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General idea
– Compare the density around a point with the density around its local 

neighbors

The relative density of a point compared to its neighbors is– The relative density of a point compared to its neighbors is 
computed as an outlier score

– Approaches also differ in how to estimate densityApproaches also differ in how to estimate density

Basic assumptionBasic assumption
– The density around a normal data object is similar to the density 

around its neighborsg

– The density around an outlier is considerably different to the density 
around its neighbors 
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Local Outlier Factor (LOF) [Breunig et al. 1999], [Breunig et al. 2000]

– Motivation:
• Distance-based outlier detection models have problems with different 

densitiesdensities
• How to compare the neighborhood of points from areas of different 

densities?

• Example
– DB(,)-outlier model

» Parameters  and  cannot be chosen

C1

» Parameters  and  cannot be chosen
so that o2 is an outlier but none of the

points in cluster C1 (e.g. q) is an outlier

– Outliers based on kNN-distance

» kNN-distances of objects in C1 (e.g. q)

are larger than the kNN-distance of o2

q

g 2

– Solution: consider relative density

C2 o2
o1
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– Model

Reachabilit distance• Reachability distance
– Introduces a smoothing factor

)},(),(distancemax{),( opdistokopdistreach k 

• Local reachability distance (lrd) of point p

)},(),({),( ppk

– Inverse of the average reach-dists of the kNNs of p
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• Local outlier factor (LOF) of point p
– Average ratio of lrds of neighbors of p and lrd of p
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– Properties
• LOF  1: point is in a cluster• LOF  1: point is in a cluster

(region with homogeneous

density around the point andy p

its neighbors)

Data set
• LOF >> 1: point is an outlier

a a se
LOFs (MinPts = 40)

– Discussion
Ch i f k (Mi P i h i i l ) ifi h f• Choice of k (MinPts in the original paper) specifies the reference set

• Originally implements a local approach (resolution depends on the 
user’s choice for k)use s c o ce o )

• Outputs a scoring (assigns an LOF value to each point)
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Variants of LOF
– Mining top-n local outliers [Jin et al. 2001]

• Idea:
– Usually a user is only interested in the top-n outliers– Usually, a user is only interested in the top-n outliers

– Do not compute the LOF for all data objects => save runtime

• Method
– Compress data points into micro clusters using the CFs of BIRCH [Zhang et al. 

1996]

– Derive upper and lower bounds of the reachability distances, lrd-values, and 
LOF-values for points within a micro clusters

– Compute upper and lower bounds of LOF values for micro clusters and sort 
results w.r.t. ascending lower bound

– Prune micro clusters that cannot accommodate points among the top-n
outliers (n highest LOF values)

– Iteratively refine remaining micro clusters and prune points accordinglyIteratively refine remaining micro clusters and prune points accordingly
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Variants of LOF (cont.)
– Connectivity-based outlier factor (COF) [Tang et al. 2002]

• Motivation
– In regions of low density it may be hard to detect outliers– In regions of low density, it may be hard to detect outliers

– Choose a low value for k is often not appropriate

• Solution
– Treat “low density” and “isolation” differently

• Example

Data set LOF COF
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Influenced Outlierness (INFLO) [Jin et al. 2006]

– Motivation
• If clusters of different densities are not clearly separated, LOF will have 

problemsproblems

Point p will have a higher LOF than 
points q or r which is counter intuitive

– Idea

p q

Idea
• Take symmetric neighborhood relationship into account

• Influence space (kIS(p)) of a point p includes its kNNs (kNN(p)) and its 
reverse kNNs (RkNN(p))

kIS(p) = kNN(p)  RkNN(p))

= {q q q }


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– Model
• Density is simply measured by the inverse of the kNN distance i e• Density is simply measured by the inverse of the kNN distance, i.e.,

den(p) = 1/k-distance(p)

• Influenced outlierness of a point p

)(
)(

oden
pkISo




INFLO k h i f h d i f bj i h

)(
)( ))((

)(

pden
pINFLO pkISCard

k

p



• INFLO takes the ratio of the average density of objects in the 
neighborhood of a point p (i.e., in kNN(p)  RkNN(p)) to p’s density

– Proposed algorithms for mining top-n outliers
• Index-basedIndex based

• Two-way approach

• Micro cluster based approach
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– Properties
• Similar to LOF• Similar to LOF

• INFLO  1: point is in a cluster
• INFLO >> 1: point is an outlier p

– Discussion
• Outputs an outlier score

• Originally proposed as a local approach (resolution of the reference set 
kIS can be adjusted by the user setting parameter k)kIS can be adjusted by the user setting parameter k)
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Local outlier correlation integral (LOCI) [Papadimitriou et al. 2003]

– Idea is similar to LOF and variants

– Differences to LOF
T k th i hb h d i t d f kNN f t• Take the -neighborhood instead of kNNs as reference set

• Test multiple resolutions (here called “granularities”) of the reference 
set to get rid of any input parameterg y p p

– Model
• -neighborhood of a point p: N(p,) = {q | dist(p,q)  }
• Local density of an object p: number of objects in N(p,)
• Average density of the neighborhood
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• Multi-granularity Deviation Factor (MDEF)
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N(p1,  . )– Intuition

N(p,)

N(p, . )

))(( qNCardN(p2,  . )
)),((

)),((
),,( ),(




 

pNCard

qNCard
pden pNq






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– σMDEF(p,,α) is the normalized standard deviation of the densities
of all points from N(p,)

),,(),,(  pdenpden

p p,

– Properties
• MDEF = 0 for points within a cluster



• MDEF > 0 for outliers or MDEF > 3.MDEF => outlier
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– Features
• Parameters  and  are automatically determined• Parameters  and  are automatically determined

• In fact, all possible values for  are tested

• LOCI plot displays for a given point p the following values w.r.t. p p y g p p g
– Card(N(p, .))
– den(p, , ) with a border of  3.den(p, , ) 

  
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– Algorithms
• Exact solution is rather expensive (compute MDEF values for all• Exact solution is rather expensive (compute MDEF values for all 

possible  values)
• aLOCI: fast, approximate solution

– Discretize data space using a grid with side

length 2
– Approximate range queries trough grid cells pi p2α– Approximate range queries trough grid cells

–  - neighborhood of point p: ζ(p,)
all cells that are completely covered by

pp2α

-sphere around p
– Then, 2α
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where cj is the object count the corresponding cell

– Since different  values are needed, different grids are constructed with 
varying resolution



– These different grids can be managed efficiently using a Quad-tree
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– Discussion
• Exponential runtime w.r.t. data dimensionality

• Output:
– Label: if MDEF of a point > 3.MDEF then this point is marked as outlierLabel: if MDEF of a point > 3 MDEF then this point is marked as outlier

– LOCI plot

» At which resolution is a point an outlier (if any)

» Additional information such as diameter of clusters, distances to 
clusters, etc.

• All interesting resolutions, i.e., possible values for , (from local to g p
global) are tested


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Literatur
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– One sample class of adaptations of existing models to a specific p p g p
problem (high dimensional data)

– Why is that problem important?
• Some (ten) years ago:

– Data recording was expansive

– Variables (attributes) where carefully evaluated whether or not they are– Variables (attributes) where carefully evaluated whether or not they are 
relevant for the analysis task

– Data sets usually contain only a few number of relevant dimensions

N d• Nowadays:
– Data recording is easy and cheap

– “Everyone measures everything”, attributes are not evaluated just measuredy y g , j

– Data sets usually contain a large number of features

» Molecular biology: gene expression data with >1,000 of genes per 
patientpatient

» Customer recommendation: ratings of 10-100 of products per person

» …


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ChallengesChallenges
– Curse of dimensionality

• Relative contrast between distances decreases with increasing g
dimensionality

• Data are very sparse, almost all points are outliers

C f i hb h d b i l• Concept of neighborhood becomes meaningless

– Solutions
• Use more robust distance functions and find full-dimensional outliers

• Find outliers in projections (subspaces) of the original feature space• Find outliers in projections (subspaces) of the original feature space


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ABOD – angle-based outlier degree [Kriegel et al 2008]ABOD angle based outlier degree [Kriegel et al. 2008]

– Rational
• Angles are more stable than distances in high dimensional spaces (cf. e.g. the g g p g

popularity of cosine-based similarity measures for text data)

• Object o is an outlier if most other objects are located in similar directions

• Object o is no outlier if many other objects are located in varying directionsObject o is no outlier if many other objects are located in varying directions
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– Basic assumptionp
• Outliers are at the border of the data distribution

• Normal points are in the center of the data distribution

M d l– Model
• Consider for a given point p the angle between

px and py for any two x,y from the database
p

x

py

pyangle between 
px and py

px and py for any two x,y from the database

• Consider the spectrum of all these angles

• The broadness of this spectrum is a score for the outlierness of a point

y

0.3

-0.2

1 211

-0.7

inner point outlier
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– Model (cont.)
• Measure the variance of the angle spectrum

• Weighted by the corresponding distances (for lower dimensional data 
sets where angles are less reliable)


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
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 22,
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VARpABOD

DByx







 ypxp

• Properties
– Small ABOD => outlier

– High ABOD => no outlierHigh ABOD > no outlier
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– Algorithmsg
• Naïve algorithm is in O(n3)

• Approximate algorithm based on random sampling for mining top-n
outliers

– Do not consider all pairs of other points x,y in the database to compute the 
angles

– Compute ABOD based on samples => lower bound of the real ABOD

– Filter out points that have a high lower bound

– Refine (compute the exact ABOD value) only for a small number of points– Refine (compute the exact ABOD value) only for a small number of points

– Discussion
• Global approach to outlier detectionpp

• Outputs an outlier score (inversely scaled: high ABOD => inlier, low 
ABOD => outlier)
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Grid-based subspace outlier detection [Aggarwal and Yu 2000]Grid based subspace outlier detection [Aggarwal and Yu 2000]

– Model
• Partition data space by an equi-depth grid ( = number of cells in each p y q p g

dimension)
• Sparsity coefficient S(C) for a k-dimensional grid cell C

)()( kC
))(1()(

)()()(
11

1

kk

k

n
nCcountCS










where count(C) is the number of

data objects in Cj

• S(C) < 0 => count(C) is lower than

expected

• Outliers are those objects that are

located in lower-dimensional cells

with negative sparsity coefficient
 = 3
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– Algorithmg
• Find the m grid cells (projections) with the lowest sparsity coefficients

• Brute-force algorithm is in O(d)
• Evolutionary algorithm (input: m and the dimensionality of the cells)

– Discussion
• Results need not be the points from the optimal cells

V d l ( ll bj h i ll i h l i h b• Very coarse model (all objects that are in cell with less points than to be 
expected)

• Quality depends on grid resolution and grid positionQuality depends on grid resolution and grid position

• Outputs a labeling
• Implements a global approach (key criterion: globally expected number 

of points within a cell)
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SOD – subspace outlier degree [Kriegel et al 2009]

xA2

SOD subspace outlier degree [Kriegel et al. 2009]

– Motivation
• Outliers may be visible only in subspaces

x

x

py y p

of the original data

– Model

x

x
xxxxx

A

p

• Compute the subspace in which the

kNNs of a point p minimize the
i

A1

H (kNN(p))

variance
• Compute the hyperplane H (kNN(p))

that is orthogonal to that subspace

A2 x
x

that is orthogonal to that subspace

• Take the distance of p to the

hyperplane as measure for its

p
A3 x

x

x
dist(H (kNN(p), p)

“outlierness”

A
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– Discussion
• Assumes that kNNs of outliers have a lower-dimensional projection with 

small variance

• Resolution is local (can be adjusted by the user via the parameter k)
• Output is a scoring (SOD value)
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1 Introduction √1. Introduction √

2. Statistical Tests √

3 Depth based Approaches √3. Depth-based Approaches √

4. Deviation-based Approaches  √

5. Distance-based Approaches  √

6. Density-based Approaches √y pp

7. High-dimensional Approaches √

8 Summary8. Summary
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SummarySummary
– Historical evolution of outlier detection methods

• Statistical tests
– Limited (univariate, no mixture model, outliers are rare, only one kind of 

distribution)

– No emphasis on computational time– No emphasis on computational time

• Extensions to these tests
– Multivariate, mixture models, …

– Still no emphasis on computational time

• Database-driven approaches
First still statistically driven intuition of outliers– First, still statistically driven intuition of outliers

– Emphasis on computational complexity

• Database and data mining approaches
– Spatial intuition of outliers

– Even stronger focus on computational complexity

(e g invention of top-n problem to propose new efficient algorithms)


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– Consequenceq
• Different models are based on different assumptions to model outliers

– These assumptions are often not explicit but only implicit and not well 
d t dunderstood

• Different models provide different types of output (labeling/scoring)p yp p ( g g)

• Different models consider outlier at different resolutions (global/local)

• Thus, different models will produce different results

• A thorough and comprehensive comparison between different models 
and approaches is still missingpp g
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OutlookOutlook
– Experimental evaluation of different approaches to understand and 

compare differences and common propertiesp p p

– A first step towards unification of the diverse approaches: providing 
density-based outlier scores as probability values [Kriegel et al. 2009a]: 
j d i h d i i f h li f h d ljudging the deviation of the outlier score from the expected value

– Visualization

N d l– New models

– Performance issues

Complex data types– Complex data types

– High-dimensional data

–– …

– Und v.a. jede Menge offene Themen für DA, MA, BA Arbeiten
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