

Skript zur Vorlesung

Knowledge Discovery in Databases im Wintersemester 2010/2011

Kapitel 7: Assoziationsregeln

Vorlesung+Übungen: PD Dr. Peer Kröger, Dr. Arthur Zimek

Skript © 2010 Johannes Aßfalg, Christian Böhm, Karsten Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Jörg Sander, Matthias Schubert, Arthur Zimek

http://www.dbs.ifi.lmu.de/cms/Knowledge_Discovery_in_Databases_I_(KDD_I)

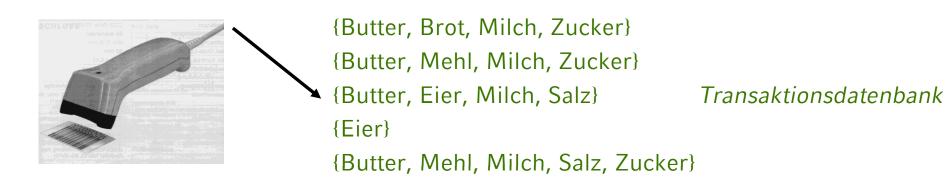
7. Assoziationsregeln

Inhalt dieses Kapitels

- 7.1 Einleitung
- 7.2 Grundlagen
- 7.3 Itemset Mining
- 7.4 Association Rule Mining

7.1 Einleitung

Motivation



Warenkorbanalyse

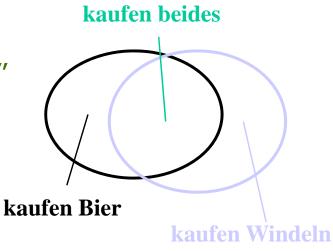
- Welche Artikel werden häufig miteinander gekauft?
- Anwendungen
 - Verbesserung des Laden-Layouts
 - Cross Marketing
 - gezielte Attached Mailings/Add-on Sales

Einleitung

Assoziationsregeln

Regeln der Form

"Rumpf → Kopf [support, confidence]"



Beispiele

 $kauft(X, "Windeln") \rightarrow kauft(X, "Bier") [0.5\%, 60\%]$

hauptfach(X, "CS") \wedge kurs(X, "DB") \rightarrow abschluß(X, "A") [1%, 75%]

98% aller Kunden, die Reifen und Autozubehör kaufen, bringen ihr Auto auch zum Service

7.2 Grundlagen

- Items $I = \{i_1, ..., i_m\}$ eine Menge von Literalen z.B. Waren/Artikel bei einem Einkauf
- Itemset X: Menge von Items $X \subseteq I$ z.B. ein kompletter Einkauf
- Datenbank DB: Menge von Transaktionen T mit $T = (tid, X_T)$ z.B. Menge aller Einkäufe (=Transaktionen) in einem bestimmten Zeitraum
- Transaktion T enthält Itemset X: $X \subseteq T$
- Items in Transaktionen oder Itemsets sind lexikographisch sortiert: Itemset $X = (x_1, x_2, ..., x_k)$, wobei $x_1 \le x_2 \le ... \le x_k$
- Länge des Itemsets: Anzahl der Elemente in einem Itemset
- k-Itemset: ein Itemset der Länge k
 {Butter, Brot, Milch, Zucker} ist ein 4-Itemset
 {Mehl, Wurst} ist ein 2-Itemset

- Cover eines Itemset X: Menge der Transaktionen T, die X enthalten: $cover(X) = \{tid \mid (tid, X_T) \in DB, X \subseteq X_T\}$
- Support des Itemset X in DB: Anteil der Transaktionen in DB, die X enthalten: support(X) = |cover(X)|

Bemerkung: $support(\emptyset) = |DB|$

• Häufigkeit eines Itemsets X in DB:

Wahrscheinlichkeit, daß X in einer Transaktion $T \in DB$ auftritt: frequency(X) = P(X) = support(X) / |DB|

• Häufig auftretendes (frequent) Itemset X in DB:

$$support(X) \ge s$$

$$(0 \le s \le |DB|)$$

s ist ein absoluter support-Grenzwert

Alternativ: $frequency(X) \ge s_{rel}$

wobei
$$s = \lceil s_{rel} \cdot IDBI \rceil$$

Problem 1 (Itemset Mining)

Gegeben:

- eine Menge von Items I
- eine Transaktionsdatenbank DB über I
- Ein absoluter support-Grenzwert s

Finde alle frequent Itemsets in *DB*, d.h. $\{X \subseteq I \mid support(X) \ge s\}$

TransaktionsID	Items
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Support der 1-Itemsets:

(A): 75%, (B), (C): 50%, (D), (E), (F): 25%,

Support der 2-Itemsets:

(A, C): 50%,

(A, B), (A, D), (B, C), (B, E), (B, F), (E, F): 25%

- Assoziationsregel: Implikation der Form $X \Rightarrow Y$, wobei gilt: $X \subseteq I$, $Y \subseteq I$ und $X \cap Y = \emptyset$, X heißt Rumpf Y heißt Kopf
- Support einer Assoziationsregel $A \equiv X \Rightarrow Y$ in DB: Support von $X \cup Y$ in DB support(A) = support($X \cup Y$)
- Häufigkeit einer Assoziationsregel A in DB: frequency(A) = support(A) / |DB|
- Konfidenz einer Assoziationsregel $A \equiv X \Rightarrow Y$ in DB: Anteil der Transaktionen, die die Menge Y enthalten, in der Teilmenge aller Transaktionen aus DB, welche die Menge X enthalten

$$confidence(A) = \frac{support(X \cup Y)}{support(X)}$$

Problem 2 (Association Rule Mining)

Gegeben:

- eine Menge von Items I
- eine Transaktionsdatenbank DB über I
- Ein absoluter support-Grenzwert s und confidenz-Grenzwert c

Finde alle Assoziationsregeln $A \equiv X \Rightarrow Y$ in DB, die mind. einen Support von s und mind. eine Konfidenz von c haben, d.h.

$${A \equiv X \Rightarrow Y \mid support(A) \geq s, confidence(A) \geq c}$$

TransaktionsID	Items
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Assoziationsregeln:

$$A \Rightarrow C$$
 (Support = 50%, Konfidenz = 66.6%)

$$C \Rightarrow A$$
 (Support = 50%, Konfidenz = 100%)

Problem 1 ist Teilproblem von Problem 2:

- Itemset X häufig bzgl. s
- Y Teilmenge von X
- $-Y \Rightarrow (X Y)$ hat minimalen Support bzgl. s

2-stufiges Verfahren um Assoziationsregeln zu bestimmen:

1. Bestimmung der frequent Itemsets:

"naiver" Algorithmus: zähle die Häufigkeit aller k-elementigen Teilmengen von I ineffizient, da $\binom{|I|}{k}$ solcher Teilmengen Gesamt-Kosten: $O(2^{|I|})$

- => Apriori-Algorithmus und Varianten, Tiefensuch-Algorithmen
- 2. Generierung der Assoziationsregeln mit minimaler Konfidenz bzgl. c: generiere $Y \Rightarrow (X Y)$ aus frequent Itemset X

Running Example

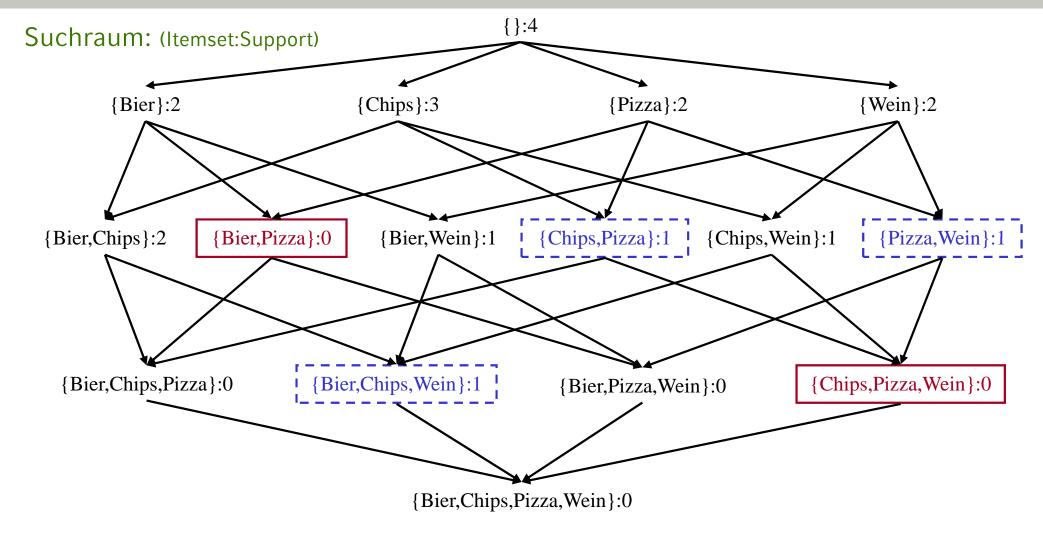
tid	X_{T}
1	{Bier, Chips, Wein}
2	{Bier, Chips}
3	{Pizza, Wein}
4	{Chips, Pizza}

Transaktionsdatenbank

Itemset	Cover	Sup.	Freq.
{}	{1,2,3,4}	4	100 %
{Bier}	{1,2}	2	50 %
{Chips}	{1,2,4}	3	75 %
{Pizza}	{3,4}	2	50 %
{Wein}	{1,3}	2	50 %
{Bier, Chips}	{1,2}	2	50 %
{Bier, Wein}	{1}	1	25 %
{Chips, Pizza}	{4}	1	25 %
{Chips, Wein}	{1}	1	25 %
{Pizza, Wein}	{3}	1	25 %
{Bier, Chips, Wein}	{1}	1	25 %

Regel	Sup.	Freq.	Conf.
${Bier} \Rightarrow {Chips}$	2	50 %	100 %
{Bier} ⇒ {Wein}	1	25 %	50 %
{Chips} ⇒ {Bier}	2	50 %	66 %
{Pizza} ⇒ {Chips}	1	25 %	50 %
{Pizza} ⇒ {Wein}	1	25 %	50 %
$\{Wein\} \Rightarrow \{Bier\}$	1	25 %	50 %
{Wein} ⇒ {Chips}	1	25 %	50 %
{Wein} ⇒ {Pizza}	1	25 %	50 %
{Bier, Chips} ⇒ {Wein}	1	25 %	50 %
${Bier, Wein} \Rightarrow {Chips}$	1	25 %	100 %
$\{Chips, Wein\} \Rightarrow \{Bier\}$	1	25 %	100 %
{Bier} ⇒ {Chips, Wein}	1	25 %	50 %
$\{Wein\} \Rightarrow \{Bier, Chips\}$	1	25 %	50 %

- "naiver" Algorithmus: zähle die Häufigkeit aller k-Itemsets von I teste insgesamt $\sum_{k=1}^{m} {m \choose k} = 2^m 1$ Itemsets, d.h. $O(2^m)$ mit m = |I|
- Kandidaten Itemset X:
 Algorithmus evaluiert, ob X frequent ist Kandidatenmenge sollte so klein wie möglich sein
- Rand (Border) Itemset X:
 alle Teilmengen Y ⊂ X sind frequent, alle Obermengen Z ⊃ X sind nicht frequent
 - *positiver Rand*: *X* is selbst frequent
 - *negativer Rand*: *X* ist selbst nicht frequent



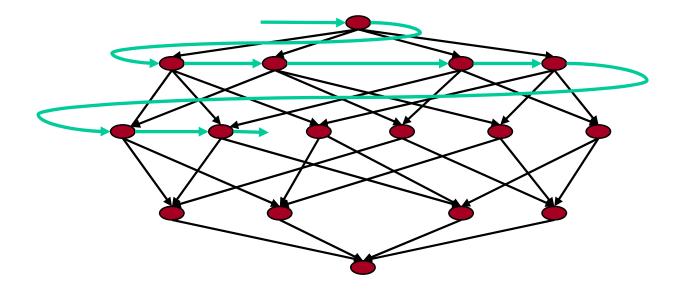
Positive Rand-Itemsets

Minimaler Support s = 1

Negative Rand-Itemsets

Apriori Algorithmus [Agrawal & Srikant 1994]

 zuerst die einelementigen Frequent Itemsets bestimmen, dann die zweielementigen und so weiter (Breitensuche)



- Finden von *k*+1-elementigen Frequent Itemsets:
- nur solche k+1-elementigen Itemsets betrachten, für die alle k-elementigen Teilmengen häufig auftreten
- Bestimmung des Supports durch Zählen auf der Datenbank (ein Scan)

 C_k : die zu zählenden Kandidaten-Itemsets der Länge k L_k : Menge aller häufig vorkommenden Itemsets der Länge k

```
 \begin{aligned} & \mathbf{Apriori}(I, DB, \ minsup) \\ & L_1 := \{ \text{frequent } 1\text{-Itemsets aus } I \}; \\ & k := 2; \\ & \mathbf{while} \ L_{k-1} \ ^1 \varnothing \ \mathbf{do} \\ & C_k := \text{AprioriKandidatenGenerierung}(L_{k-1}); \\ & \mathbf{for \ each} \ \text{Transaktion} \ T \in DB \ \mathbf{do} \\ & CT := \text{Subset}(C_k, \ T); // \ \text{alle Kandidaten aus } C_k, \ \text{die} \\ & // \ \text{der Transaktion} \ T \ \text{enthalten sind}; \\ & \mathbf{for \ each} \ \text{Kandidat} \ c \in CT \ \mathbf{do} \ c.count + +; \\ & L_k := \{ c \in C_k \ | \ c.count \ge minsup \}; \\ & k++; \end{aligned}   \mathbf{return} \ \bigcup_k L_k; \end{aligned}
```


Kandidatengenerierung

Anforderungen an Kandidaten-Itemsets C_k

- Obermenge von L_k
- wesentlich kleiner als die Menge aller k-elementigen Teilmengen von I

Schritt 1: Join

- k-1-elementige Frequent Itemsets p und q
- p und q werden miteinander verbunden, wenn sie in den ersten k–2 Items übereinstimmen

$$p \in L_{k-1}$$
 (Bier, Chips, Pizza)
$$(Bier, Chips, Pizza, Wein) \in C_k$$
 $q \in L_{k-1}$ (Bier, Chips, Wein)

Kandidatengenerierung

Schritt 2: Pruning

entferne alle Kandidaten-k-Itemsets, die eine k-1-elementige Teilmenge enthalten, die nicht zu L_{k-1} gehört

Beispiel:

$$L_3 = \{(1\ 2\ 3), (1\ 2\ 4), (1\ 3\ 4), (1\ 3\ 5), (2\ 3\ 4)\}$$

nach dem Join-Schritt: Kandidaten = $\{(1 \ 2 \ 3 \ 4), (1 \ 3 \ 4 \ 5)\}$

im Pruning-Schritt:

lösche (1345)

$$C_4 = \{(1\ 2\ 3\ 4)\}$$

minsup = 2

TID	Items
	1 3 4
	235
	1235
400	2 5

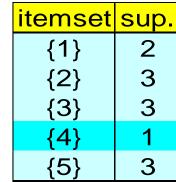
itemset sup

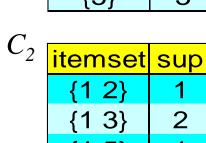
{1 3}

{2 3}

Scan D

Beispiel





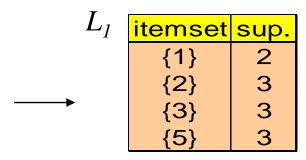
2 5} 3 5}	3 2	
,		

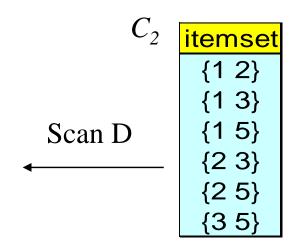
itemset

 L_3 Scan D

itemset	sup
{1 2}	1
{1 3}	2
{1 5}	1
{2 3}	2
{2 5}	3
{3 5}	2

itemset sup {2 3 5}





Eigenschaften:

- Benötigt für alle Itemsets der Länge k einen Datenbank-Scan $\Rightarrow O(l \cdot |D|)$
- Menge der generierten Kandidaten, die nicht frequent sind entspricht dem negativen Rand

$$\Rightarrow O\left(\begin{bmatrix} m \\ m/2 \end{bmatrix}\right)$$
 (Sperners Theorem)

 Wenn nicht alle Kandidaten Itemsets in den Hauptspeicher passen, werden Kandidaten blockweise auf min. Support überprüft

Verbesserungen (u.a.)

- Hashbaum zur Unterstützung der Subset-Funktion:
 - Subset-Funktion muss für jede Transaktion in DB und jede Kandidatenmenge C_k alle Kandidaten in C_k finden, die T enthalten
 - Organisiere Kandidaten aus C_k in einem Hash-Baum
- Tiefensuche statt Breitensuche:
 - Die Cover der Kandidaten-Itemsets in einer Iteration kann sehr groß sein
 ⇒ beim Zählen des supports reicht evtl.
 der Hauptspeicher nicht mehr aus
 - Die Größe der Cover kann evtl. deutlich reduziert werden, indem die Kandidaten-Itemsets in einer Tiefensuch-Strategie erzeugt werden

7.4 Association Rule Mining

Methode

- häufig vorkommender Itemset X
- für jede Teilmenge Y von X die Regel $A = Y \Rightarrow (X Y)$ bilden
- Regeln streichen, die nicht die minimale Konfidenz haben
- Berechnung der Konfidenz einer Regel $Y \Rightarrow (X Y)$

$$confidence(Y \Rightarrow (X - Y)) = \frac{support(X)}{support(Y)}$$

Speicherung der Frequent Itemsets mit ihrem Support in einer Hashtabelle

keine Datenbankzugriffe

Association Rule Mining

- Monotonie der Konfidenz bei Assoziationsregeln:
 - seien $X,Y,Z\subseteq I$ Itemsets mit $X\cap Y=\emptyset$ Es gilt: $confidence(X\setminus Z\Rightarrow Y\cup Z)\leq confidence(X\Rightarrow Y)$
- Bottom-up Bestimmung der Assoziationsregeln ähnlich Apriori-Algorithmus möglich
- Beachte: für jedes Itemset X mit support(X) > 0 gilt
 - $confidence(X \Rightarrow \emptyset) = 100\%$
 - $confidence(\emptyset \Rightarrow X) = fequency(X)$
 - d.h. wenn $frequency(X) \ge c$ dann haben alle Regeln $Y \Rightarrow (X - Y)$ minimale Konfidenz d.h. $confidence(Y \Rightarrow (X - Y)) \ge c$

Association Rule Mining

Interessantheit von Assoziationsregeln

Beispiel

- Daten über das Verhalten von Schülern in einer Schule mit 5000 Schülern
- Itemsets mit Support:

60% der Schüler spielen Fußball, 75% der Schüler essen Schokoriegel 40% der Schüler spielen Fußball *und* essen Schokoriegel

Assoziationsregeln:

"Spielt Fußball" \Rightarrow "Isst Schokoriegel", Konfidenz = 67%

TRUE \Rightarrow "Isst Schokoriegel", Konfidenz = 75%

Fußball spielen und Schokoriegel essen sind negativ korreliert

Association Rule Mining

Aufgabenstellung

- Herausfiltern von irreführenden Assoziationsregeln
- Bedingung für eine Regel $A \Rightarrow B$

$$\frac{P(A \cap B)}{P(A)} > P(B) - d$$

für eine geeignete Konstante d > 0

Maß für die "Interessantheit" einer Regel

$$\frac{P(A \cap B)}{P(A)} - P(B)$$

 Je größer der Wert für eine Regel ist, desto interessanter ist der durch die Regel ausgedrückte Zusammenhang zwischen A und B.

Fazit

- Frequent Itemset Mining findet häufig auftretende Teilmengen in Transaktionsdatenbanken
- Assoziationsregeln unterteilen diese Teilmengen in Regeln (Kopf und Rumpf)
- Hauptaufwand entsteht beim Finden der frequent Itemsets
- Itemset Mining ist der bekannteste Vertreter des allgemeineren Data Mining Tasks, Frequent Pattern Mining
- Es existieren noch weitere Vertreter für kompliziertere Objektdarstellungen: frequent Substrings, frequent Subgraph...