

# Skript zur Vorlesung Knowledge Discovery in Databases im Wintersemester 2009/2010

# Kapitel 7: Assoziationsregeln

Skript © 2003 Johannes Aßfalg, Christian Böhm, Karsten Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Jörg Sander und Matthias Schubert

http://www.dbs.ifi.lmu.de/Lehre/KDD



# 7. Assoziationsregeln



# Inhalt dieses Kapitels

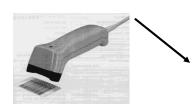
- 7.1 Einleitung
- 7.2 Grundlagen
- 7.3 Itemset Mining
- 7.4 Association Rule Mining



# 7.1 Einleitung



#### Motivation



{Butter, Brot, Milch, Zucker} {Butter, Mehl, Milch, Zucker} {Butter, Eier, Milch, Salz} {Eier}

{Butter, Mehl, Milch, Salz, Zucker}

Transaktionsdatenbank

#### Warenkorbanalyse

- · Welche Artikel werden häufig miteinander gekauft?
- Anwendungen
  - Verbesserung des Laden-Layouts
  - Cross Marketing
  - gezielte Attached Mailings/Add-on Sales

343



# **Einleitung**



# Assoziationsregeln

#### Regeln der Form

"Rumpf → Kopf [support, confidence]"



Beispiele

Kaulth Wi

 $kauft(X, "Windeln") \rightarrow kauft(X, "Bier") [0.5\%, 60\%]$ 

hauptfach(X, "CS")  $\wedge$  kurs(X, "DB")  $\rightarrow$  abschluß(X, "A") [1%, 75%]

98% aller Kunden, die Reifen und Autozubehör kaufen, bringen ihr Auto auch zum Service



# 7.2 Grundlagen



- Items  $I = \{i_1, ..., i_m\}$  eine Menge von Literalen z.B. Waren/Artikel bei einem Einkauf
- Itemset X: Menge von Items  $X \subseteq I$ z.B. ein kompletter Einkauf
- Datenbank DB: Menge von Transaktionen T mit  $T = (tid, X_T)$ z.B. Menge aller Einkäufe (=Transaktionen) in einem bestimmten Zeitraum
- Transaktion T enthält Itemset X:  $X \subseteq T$
- Items in Transaktionen oder Itemsets sind lexikographisch sortiert:

Itemset 
$$X = (x_1, x_2, ..., x_k)$$
, wobei  $x_1 \le x_2 \le ... \le x_k$ 

- · Länge des Itemsets: Anzahl der Elemente in einem Itemset
- k-Itemset: ein Itemset der Länge k
   {Butter, Brot, Milch, Zucker} ist ein 4-Itemset
   {Mehl, Wurst} ist ein 2-Itemset

345



#### Grundlagen



• Cover eines Itemset X: Menge der Transaktionen T, die X enthalten:

$$cover(X) = \{tid \mid (tid, X_T) \in DB, X \subseteq X_T\}$$

Support des Itemset X in DB: Anteil der Transaktionen in DB, die X

enthalten: 
$$support(X) = |cover(X)|$$

Bemerkung: 
$$support(\emptyset) = |DB|$$

• Häufigkeit eines Itemsets X in DB:

Wahrscheinlichkeit, daß 
$$X$$
 in einer Transaktion  $T \in DB$  auftritt:  
 $frequency(X) = P(X) = support(X) / |DB|$ 

• Häufig auftretendes (frequent) Itemset X in DB:

$$support(X) \ge s$$

$$(0 \le s \le |DB|)$$

s ist ein absoluter support-Grenzwert

Alternativ: 
$$frequency(X) \ge s_{rel}$$

wobei 
$$s = \lceil s_{rel} \cdot IDBI \rceil$$



#### Grundlagen



#### **Problem 1 (Itemset Mining)**

#### Gegeben:

- eine Menge von Items I
- eine Transaktionsdatenbank DB über I
- Ein absoluter support-Grenzwert s

Finde alle frequent Itemsets in *DB*, d.h.  $\{X \subseteq I \mid support(X) \ge s\}$ 

| TransaktionsID | ID Items |  |
|----------------|----------|--|
| 2000           | A,B,C    |  |
| 1000           | A,C      |  |
| 4000           | A,D      |  |
| 5000           | B,E,F    |  |

Support der 1-Itemsets:

(A): 75%, (B), (C): 50%, (D), (E), (F): 25%,

Support der 2-Itemsets:

(A, C): 50%,

(A, B), (A, D), (B, C), (B, E), (B, F), (E, F): 25%

347



#### Grundlagen



• Assoziationsregel: Implikation der Form  $X \Rightarrow Y$ ,

wobei gilt: 
$$X \subseteq I$$
,  $Y \subseteq I$  und  $X \cap Y = \emptyset$ ,  
 $X$  heißt  $Rumpf$   
 $Y$  heißt  $Kopf$ 

• Support einer Assoziationsregel  $A \equiv X \Rightarrow Y$  in DB: Support von  $X \cup Y$  in DB

$$support(A) = support(X \cup Y)$$

Häufigkeit einer Assoziationsregel A in DB:

$$frequency(A) = support(A) / |DB|$$

• Konfidenz einer Assoziationsregel  $A = X \Rightarrow Y$  in DB:

Anteil der Transaktionen, die die Menge Yenthalten, in der Teilmenge aller Transaktionen aus *DB*, welche die Menge *X* enthalten

$$confidence(A) = \frac{support(X \cup Y)}{support(X)}$$



#### Grundlagen



#### **Problem 2 (Association Rule Mining)**

#### Gegeben:

- eine Menge von Items I
- eine Transaktionsdatenbank DB über I
- Ein absoluter support-Grenzwert s und confidenz-Grenzwert c

Finde alle Assoziationsregeln  $A \equiv X \Rightarrow Y$  in *DB*, die mind. einen Support von s und mind. eine Konfidenz von c haben, d.h.

$${A \equiv X \Rightarrow Y \mid support(A) \ge s, confidence(A) \ge c}$$

| TransaktionsID | Items |  |  |
|----------------|-------|--|--|
| 2000           | A,B,C |  |  |
| 1000           | A,C   |  |  |
| 4000           | A,D   |  |  |
| 5000           | B,E,F |  |  |

#### Assoziationsregeln:

$$A \Rightarrow C$$
 (Support = 50%, Konfidenz = 66.6%)

$$C \Rightarrow A$$
 (Support = 50%, Konfidenz = 100%)

349



#### Grundlagen



#### Problem 1 ist Teilproblem von Problem 2:

- Itemset X häufig bzgl. s
- Y Teilmenge von X
- $Y \Rightarrow (X Y)$  hat minimalen Support bzgl. s

#### 2-stufiqes Verfahren um Assoziationsregeln zu bestimmen:

1. Bestimmung der frequent Itemsets:

"naiver" Algorithmus: zähle die Häufigkeit aller k-elementigen Teilmengen von I ineffizient, da(|I|) solcher Teilmengen

Gesamt-Kosten:  $O(2^{|I|})$ 

- => Apriori-Algorithmus und Varianten, Tiefensuch-Algorithmen
- 2. Generierung der Assoziationsregeln mit minimaler Konfidenz bzgl. c: generiere  $Y \Rightarrow (X - Y)$  aus frequent Itemset X



# **Running Example**



| tid | $X_T$               |
|-----|---------------------|
| 1   | {Bier, Chips, Wein} |
| 2   | {Bier, Chips}       |
| 3   | {Pizza, Wein}       |
| 4   | {Chips, Pizza}      |

#### Transaktionsdatenbank

 $I = \{\text{Bier, Chips, Pizza, Wein}\}\$ 

| Itemset             | Cover     | Sup. | Freq. |
|---------------------|-----------|------|-------|
| {}                  | {1,2,3,4} | 4    | 100 % |
| {Bier}              | {1,2}     | 2    | 50 %  |
| {Chips}             | {1,2,4}   | 3    | 75 %  |
| {Pizza}             | {3,4}     | 2    | 50 %  |
| {Wein}              | {1,3}     | 2    | 50 %  |
| {Bier, Chips}       | {1,2}     | 2    | 50 %  |
| {Bier, Wein}        | {1}       | 1    | 25 %  |
| {Chips, Pizza}      | {4}       | 1    | 25 %  |
| {Chips, Wein}       | {1}       | 1    | 25 %  |
| {Pizza, Wein}       | {3}       | 1    | 25 %  |
| {Bier, Chips, Wein} | {1}       | 1    | 25 %  |

| Regel                        | Sup. | Freq. | Conf. |
|------------------------------|------|-------|-------|
| ${Bier} \Rightarrow {Chips}$ | 2    | 50 %  | 100 % |
| {Bier} ⇒ {Wein}              | 1    | 25 %  | 50 %  |
| {Chips} ⇒ {Bier}             | 2    | 50 %  | 66 %  |
| {Pizza} ⇒ {Chips}            | 1    | 25 %  | 50 %  |
| {Pizza} ⇒ {Wein}             | 1    | 25 %  | 50 %  |
| {Wein} ⇒ {Bier}              | 1    | 25 %  | 50 %  |
| {Wein} ⇒ {Chips}             | 1    | 25 %  | 50 %  |
| {Wein} ⇒ {Pizza}             | 1    | 25 %  | 50 %  |
| {Bier, Chips} ⇒ {Wein}       | 1    | 25 %  | 50 %  |
| {Bier, Wein} ⇒ {Chips}       | 1    | 25 %  | 100 % |
| {Chips, Wein} ⇒ {Bier}       | 1    | 25 %  | 100 % |
| {Bier} ⇒ {Chips, Wein}       | 1    | 25 %  | 50 %  |
| {Wein} ⇒ {Bier, Chips}       | 1    | 25 %  | 50 %  |

351



# 7.3 Itemset Mining



- "naiver" Algorithmus: zähle die Häufigkeit aller k-Itemsets von I teste insgesamt  $\sum_{k=1}^m \binom{m}{k} = 2^m 1$  Itemsets, d.h.  $O(2^m)$  mit m = |I|
- Kandidaten Itemset X:

Algorithmus evaluiert, ob X frequent ist Kandidatenmenge sollte so klein wie möglich sein

· Monotonie Eigenschaft von frequent Itemsets

Wenn X frequent ist, sind alle Teilmengen  $Y \subseteq X$  auch frequent.

**Umkehrung:** Wenn *X* nicht frequent ist, können alle Itemsets, die *X* als Teilmenge enthalten, auch nicht mehr frequent sein!

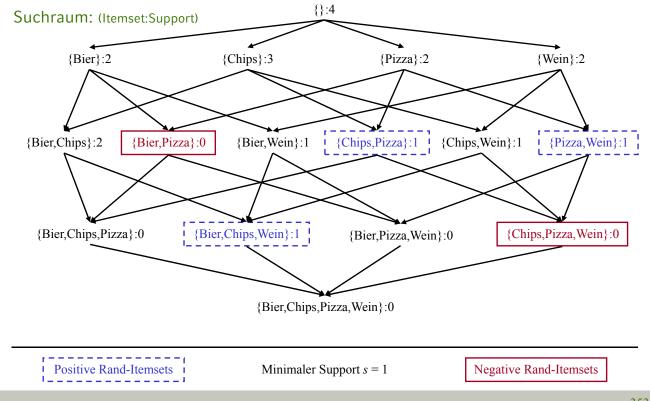
Rand (Border) Itemset X:

alle Teilmengen  $Y \subset X$  sind frequent, alle Obermengen  $Z \supset X$  sind nicht frequent

- positiver Rand: X is selbst frequent
- negativer Rand: X ist selbst nicht frequent









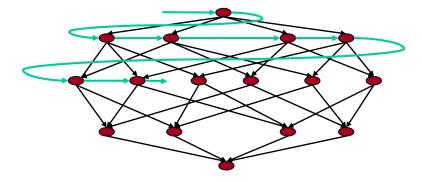


#### **Itemset Mining**



#### Apriori Algorithmus [Agrawal & Srikant 1994]

 zuerst die einelementigen Frequent Itemsets bestimmen, dann die zweielementigen und so weiter (Breitensuche)



- Finden von k+1-elementigen Frequent Itemsets:
- nur solche k+1-elementigen Itemsets betrachten, für die alle k-elementigen Teilmengen häufig auftreten
- Bestimmung des Supports durch Zählen auf der Datenbank (ein Scan)





 $C_k$ : die zu zählenden Kandidaten-Itemsets der Länge k  $L_k$ : Menge aller häufig vorkommenden Itemsets der Länge k

```
Apriori(I, DB, minsup)
L_1 := \{ \text{frequent } 1\text{-Itemsets aus } I \}; \\ k := 2; \\ \text{while } L_{k-1} \stackrel{1}{>} \emptyset \text{ do} \\ C_k := \text{AprioriKandidatenGenerierung}(L_{k-1}); \\ \text{for each } T \text{ransaktion } T \in DB \text{ do} \\ CT := \text{Subset}(C_k, T); // \text{ alle Kandidaten aus } C_k, \text{ die } \\ // \text{ der Transaktion } T \text{ enthalten sind;} \\ \text{for each Kandidat } c \in CT \text{ do } c.count++; \\ L_k := \{ c \in C_k \mid c.count \geq minsup \}; \\ k++; \\ \text{return } \bigcup_k L_k; \\ \end{cases}
```

355



#### **Itemset Mining**



#### Kandidatengenerierung

Anforderungen an Kandidaten-Itemsets  $C_k$ 

- Obermenge von  $L_k$
- wesentlich kleiner als die Menge aller k-elementigen Teilmengen von I

Schritt 1: Join

- k-1-elementige Frequent Itemsets p und q
- p und q werden miteinander verbunden, wenn sie in den ersten k–2 Items übereinstimmen

$$p \in L_{k-1}$$
 (Bier, Chips, Pizza)
$$(\text{Bier, Chips, Pizza, Wein}) \in C_k$$
 $q \in L_{k-1}$  (Bier, Chips, Wein)





#### Kandidatengenerierung

#### Schritt 2: Pruning

entferne alle Kandidaten-k-Itemsets, die eine k-1-elementige Teilmenge enthalten, die nicht zu  $L_{k-1}$  gehört

#### Beispiel:

$$L_3 = \{(1\ 2\ 3),\ (1\ 2\ 4),\ (1\ 3\ 4),\ (1\ 3\ 5),\ (2\ 3\ 4)\}$$

nach dem Join-Schritt: Kandidaten = {(1 2 3 4), (1 3 4 5)}

im Pruning-Schritt:

lösche (1345)

$$C_4 = \{(1\ 2\ 3\ 4)\}$$

357



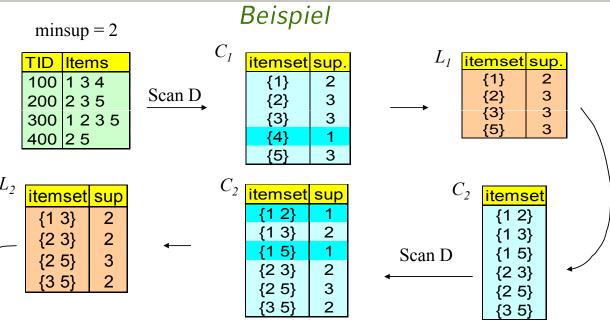
#### **Itemset Mining**

C<sub>3</sub> itemset

{2 3 5}

Scan D





itemset sup

{2 3 5}





#### Eigenschaften:

- Benötigt für alle Itemsets der Länge *k* einen Datenbank-Scan
  - $\Rightarrow O(l \cdot |D|)$
- Menge der generierten Kandidaten, die nicht frequent sind entspricht dem negativen Rand

$$\Rightarrow O\left(\begin{bmatrix} m \\ \lfloor m/2 \rfloor \end{bmatrix}\right) \qquad \text{(Sperners Theorem)}$$

 Wenn nicht alle Kandidaten Itemsets in den Hauptspeicher passen, werden Kandidaten blockweise auf min. Support überprüft

359



#### **Itemset Mining**



#### Verbesserungen (u.a.)

- · Hashbaum zur Unterstützung der Subset-Funktion:
  - Subset-Funktion muss für jede Transaktion in DB und jede Kandidatenmenge  $C_k$  alle Kandidaten in  $C_k$  finden, die T enthalten
  - Organisiere Kandidaten aus  $C_k$  in einem Hash-Baum
- Tiefensuche statt Breitensuche:
  - Die Cover der Kandidaten-Itemsets in einer Iteration kann sehr groß sein
     ⇒ beim Zählen des supports reicht evtl.
     der Hauptspeicher nicht mehr aus
  - Die Größe der Cover kann evtl. deutlich reduziert werden, indem die Kandidaten-Itemsets in einer Tiefensuch-Strategie erzeugt werden



# 7.4 Association Rule Mining



#### Methode

- häufig vorkommender Itemset X
- für jede Teilmenge Y von X die Regel  $A \equiv Y \Rightarrow (X Y)$  bilden
- Regeln streichen, die nicht die minimale Konfidenz haben
- Berechnung der Konfidenz einer Regel  $Y \Rightarrow (X Y)$

$$confidence(Y \Rightarrow (X - Y)) = \frac{support(X)}{support(Y)}$$

- Speicherung der Frequent Itemsets mit ihrem Support in einer Hashtabelle
  - keine Datenbankzugriffe

361



# **Association Rule Mining**



• Monotonie der Konfidenz bei Assoziationsregeln:

seien 
$$X, Y, Z \subseteq I$$
 Itemsets mit  $X \cap Y = \emptyset$ 

Es gilt: 
$$confidence(X \setminus Z \Rightarrow Y \cup Z) \leq confidence(X \Rightarrow Y)$$

- Bottom-up Bestimmung der Assoziationsregeln ähnlich Apriori-Algorithmus möglich
- Beachte: für jedes Itemset X mit support(X) > 0 gilt
  - $confidence(X \Rightarrow \varnothing) = 100\%$
  - $confidence(\emptyset \Rightarrow X) = fequency(X)$ 
    - d.h. wenn  $frequency(X) \ge c$

dann haben alle Regeln  $Y \Rightarrow (X - Y)$  minimale Konfidenz

d.h.  $confidence(Y \Rightarrow (X - Y)) \ge c$ 



#### **Association Rule Mining**



#### Interessantheit von Assoziationsregeln

#### Beispiel

- Daten über das Verhalten von Schülern in einer Schule mit 5000 Schülern
- Itemsets mit Support:

60% der Schüler spielen Fußball, 75% der Schüler essen Schokoriegel 40% der Schüler spielen Fußball *und* essen Schokoriegel

Assoziationsregeln:

"Spielt Fußball"  $\Rightarrow$  "Isst Schokoriegel", Konfidenz = 67%

TRUE  $\Rightarrow$  "Isst Schokoriegel", Konfidenz = 75%



Fußball spielen und Schokoriegel essen sind negativ korreliert

363



#### **Association Rule Mining**



# Aufgabenstellung

- Herausfiltern von irreführenden Assoziationsregeln
- Bedingung für eine Regel  $A \Rightarrow B$

$$\frac{P(A \cap B)}{P(A)} > P(B) - d$$

für eine geeignete Konstante d > 0

· Maß für die "Interessantheit" einer Regel

$$\frac{P(A \cap B)}{P(A)} - P(B)$$

• Je größer der Wert für eine Regel ist, desto interessanter ist der durch die Regel ausgedrückte Zusammenhang zwischen A und B.



#### **Fazit**



- Frequent Itemset Mining findet häufig auftretende Teilmengen in Transaktionsdatenbanken
- Assoziationsregeln unterteilen diese Teilmengen in Regeln (Kopf und Rumpf)
- · Hauptaufwand entsteht beim Finden der frequent Itemsets
- Itemset Mining ist der bekannteste Vertreter des allgemeineren Data Mining Tasks, Frequent Pattern Mining
- Es existieren noch weitere Vertreter für kompliziertere Objektdarstellungen: frequent Substrings, frequent Subgraph...

365