
DATABASE
SYSTEMS
GROUP

Knowledge Discovery in Databases I: Data Representation 1

Knowledge Discovery in Databases
WS 2017/18

Vorlesung: Prof. Dr. Peer Kröger

Übungen: Anna Beer, Florian Richter

Ludwig-Maximilians-Universität München
Institut für Informatik
Lehr- und Forschungseinheit für Datenbanksysteme

Kapitel 3: Frequent Itemset Mining

DATABASE
SYSTEMS
GROUP

Kapitel 3: Frequent Itemset Mining

1) Introduction
– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets
– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules
– Basic notions, rule generation, interestingness measures

4) Further Topics

5) Extensions and Summary

Outline 2

DATABASE
SYSTEMS
GROUP

Was ist Frequent Itemset Mining?

Frequent Itemset Mining:

Finde häufige Muster, Assoziationen, Korrelationen, … zwischen Mengen
von Items oder Objekten in einer Datenbank.

• Gegeben:
– Eine Menge von Items ܫ ൌ ሼ݅ଵ, ݅ଶ, … , ݅ሽ
– Eine Datenbank ܦ von Transaktionen ܶ ⊆ ܫ (= Menge von Items, Itemsets)

• Task 1 (Freuqent Itemset Mining): Finde alle Teilmengen von Items
(Itemsets), die zusammen in vielen Transaktionen vorkommen.

– Z.B.: 85% aller Transaktionen enthalten das Itemset {milk, bread, butter}

=> Zählproblem; was kommt so häufig zusammen vor, dass es ein
interessantes Muster ist

Frequent Itemset Mining Introduction 3

DATABASE
SYSTEMS
GROUP

Was ist Frequent Itemset Mining?

• Task 2 (Association Rule Mining): Finde Regeln, die das Vorkommen
eines Itemsets mit dem Vorkommen eines anderen Itemsets korreliert.

– Z.B.: 98% der Kunden, die Räder und Autozubehör kaufen, lassen auch den Service
machen

• Anwendungen:
– Basket data analysis

– Cross-marketing

– Catalog design

– Loss-leader analysis

– Clustering

– Classification

– Recommendation systems

etc.

Frequent Itemset Mining Introduction 4

DATABASE
SYSTEMS
GROUP

Beispiel: Basket Data Analysis

• Transaktionsdatenbank
D= {{butter, bread, milk, sugar};

{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};
{butter, flour, milk, salt, sugar}}

• Fragestellung:
– Welche Items werden häufig miteinander gekauft?

• Anwendung
– Ladenlayout-Optmierung
– Cross marketing
– Focused attached mailings / add-on sales
– * Maintenance Agreement

(What the store should do to boost Maintenance Agreement sales)
– Home Electronics * (What other products should the store stock up?)

Frequent Itemset Mining Introduction 5

items frequency
{butter} 4
{milk} 4
{butter, milk} 4
{sugar} 3
{butter, sugar} 3
{milk, sugar} 3
{butter, milk, sugar} 3
{eggs} 2
…

DATABASE
SYSTEMS
GROUP

Beispiel: Basket Data Analysis

• Und das kommt dann dabei raus …

Frequent Itemset Mining Introduction 6

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction
– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets
– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules
– Basic notions, rule generation, interestingness measures

4) Further Topics
– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 7

DATABASE
SYSTEMS
GROUP

Mining Frequent Itemsets: Basics

 Items ܫ ൌ ሼ݅ଵ, ݅ଶ, … , ݅ሽ : a set of literals (denoting items)

• Itemset ܺ: Set of items ܺ ⊆ 	ܫ
• Database :ܦ Set of transactions ܶ, each being a set of items 	T ⊆ 	ܫ
• Transaction ܶ contains an itemset ܺ: ܺ ⊆ ܶ	
• The items in transactions and itemsets are sorted lexicographically:

– itemset ܺ ൌ ሺ1ݔ, ,2ݔ … , …	2ݔ		1ݔ ሻ, where	݇ݔ 		݇ݔ	
• Length of an itemset: number of elements in the itemset

• k-itemset: itemset of length k
• The support of an itemset X	is defined as: ݐݎݑݏ ܺ ൌ ܶ ∈ ܺ|ܦ ⊆ ܶ
• Frequent itemset: an itemset X	is called frequent for database ܦ iff it is

contained in more than ݑܵ݊݅݉ many transactions: ݐݎݑݏሺܺሻ
ݑܵ݊݅݉

• Goal 1: Given a database find all frequent	,	ݑܵ݊݅݉ and a thresholdܦ
itemsets X ∈ .ሻܫሺݐܲ

Frequent Itemset Mining Algorithms 8

DATABASE
SYSTEMS
GROUP

Mining Frequent Itemsets: Basic Idea

• Naïve Algorithm
– count the frequency of all possible subsets of ܫ in the database

 too expensive since there are 2m such itemsets for |ܫ| 	ൌ 	݉		items

• The Apriori principle (anti-monotonicity):
Any non-empty subset of a frequent itemset is frequent, too!
A ⊆ I	with	support A minSup	 ⇒ ∀Aᇱ ⊂ A ∧ Aᇱ ് ∅: support Aᇱ minSup
Any superset of a non-frequent itemset is non-frequent, too!
A ⊆ I	with	support A ൏ minSup	 ⇒ ∀Aᇱ ⊃ A: support Aᇱ ൏ minSup

• Method based on the Apriori principle
– First count the 1-itemsets, then the 2-itemsets,

then the 3-itemsets, and so on
– When counting (k+1)-itemsets, only consider those

(k+1)-itemsets where all subsets of length k have been
determined as frequent in the previous step

Frequent Itemset Mining Algorithms Apriori Algorithm 9

cardinality of power set

✗
Ø

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD not frequent

DATABASE
SYSTEMS
GROUP

The Apriori Algorithm

variable Ck: candidate itemsets of size k
variable Lk: frequent itemsets of size k

L1 = {frequent items}
for (k = 1; Lk !=; k++) do begin

// JOIN STEP: join Lk with itself to produce Ck+1

// PRUNE STEP: discard (k+1)-itemsets from Ck+1 that
contain non-frequent k-itemsets as subsets
Ck+1 = candidates generated from Lk

for each transaction t in database do
Increment the count of all candidates in Ck+1

that are contained in t
Lk+1 = candidates in Ck+1 with min_support

return k Lk

Frequent Itemset Mining Algorithms Apriori Algorithm 10

produce
candidates

prove
candidates

DATABASE
SYSTEMS
GROUP

Generating Candidates (Join Step)

• Requirements for set of all candidate ݇ 1 -itemsets ܥାଵ
– Completeness:

Must contain all frequent ݇ 1 -itemsets (superset property (ାଵܮ		ାଵܥ

– Selectiveness:
Significantly smaller than the set of all ݇ 1 -subsets

– Suppose the items are sorted by any order (e.g., lexicograph.)

• Step 1: Joining ାଵܥ) ൌ ܮ ⋈ (ܮ

– Consider frequent ݇-itemsets and ݍ
– and ݍ are joined if they share the same first ݇ െ 1 items

insert into Ck+1

select p.i1, p.i2, …, p.ik–1, p.ik, q.ik
from Lk : p, Lk : q

where p.i1=q.i1, …, p.ik –1 =q.ik–1, p.ik < q.ik

Frequent Itemset Mining Algorithms Apriori Algorithm 11

p Lk=3 (A, C, F)

(A, C, F, G) Ck+1=4

q Lk=3 (A, C, G)

DATABASE
SYSTEMS
GROUP

Generating Candidates (Prune Step)

• Step 2: Pruning (ܮାଵ ൌ ሼX ∈ ݐݎݑݏ|ାଵܥ ܺ ሽݑܵ݊݅݉)
– Naïve: Check support of every itemset in ܥାଵ inefficient for huge ܥାଵ
– Instead, apply Apriori principle first: Remove candidate (k+1) -itemsets

which contain a non-frequent k-subset s, i.e., s Lk

forall itemsets c in Ck+1 do
forall k-subsets s of c do

if (s is not in Lk) then delete c from Ck+1

• Example 1
– L3 = {(ACF), (ACG), (AFG), (AFH), (CFG)}

– Candidates after the join step: {(ACFG), (AFGH)}

– In the pruning step: delete (AFGH) because (FGH) L3, i.e., (FGH) is not a
frequent 3-itemset; also (AGH) L3

 C4 = {(ACFG)} check the support to generate L4

Frequent Itemset Mining Algorithms Apriori Algorithm 12

DATABASE
SYSTEMS
GROUP

Apriori Algorithm – Full Example

TID items
100 1 3 4 6
200 2 3 5
300 1 2 3 5
400 1 5 6

Frequent Itemset Mining Algorithms Apriori Algorithm 13

itemsetcount
{1} 3
{2} 2
{3} 3
{4} 1
{5} 3
{6} 2

database D
scan D

minSup=0.5 C1 itemsetcount
{1} 3
{2} 2
{3} 3
{5} 3
{6} 2

L1

ଵܮ ⋈ ଵܮ

itemset
{1 2}
{1 3}
{1 5}
{1 6}
{2 3}
{2 5}
{2 6}
{3 5}
{3 6}
{5 6}

C2

prune C1 scan D

C2 C2 itemsetcount
{1 3} 2
{1 5} 2
{1 6} 2
{2 3} 2
{2 5} 2
{3 5} 2

L2
itemset

{1 2}
{1 3}
{1 5}
{1 6}
{2 3}
{2 5}
{2 6}
{3 5}
{3 6}
{5 6}

itemsetcount
{1 2} 1
{1 3} 2
{1 5} 2
{1 6} 2
{2 3} 2
{2 5} 2
{2 6} 0
{3 5} 2
{3 6} 1
{5 6} 1

ଶܮ ⋈ ଶܮ

itemset
{1 3 5}
{1 3 6}
{1 5 6}
{2 3 5}

C3

prune C2

itemset
{1 3 5}
{1 3 6} ✗
{1 5 6} ✗
{2 3 5}

C3

scan D

itemsetcount
{1 3 5} 1
{2 3 5} 2

C3 itemsetcount
{2 3 5} 2

L3

ଷܮ ⋈ ଷܮ
C4 is empty

DATABASE
SYSTEMS
GROUP

Performance?

• First obvious problem: the check if a candidate from Ck+1 is frequent

• Why? This is simple counting!?!
– The total number of candidates can be very huge

– One transaction may contain many candidates

• Solutuion: Hash-Tree
– Candidate itemsets and their support are stored in a hash-tree that

efficiently supports
• Insertion of new itemsets

• Search for itemsets (and their support)

– Sketch of the data structure
• Leaf nodes of hash-tree contain lists of itemsets and their support (i.e., counts)

• Interior nodes contain hash tables

• Subset function finds all the candidates contained in a transaction

14

DATABASE
SYSTEMS
GROUP

Performance?

• The core of the Apriori algorithm:
– Use frequent (k – 1)-itemsets to generate candidate frequent k-itemsets

– Use database scan and pattern matching to collect counts for the candidate
itemsets

• The bottleneck of Apriori: candidate generation
– Huge candidate sets:

• 104 frequent 1-itemsets will generate 107 candidate 2-itemsets

• To discover a frequent pattern of size 100, e.g., {a1, a2, …, a100}, one
needs to generate 2100 1030 candidates.

– Multiple scans of database:

• Needs n or n+1 scans, n is the length of the longest pattern

 Is it possible to mine the complete set of frequent itemsets without
candidate generation?

Frequent Itemset Mining Algorithms Apriori Algorithm 15

DATABASE
SYSTEMS
GROUP

Mining Frequent Patterns Without
Candidate Generation

• Compress a large database into a compact, Frequent-Pattern tree (FP-
tree) structure
– highly condensed, but complete for frequent pattern mining

– avoid costly database scans

• Develop an efficient, FP-tree-based frequent pattern mining method
– A divide-and-conquer methodology: decompose mining tasks into smaller

ones

– Avoid candidate generation: sub-database test only!

• Idea:
– Compress database into FP-tree, retaining the itemset association

information

– Divide the compressed database into conditional databases, each associated
with one frequent item and mine each such database separately.

Frequent Itemset Mining Algorithms FP-Tree 16

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

Frequent Itemset Mining Algorithms FP-Tree 17

item frequency
f 4
c 4
a 3
b 3
m 3
p 3

1&2
header table:

TID items bought
100 {f, a, c, d, g, i, m, p}
200 {a, b, c, f, l, m, o}
300 {b, f, h, j, o}
400 {b, c, k, s, p}
500 {a, f, c, e, l, p, m, n}

sort items in the order
of descending support

minSup=0.5

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Frequent Itemset Mining Algorithms FP-Tree 18

item frequency
f 4
c 4
a 3
b 3
m 3
p 3

header table:

TID items bought (ordered) frequent
items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

for each transaction only
keep its frequent items
sorted in descending
order of their frequencies

1&2
3a

for each transaction build a path in the FP-tree:
- If a path with common prefix exists:

increment frequency of nodes on this path
and append suffix

- Otherwise: create a new branch

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Frequent Itemset Mining Algorithms FP-Tree 19

item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

header table:

TID items bought (ordered) frequent
items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1&2 3a

3b

header table
references the
occurrences of the
frequent items in the
FP-tree

DATABASE
SYSTEMS
GROUP

Benefits of the FP-tree Structure

• Completeness:
– never breaks a long pattern of any transaction

– preserves complete information for frequent pattern mining

• Compactness
– reduce irrelevant information—infrequent items are gone

– frequency descending ordering: more frequent items are more likely to be
shared

– never be larger than the original database (if not count node-links and
counts)

– Experiments demonstrate compression ratios over 100

Frequent Itemset Mining Algorithms FP-Tree 20

DATABASE
SYSTEMS
GROUP

Mining Frequent Patterns Using
FP-tree

• General idea (divide-and-conquer)
– Recursively grow frequent pattern path using the FP-tree

• Method
– For each item, construct its conditional pattern-base (prefix paths), and then

its conditional FP-tree

– Repeat the process on each newly created conditional FP-tree …

– …until the resulting FP-tree is empty, or it contains only one path (single
path will generate all the combinations of its sub-paths, each of which is a
frequent pattern)

Frequent Itemset Mining Algorithms FP-Tree 21

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree

2) Construct conditional FP-tree from each conditional pattern-base

3) Recursively mine conditional FP-trees and grow frequent patterns
obtained so far
– If the conditional FP-tree contains a single path, simply enumerate all the

patterns

Frequent Itemset Mining Algorithms FP-Tree 22

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional Pattern Base

1) Construct conditional pattern base for each node in the FP-tree
– Starting at the frequent header table in the FP-tree

– Traverse FP-tree by following the link of each frequent item (dashed lines)

– Accumulate all of transformed prefix paths of that item to form a conditional
pattern base

• For each item its prefixes are regarded as condition for it being a suffix. These
prefixes form the conditional pattern base. The frequency of the prefixes can be
read in the node of the item.

Frequent Itemset Mining Algorithms FP-Tree 23

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

header table:

item cond. pattern base
f {}
c f:3, {}
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

conditional pattern base:

DATABASE
SYSTEMS
GROUP

Properties of FP-tree for Conditional
Pattern Bases

• Node-link property
– For any frequent item ai, all the possible frequent patterns that contain ai

can be obtained by following ai's node-links, starting from ai's head in the
FP-tree header

• Prefix path property
– To calculate the frequent patterns for a node ai in a path P, only the prefix

sub-path of ai in P needs to be accumulated, and its frequency count should
carry the same count as node ai.

Frequent Itemset Mining Algorithms FP-Tree 24

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔
2) Construct conditional FP-tree from each conditional pattern-base

– The prefix paths of a suffix represent the conditional basis.
They can be regarded as transactions of a database.

– Those prefix paths whose support minSup, induce a conditional FP-tree

– For each pattern-base
• Accumulate the count for each item in the base

• Construct the FP-tree for the frequent items of the pattern base

Frequent Itemset Mining Algorithms FP-Tree 25

conditional pattern base: m-conditional FP-tree
{}|m

f:3

c:3

a:3

item frequency
f 3 ..
c 3 ..
a 3 ..
b 1✗

item cond. pattern base
f {}
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔
2) Construct conditional FP-tree from each conditional pattern-base

Frequent Itemset Mining Algorithms FP-Tree 26

conditional pattern base:

{}|m

f:3

c:3

a:3

item cond. pattern base
f {}
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}|f = {} {}|c

f:3

{}|a

f:3

c:3

{}|b = {} {}|p

c:3

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔
2) Construct conditional FP-tree from each conditional pattern-base ✔
3) Recursively mine conditional FP-trees and grow frequent patterns

obtained so far
– If the conditional FP-tree contains a single path, simply enumerate all the

patterns (enumerate all combinations of sub-paths)

Frequent Itemset Mining Algorithms FP-Tree 27

example:
m-conditional FP-tree

{}|m

f:3

c:3

a:3

All frequent patterns
concerning m
m,
fm, cm, am,
fcm, fam, cam,
fcam

just a single path

DATABASE
SYSTEMS
GROUP

FP-tree: Full Example

Frequent Itemset Mining Algorithms FP-Tree 28

item frequency head
f 4
b 3
c 3

{}

b:1

c:1

header table:

TID items bought (ordered) frequent items
100 {b, c, f} {f, b, c}
200 {a, b, c} {b, c}
300 {d, f} {f}
400 {b, c, e, f} {f, b, c}
500 {f, g} {f}

minSup=0.4
f:4

b:2

c:2

database:

item cond. pattern base
f {}
b f:2, {}
c fb:2, b:1

conditional pattern base:

DATABASE
SYSTEMS
GROUP

FP-tree: Full Example

Frequent Itemset Mining Algorithms FP-Tree 29

{}

b:1

c:1

f:4

b:2

c:2

item cond. pattern base
f {}
b f:2
c fb:2, b:1

conditional pattern base 1:

{}|f = {} {}|b

f:2

{}|c

b:1f:2

b:2

item cond. pattern base
b f:2
f {}

conditional pattern base 2:

{}|fc = {} {}|bc

f:2

{{f}}
{{b},{fb}}

{{fc}} {{bc},{fbc}}

DATABASE
SYSTEMS
GROUP

Principles of Frequent Pattern
Growth

• Pattern growth property
– Let be a frequent itemset in DB, B be 's conditional pattern base, and

be an itemset in B. Then is a frequent itemset in DB iff is frequent
in B.

• “abcdef ” is a frequent pattern, if and only if

– “abcde ” is a frequent pattern, and

– “f ” is frequent in the set of transactions containing “abcde ”

Frequent Itemset Mining Algorithms FP-Tree 30

DATABASE
SYSTEMS
GROUP

0

10

20

30

40

50

60

70

80

90

100

0 0,5 1 1,5 2 2,5 3
Support threshold(%)

Ru
n

tim
e(

se
c.

)

D1 FP-grow th runtime

D1 Apriori runtime

Why Is Frequent Pattern Growth
Fast?

• Performance study in [Han, Pei&Yin ’00] shows
– FP-growth is an order of

magnitude faster than Apriori,
and is also faster than
tree-projection

• Reasoning
– No candidate generation, no candidate test

• Apriori algorithm has to proceed breadth-first

– Use compact data structure

– Eliminate repeated database scan

– Basic operation is counting and FP-tree building

Frequent Itemset Mining Algorithms FP-Tree 31

Data set T25I20D10K:
T 25 avg. length of transactions
I 20 avg. length of frequent itemsets
D 10K database size (#transactions)

DATABASE
SYSTEMS
GROUP

Maximal or Closed Frequent Itemsets

• Big challenge: database contains potentially a huge number of frequent
itemsets (especially if minSup is set too low).
– A frequent itemset of length 100 contains 2100-1 many frequent subsets

• Closed frequent itemset:
An itemset X is closed in a data set D if there exists no proper super-
itemset Y such that ݐݎݑݏሺܺሻ ൌ ሺܻሻݐݎݑݏ in D.
– The set of closed frequent itemsets contains complete information regarding

its corresponding frequent itemsets.

• Maximal frequent itemset:
An itemset X is maximal in a data set D if there exists no proper super-
itemset Y such that ݐݎݑݏ ܻ ݑܵ݊݅݉ in D.
– The set of maximal itemsets does not contain the complete support

information

– More compact representation

Frequent Itemset Mining Algorithms Maximal or Closed Frequent Itemsets 32

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction
– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets
– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules
– Basic notions, rule generation, interestingness measures

4) Further Topics
– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 33

DATABASE
SYSTEMS
GROUP

Simple Association Rules:
Introduction

• Transaction database:
D= {{butter, bread, milk, sugar};

{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};
{butter, flour, milk, salt, sugar}}

• Frequent itemsets:

• Question of interest:
– If milk and sugar are bought, will the customer always buy butter as well?

݈݉݅݇, 	ݎܽ݃ݑݏ ⇒ ݎ݁ݐݐݑܾ ?
– In this case, what would be the probability of buying butter?

Frequent Itemset Mining Simple Association Rules 34

items support
{butter} 4
{milk} 4
{butter, milk} 4
{sugar} 3
{butter, sugar} 3
{milk, sugar} 3
{butter, milk, sugar} 3

DATABASE
SYSTEMS
GROUP

Simple Association Rules: Basic
Notions

 Items ܫ ൌ ሼ݅ଵ, ݅ଶ, … , ݅ሽ : a set of literals (denoting items)

• Itemset ܺ: Set of items ܺ ⊆ 	ܫ
• Database :ܦ Set of transactions ܶ, each transaction is a set of items 	T ⊆ 	ܫ
• Transaction ܶ contains an itemset ܺ: ܺ ⊆ ܶ	
• The items in transactions and itemsets are sorted lexicographically:

– itemset ܺ ൌ ሺ1ݔ, ,2ݔ … , 		2ݔ		1ݔ ሻ, where	݇ݔ … 		݇ݔ	
• Length of an itemset: cardinality of the itemset (k-itemset: itemset of length

k)
• The support of an itemset X is defined as: ݐݎݑݏ ܺ ൌ ܶ ∈ ܺ|ܦ ⊆ ܶ
• Frequent itemset: an itemset X	is called frequent iff ሺܺሻݐݎݑݏ ݑܵ݊݅݉

• Association rule: An association rule is an implication of the form ܺ ⇒ ܻ
where ܺ, ܻ ⊆ ܫ are two itemsets with ܺ ∩ ܻ ൌ ∅.

• Note: simply enumerating all possible association rules is not reasonable!
What are the interesting association rules w.r.t. ܦ?

Frequent Itemset Mining Simple Association Rules 35

DATABASE
SYSTEMS
GROUP

Interestingness of Association Rules

• Interestingness of an association rule:
Quantify the interestingness of an association rule with respect to a
transaction database D:
– Support: frequency (probability) of the entire rule with respect to D

ݐݎݑݏ ܺ ⇒ ܻ ൌ ܲ ܺ ∪ ܻ ൌ
ሼܶ ∈ ܺ|ܦ ∪ ܻ ⊆ ܶሽ

ܦ ൌ ሺܺݐݎݑݏ ∪ ܻሻ/|ܦ|

“probability that a transaction in ܦ contains the itemset ܺ ∪ ܻ”

– Confidence: indicates the strength of implication in the rule

݂݁ܿ݊݁݀݅݊ܿ ܺ ⇒ ܻ ൌ ܲ ܻ|ܺ ൌ
ሼܶ ∈ ܺ|ܦ ∪ ܻ ⊆ ܶሽ
ሼܶ ∈ ܺ|ܦ ⊆ ܶሽ ൌ

ሺܺݐݎݑݏ ∪ ܻሻ
ሺܺሻݐݎݑݏ

“conditional probability that a transaction in ܦ containing the itemset ܺ also
contains itemset ܻ”

– Rule form: “ݕ݀ܤ ⇒ ,ݐݎݑݏሾ	݀ܽ݁ܪ ”ሿ݂݁ܿ݊݁݀݅݊ܿ
• Association rule examples:

– buys diapers buys beers [0.5%, 60%]

– major in CS ∧ takes DB avg. grade A [1%, 75%]

Frequent Itemset Mining Simple Association Rules 36

buys beer

buys diapers
buys both

DATABASE
SYSTEMS
GROUP

Mining of Association Rules

• Task of mining association rules:
Given a database ܦ, determine all association rules having a ݐݎݑݏ
ݑܵ݊݅݉ and a ݂ܿ݁ܿ݊݁݀݅݊ ݂݊ܥ݊݅݉ (so-called strong association
rules).

• Key steps of mining association rules:
1) Find frequent itemsets, i.e., itemsets that have at least support ൌ ݑܵ݊݅݉
2) Use the frequent itemsets to generate association rules

• For each itemset ܺ and every nonempty subset Y ⊂ ܺ generate rule Y ⇒ ሺܺ െ
ܻሻ if ݉݅݊ܵݑ and ݂݉݅݊݊ܥ are fulfilled

• we have 2|| െ 2 many association rule candidates for each itemset ܺ

• Example
frequent itemsets

rule candidates: A ⇒ ܤ;ܤ ⇒ ;ܣ 	A ⇒ ;ܥ ܥ	 ⇒ A; ܤ	 ⇒ ;ܥ 	C ⇒ ;ܤ
,ܣ ܤ ⇒ ;ܥ ,ܣ ܥ ⇒ ;ܤ ,ܥ ܤ ⇒ ;ܣ ܣ ⇒ ,ܤ ;ܥ ܤ ⇒ ,ܣ ;ܥ ܥ ⇒ ܤ,ܣ

Frequent Itemset Mining Simple Association Rules 37

1-itemset count 2-itemset count 3-itemset count
{A}
{B}
{C}

3
4
5

{A, B}
{A, C}
{B, C}

3
2
4

{A, B, C} 2

DATABASE
SYSTEMS
GROUP

Generating Rules from Frequent
Itemsets

• For each frequent itemset ܺ
– For each nonempty subset ܻ of ܺ, form a rule ܻ ⇒ ሺܺ െ ܻሻ
– Delete those rules that do not have minimum confidence

Note: 1) support always exceeds ݉݅݊ܵݑ
2) the support values of the frequent itemsets suffice to calculate the

confidence

• Example: ܺ	 ൌ 	 ሼܣ, ,ܤ ݂݊ܥ݊݅݉ ,ሽܥ ൌ 60%
– conf (A B) = 3/3; ✔
– conf (B A) = 3/4; ✔
– conf (A C) = 2/3; ✔
– conf (C A) = 2/5; ✗
– conf (B C) = 4/4; ✔
– conf (C B) = 4/5; ✔
– conf (A B, C) = 2/3; ✔ conf (B, C A) = ½ ✗
– conf (B A, C) = 2/4; ✗ conf (A, C B) = 1 ✔
– conf (C A, B) = 2/5; ✗ conf (A, B C) = 2/3 ✔

• Exploit anti-monotonicity for generating candidates for strong
association rules!

Frequent Itemset Mining Simple Association Rules 38

itemset count
{A}
{B}
{C}

3
4
5

{A, B}
{A, C}
{B, C}

3
2
4

{A, B, C} 2

