maximal itemsets does not contain the complete support
information

— More compact representation



1) Introduction

— Transaction databases, market basket data analysis
2) Mining Frequent ltemsets

— Apriori algorithm, hash trees, FP-tree
3) Simple Association Rules

— Basic notions, rule generation, interestingness measures
4) Further Topics

— Hierarchical Association Rules

« Motivation, notions, algorithms, interestingness
— Quantitative Association Rules

« Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary



Transaction database:

D= {{butter, bread, milk, sugar};
{butter, flour, milk, sugar};
{butter, eggs, milk, salt};

{eggs};

{butter, flour, milk, salt, sugar}}

Frequent itemsets:

Question of interest:

— If milk and sugar are bought, will the customer always buy butter as well?

{butter}

{butter, sugar

{butter, milk, s Ug B

items support

wwwf‘~wwHwwmmMmmmMMMMMmﬂmmMMMMMmmmmwww
{milk} ) 4

MmNN&\MM\%ﬁu&ﬁmp il

{sugar}

{milk, sugar}

e @i\ L

milk, sugar = butter ?

— In this case, what would be the probability of buying butter?




Items I = {iy, i, ...,i;n} : a setof literals (denoting items)

Iltemset X: Set of items X € |

Database D: Set of transactions T, each transaction is a set of items T S I
Transaction T contains an itemset X: X ST

The items in transactions and itemsets are sorted lexicographically:

— itemset X = (x4, x,, ..., X ), Where x; <x,_ ... <x,

Length of an itemset: cardinality of the itemset (k-itemset: itemset of length
k)

The support of an itemset X is defined as: support(X) = |{T € D|X € T}|
Frequent itemset: an itemset X is called frequent iff support(X) = minSup

Association rule: An association rule is an implication of the form X =Y
where X,Y € I are two itemsets with X NnY = @.

Note: simply enumerating all possible association rules is not reasonable!
- What are the interesting association rules w.r.t. D?



* Interestingness of an association rule:
Quantify the interestingness of an association rule with respect to a
transaction database D:

— Support: frequency (probability) of the entire rule with respect to D
HT e DIXUY c T}

D]
“probability that a transaction in D contains the itemset X U Y"

— Confidence: indicates the strength of implication in the rule
{T e DIXUY S T}| support(XUY)

support(X =>Y)=P(XUY) = = support(X UY)/|D|

confidence(X = Y) =P(Y|X) =

(T eDIXS T}  support(X)
“conditional probability that a transaction in D containing the itemset X also
contains itemset Y" buvs diapbers

— Rule form: “Body = Head [support, confidence]”  buys bot

« Association rule examples:
- buys diapers = buys beers [0.5%, 60%]
- major in CS A takes DB = avg. grade A [1%, 75%]

buys beer



w

-mee, IMINING of Association Rules

SYSTEMS

GROUP

« Task of mining association rules:
Given a database D, determine all association rules having a support >
minSup and a confidence = minConf (so-called strong association

rules).
« Key steps of mining association rules:
ey. & 1) Find frequent itemsets, i.e., itemsets that have at least support = minSup

Vy-% ory; . . ..
sron,. % 2) Use the frequent itemsets to generate association rules

a"’éé
« For each itemset X and every nonempty subset Y € X generate ruleY = (X —
Y) if minSup and minConf are fulfilled
« we have 2%l — 2 many association rule candidates for each itemset X

 Example
frequent itemsets 1-itemset | count 2-itemset | count 3-itemset | count
{A} 3 {A, B} 3 {A,B,C} |2
{B} 4 {A, C} 2
{C} 5 {B, C} 4

rule candidates: A= B;B=A4; A=>C; C=>A; B> C; C= B;
AB=>CAC=>B;C,B=>A4,A=>B,C;B=>A4,C;C=>A,B

Frequent Itemset Mining > Simple Association Rules



w

Generating Rules from Frequent
sses | [temsets

GROUP

 For each frequent itemset X
— For each nonempty subsetY of X, formaruleY = (X —-Y)

— Delete those rules that do not have minimum confidence
Note: 1) support always exceeds minSup
2) the support values of the frequent itemsets suffice to calculate the

confidence
° Example: X = {A,B, C}, minConf = 60% itemset count

— conf (A = B) =3/3; {A} 3
— conf (B = A) =3/4; (B} 4
- conf(A=C) = 2/3, {C} 5
— conf(C=>A)=2/5; X A B} 3
— conf (B = C) =4/4; (A )
— conf (C = B) =4/5; (B C 4
— conf (A= B, C)=2/3; conf(B,C=A)=72 X

~ conf(B= A, C) =2/4; X conf (A, C = B) = 1 {A.BC} |2
— conf(C=A, B)=2/5; X conf (A, B= C)=2/3

« Exploit anti-monotonicity for generating candidates for strong
association rules!

Frequent Itemset Mining > Simple Association Rules 38



