

Skript zur Vorlesung **Knowledge Discovery in Databases** im Wintersemester 2009/2010

Kapitel 4: Regression

Skript © 2003 Johannes Aßfalg, Christian Böhm, Karsten Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Jörg Sander und Matthias Schubert

http://www.dbs.ifi.lmu.de/Lehre/KDD

GROUP

Regression

Klassifikation: Jedes Objekt o hat eine Klasse $C_i \in \{C_1, ..., C_k\}$

Klassifikator: $O \rightarrow C$

C ist diskret!!

Regression: Jedem Objekt o ist ein Zielvariable $Y \in \Re$ zugeordnet.

Regression: $O \rightarrow \Re$

Aufgabe der Regression ist die Vorhersage eines kontinuierlichen Wertes.

Zum Beispiel:

Vorhersage des erwarteten Absatzes eines Produkts oder

empfohlene Menge an Düngemittel für einen bestimmten Bodentyp.

Arten der Regression

lineare Regression

gesuchte Vorhersage Variable Y verhält sich linear.

multiple Regression

lineare Regression, bei der Y von einem Vektor abhängt.

nicht-lineare Regression

allgemeiner Fall, die beschriebene Regressionsfunktion muss nicht-linear sein.

z.B. Logistic Regression, Poisson Regression

165

Lineare Regression

Gegeben: Objekt ist durch Zufallsvariable X beschrieben. Trainingsobjekte haben zusätzlich noch Ausprägungen der Zielvariable Y.

Annahme: $Y = \alpha + \beta \cdot X$

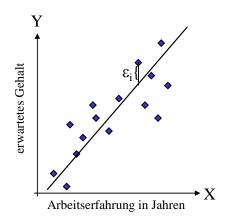
Die beobachteten Werte von Y weichen mit konstanter Varianz von der Linie ab.

Gesucht: Linie auf der Erwartungswerte liegen.

Lösung: Minimiere quadratischen Fehler. (Least Squares Methode)

D.h. bestimme α und β , so daß

$$L = \sum_{i=1}^{s} \varepsilon^{2} = \sum_{i=1}^{s} (Y_{i} - \alpha - \beta \cdot X_{i})^{2}$$
 minimal wird.



 ε_i ist der Abstand von der angenommenen Regressionsgerade.

Lineare Regression

Lösungsansatz:

Die partiellen Ableitungen nach β und α ergeben folgende Abschätzungen.

Steigung:
$$\beta = \frac{\sum_{i=1}^{s} (x_i - E(x))(y_i - E(y))}{\sum_{i=1}^{s} (x_i - E(x))^2}$$

Y-Achsenabschnitt: $\alpha = E(Y) - \beta \cdot E(X)$

167

Multiple Regression

Multiple Regression:

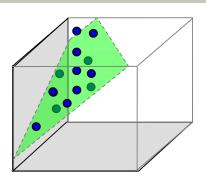
Objekt wird durch *d*-dimensionalen Featurevektor beschrieben.

Annahme: Y sei von einer Linear-Kombination abhängig.

$$Y = \alpha + \sum_{i=1}^{d} \beta_i \cdot X_i$$

Lösung: minimiere quadratischen Fehler (Least Squares Methode)

$$L = \sum_{i=1}^{s} \varepsilon^{2} = \sum_{i=1}^{s} \left(Y_{i} - \alpha - \sum_{k=1}^{d} (\beta_{k} \cdot X_{i,k}) \right)^{2}$$



Achtung: Es ergibt sich eine Regressionshyperebene!!

Nicht-Lineare Regression

Gegeben: Zufallsvariable X und Zielvariable Y.

Annahme: Y hängt nicht-linear von X ab.

Beispiel: polynomielle Regression

Annahme:

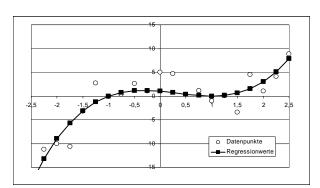
$$Y = \alpha + \beta_1 \cdot X + \beta_2 X^2 + \beta_3 X^3$$

Lösung: Definiere neue Variablen.

$$X_1 = X$$
, $X_2 = X^2$, $X_3 = X^3$

Löse lineare multiple Regression

$$Y = \alpha + \beta_1 \cdot X_1 + \beta_2 X_2 + \beta_3 X_3$$



169

Weiterführende Regressionsverfahren

ε-insensitive Fehlerfunktion

bis jetzt müssen alle Punkte auf Regressionsgerade liegen.

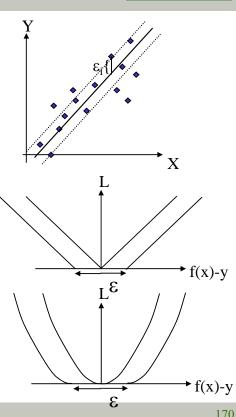
Aber: Häufig ist Abstand ε von der Linie noch akzeptabel

=> definiere Rand mit Größe ε, in dem der Fehler toleriert wird.

$$L^{\varepsilon}(x, y, f) = |y - f(x)|_{\varepsilon} = \max(0, |y - f(x)| - \varepsilon)$$

oder als quadratischer Fehler

$$L_2^{\varepsilon}(x, y, f) = |y - f(x)|_2^{\varepsilon}$$

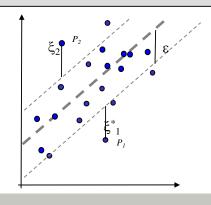


Support Vector Regression

Auf Basis der ε-insenstiven Fehlerfunktion kann man jetzt ein Optimierungsproblem ähnlich zu dem der SVMs definieren

Primäres OP: minimiere $J(\vec{w}, b, \vec{\xi}) = ||\vec{w}||^2 + C \cdot \sum_{i=1}^n \xi_i^2 + \xi_i^{*2}$

unter Nebenbedingung für
$$\forall i \in [1..n]$$
 sei $y_i - \left(\overrightarrow{w}, \overrightarrow{x_i} \right) + b \right) \le \varepsilon + \xi_i$
$$\left(\overrightarrow{w}, \overrightarrow{x_i} \right) + b - y_i \le \varepsilon + \xi_i^* \quad \text{und} \quad \xi_i, \quad \xi_i^* \ge 0$$



- 2 Typen von Slack-Variablen für überhalb und unterhalb des Zielwertes y
- Beachte: ξ_iξ*_i=0, da Objekt entweder überhalb oder unterhalb der Regressionsgerade liegt.

171

Support Vector Regression

Überführt in eine Form mit Langrange Multiplikatoren:

Duales OP: maximiere

$$L(\overrightarrow{\alpha}) = \sum_{i=1}^{n} y_{i} \left(\alpha_{i}^{*} - \alpha_{i}\right) - \varepsilon \sum_{i=1}^{n} \left(\alpha_{i}^{*} - \alpha_{i}\right) - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\alpha_{i}^{*} - \alpha_{i}\right) \cdot \left(\alpha_{j}^{*} - \alpha_{j}\right) \cdot \left(\overrightarrow{x}_{i}, \overrightarrow{x}_{j}\right) + \frac{1}{C} \delta_{i,j}$$

mit Bedingung $\sum_{i=1}^{n} (\alpha_i^* - \alpha_i) = 0$ und $0 \le \alpha_i, 0 \le \alpha_i^*, i=1..n$

Beachte das hierbei gilt: $\alpha_i \alpha^* = 0$ und $\xi_i \xi^*_i = 0$

Verallgemeinertes Problem mit Kernelfunktion:

Duales OP: maximiere
$$L(\vec{\alpha}) = \sum_{i=1}^{n} y_i \alpha_i - \varepsilon \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \cdot \alpha_j \cdot K(\vec{x}_i, \vec{x}_j)$$

mit Bedingung $\sum_{i=1}^{n} \alpha_i = 0$ und $-C \le \alpha_i \le C$, i=1..n

Support Vector Regression

Anmerkungen:

- Über Kernel lässt sich bequem nicht lineare Regression realisieren
- Training mit den gleichen Lösungsverfahren wie bei SVMs für die Klassifikation
- Es gibt weitere Varianten: z.B. Ridge-Regression. Hierbei ist $\varepsilon = 0$.
- D.h. es handelt sich um Least Squares Regression mit einer Einschränkung der Gewichte.

Ridge Regression :
$$\overrightarrow{J(w,b,\xi)} = \lambda \left\| \overrightarrow{w} \right\|^2 + C \cdot \sum_{i=1}^n \xi_i^2$$
 unter Nebenbedingung für $\forall i \in [1..n]$ sei $y_i - \left(\overrightarrow{w}, \overrightarrow{x_i} \right) + b \right) = \xi_i$, $i = 1,..,l$

173

Fazit Regression

- Regression löst ein ähnliches Problem wie Klassifikation.
 Vorhersage: kontinuierlicher Werte.
- Regressionsgeraden können häufig analytisch bestimmt werden.
- · Weiterführende Verfahren mit Kernelfunktionen.
- Anmerkung: Logistische Regression Anwendung von Regression auf Klassifikation.
 (Klasse A: Y = 1, Klasse B: Y = 0)