

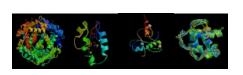


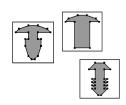
# Skript zur Vorlesung Knowledge Discovery in Databases im Wintersemester 2009/2010

## Kapitel 2: Merkmalsräume

Skript © 2003 Johannes Aßfalg, Christian Böhm, Karsten Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Jörg Sander und Matthias Schubert

http://www.dbs.ifi.lmu.de/Lehre/KDD


23




### Merkmalsräume



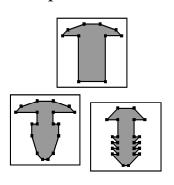
- Motivation:
  - Zentrales Konzept beim Data Mining: Ähnlichkeit von Datenbankobjekten
    - Clustering: Zusammenfassen ähnlicher Objekte in Gruppen
    - Klassifikation: Zuordnung von Objekten zu einer Klasse ähnlicher Objekte
  - Definition einer geeigneten Distanzfunktion auf Datenbankobjekten nicht immer einfach (besonders in Nicht-Standard-Datenbanken)
    - Bilder
    - CAD-Objekte
    - Proteine
    - Textdokumente
    - Polygonzüge (GIS)
    - etc.

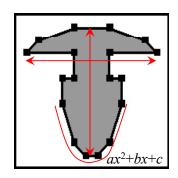









### Merkmale




## Merkmale ("Features" von Objekten)

- Oft sind die betrachteten Objekte komplex
- Eine Aufgabe des KDD-Experten ist dann, geeignete Merkmale (*Features*) zu definieren bzw. auszuwählen, die für die Unterscheidung (Klassifikation, Ähnlichkeit) der Objekte relevant sind.

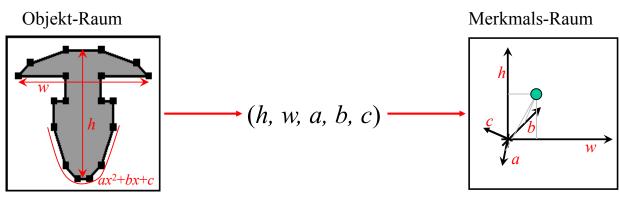
## Beispiel: CAD-Zeichnungen:





Mögliche Merkmale:

- - -


25



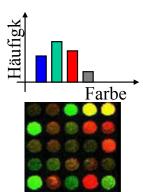
### Merkmale



## Beispiel: CAD-Zeichnungen (cont.)



- Im Kontext von statistischen Betrachtungen werden die Merkmale häufig auch als *Variablen* bezeichnet
- Die ausgewählten Merkmale werden zu Merkmals-Vektoren (Feature Vector) zusammengefasst
- Der Merkmalsraum ist häufig hochdimensional (im Beispiel 5-dim.)




#### Merkmale



Bilddatenbanken: Farbhistogramme





Gen-Datenbanken: Expressionslevel

Data 25 Mining 15 Feature 12 Object 7

Text-Datenbanken: Begriffs-Häufigkeiten

Der Feature-Ansatz ermöglicht einheitliche Behandlung von Objekten verschiedenster Anwendungsklassen

27



### Merkmale



#### Skalen-Niveaus von Merkmalen

## Nominal (kategorisch)

#### Charakteristik:

Nur feststellbar, ob der Wert gleich oder verschieden ist. Keine Richtung (besser, schlechter) und kein Abstand. Merkmale mit nur zwei Werten nennt man dichotom

#### Beispiele:

Geschlecht (dichotom) Augenfarbe Gesund/krank (dichotom)

## Ordinal

#### Charakteristik:

Es existiert eine Ordnungsrelation (besser/schlechter) zwischen den Kategorien, aber kein einheitlicher Abstand

#### Beispiele:

Schulnote (metrisch?) Güteklasse Altersklasse

#### Metrisch

#### Charakteristik:

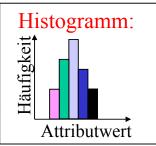
Sowohl Differenzen als auch Verhältnisse zwischen den Werten sind aussagekräftig. Die Werte können diskret oder stetig sein.

## Beispiele:

Gewicht (stetig) Verkaufszahl (diskret) Alter (stetig oder diskret)



## **Univariate Deskription von Merkmalen**




Sei  $x_1,...,x_n$  eine Stichprobe eines Merkmals X.

 Absolute Häufigkeit: Für jeden Wert a ist h(a)

die Anzahl des Auftretens in der Stichprobe

Relative Häufigkeit: f(a) = h(a) / n



Die folgenden Maße sind nur für metrische Merkmale sinnvoll:

- $\mu = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$ **Arithmetisches Mittel:**
- Median: Das mittlere Element bei aufst. Sortierung
- $VAR(X) = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i \overline{x})^2$   $\sigma = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (x_i \overline{x})^2}$ Varianz:
- Standardabweichung:

29



## Multivariate Deskription von Merkmalen



## Kontingenztabelle

- für kategorische Merkmale X und Y
- repräsentiert für zwei Merkmale X und Y die absolute Häufigkeit  $h_{ik}$  jeder Kombination  $(x_i, y_k)$  und alle Randhäufigkeiten  $h_{i,k}$  und  $h_{i,k}$  von X und Y

|                  | MittelfristigeArbeitslosigkeit | Langfristige Arbeitslosigkeit |     |
|------------------|--------------------------------|-------------------------------|-----|
| Keine Ausbildung | 19                             | 18                            | 37  |
| Lehre            | 43                             | 20                            | 63  |
|                  | 62                             | 38                            | 100 |

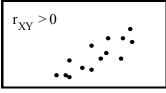
- Wie sollten die relativen Häufigkeiten verteilt sein, wenn die beiden Merkmale keinerlei Abhängigkeit besitzen?
- χ<sup>2</sup>-Koeffizient Differenz zwischen dem bei Unabhängigkeit erwarteten und dem tatsächlich

beobachteten Wert von  $h_{ij}$  (Maß für die Stärke der Abhängigkeit)

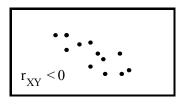


## **Multivariate Deskription von Merkmalen**




#### Korrelationskoeffizient

- für numerische Merkmale X und Y
- · wie stark sind die Abweichungen vom jeweiligen Mittelwert


korreliert? 
$$(x_i - \bar{x}) \cdot (y_i - \bar{y})$$
  

$$\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

• Beispiele



$$r_{XY} \approx 0$$



$$r_{XY} \approx 0$$

31



## Räume und Distanzfunktionen



## Merkmalsraum (Featureraum)

- Intuitiv: ein Wertebereich/Domain mit Distanzfunktion
- Formal: Featureraum **F** = (*Dom*, *dist*)
- Dom ist eine (geordnete) Menge von Merkmalen (Features)
- $dist: Dom \times Dom \rightarrow \mathbb{R}$  ist eine totale (Distanz)-Funktion mit den folgenden Eigenschaften

• 
$$\forall p,q \in Dom, p \neq q : dist(p,q) > 0$$
  
•  $\forall o \in Dom : dist(o,o) = 0$ 

•  $\forall p,q \in Dom : dist(p,q) = dist(q,p)$  Symmetrie



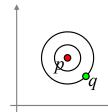
## Räume und Distanzfunktionen



- Metrischer Raum
  - Formal: Metrischer Raum  $\mathbf{M} = (Dom, dist)$  mit den folgenden Eigenschaften
    - M ist ein Featureraum
    - $\forall o, p, q \in Dom : dist(o, p) \leq dist(o, q) + dist(q, p)$  Dreiecksungleichung
- Wichtigstes Beispiel: Euklidischer Vektorraum
  - Formal: Euklidischer Vektorraum **E** = (*Dom*, *dist*) mit
    - (Dom, dist) ist ein metrischer Raum
    - $Dom = \mathbb{R}^d$
- Sprechweise:
  - Euklidischer Vektorraum = "Featureraum"
  - Vektoren (Objekte im Eulidischen Featureraum) = "Featurevektoren"
  - Die d Dimensionen des Vektorraums = "Features"

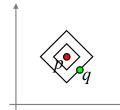
33




## Räume und Distanzfunktionen



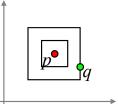
• Ähnlichkeit von Feature Vektoren (Euklidische Vektoren)


Euklidische Norm  $(L_2)$ : Manhattan-Norm  $(L_1)$ :

$$dist_1 = ((p_1 - q_1)^2 + (p_2 - q_2)^2 + ...)^{1/2}$$
  $dist_2 = |p_1 - q_1| + |p_2 - q_2| + ...$ 



Natürlichstes Distanzmaß


$$dist_2 = |p_1 - q_1| + |p_2 - q_2| + \dots$$



Die Unähnlichkeiten der einzelnen Merkmale werden direkt addiert

Maximums-Norm  $(L_{\infty})$ :

$$dist_{\infty} = \max\{|p_1-q_1|, |p_2-q_2|,...\}$$



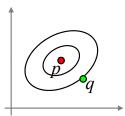
Die Unähnlichkeit des am wenigsten ähnlichen Merkmals zählt

Verallgemeinerung L<sub>p</sub>-Abstandsmaß:  $dist_p = (|p_1-q_1|^p + |p_2-q_2|^p + ...)^{1/p}$ 



### Räume und Distanzfunktionen




Gewichtete Euklidische Norm:  $dist = (w_1(p_1-q_1)^2 + w_2(p_2-q_2)^2 + ...)^{1/2}$ 

Häufig sind die Wertebereiche der Merkmale deutlich unterschiedlich. Beispiel: Merkmal  $M_1 \in [0.01 ... 0.05]$  Merkmal  $M_2 \in [3.1 ... 22.2]$ 

Damit M<sub>1</sub> überhaupt berücksichtigt wird, muss es höher gewichtet werden

Quadratische Form:

$$dist = ((p - q) \mathbf{M} (p - q)^{\mathsf{T}})^{1/2}$$



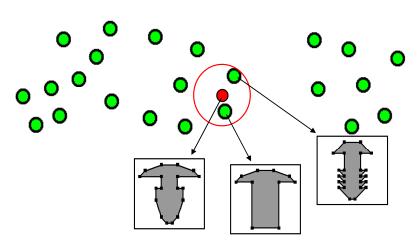
Bei den bisherigen Ähnlichkeitsmaßen werden die Merkmale nur getrennt gewichtet.

Besonders bei Farbhistogrammen müssen auch *verschiedene* Merkmale gemeinsam gewichtet werden.

Statt mit Distanzmaßen, die die Unähnlichkeit zweier Objekte messen, arbeitet man manchmal auch mit positiven Ähnlichkeitsmaßen

35




## Räume und Distanzfunktionen



Spezifiziere Anfrage-Objekt  $q \in DB$  und...

- ... suche ähnliche Objekte − Range-Query (Radius e)  $RQ(q,e) = \{o \in DB \mid dist(q,o) \le \varepsilon\}$
- ... suche die k ähnlichsten Objekte Nearest Neighbor

 $NN(q,k) \in DB$  mit mind. k Objekten, so dass  $\forall o \in NN(q,k), p \in DB$  -NN(q,k) : dist(q,o) < dist(q,p)





### Räume und Distanzfunktionen

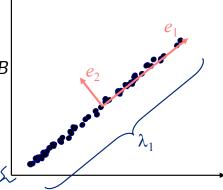


Deskription von Featurevektoren

- Gegeben: Menge DB von Featurevektoren
- Zentroid (Centroid, vgl. Arithmetisches Mittel):  $\mu_{DB} = \frac{1}{DB} \cdot \sum_{o \in DB} o$ 
  - Achtung: bei allgem. Metrischen Räumen muss Centroid nicht notwendigerweise existieren!!!
- Medoid  $m_{DB}$ :
  - Der Featurevektor, der am nächsten zum Centroiden gelegen ist (die kleinste Distanz zum Zentroiden hat)
  - Bei allgem. Metrischen Räumen: Objekt mit dem kleinsten durschnittlichen Abstand zu allen anderen Objekten aus *DB*
- Varianz (der Distanzen):  $Var_{DB} = \frac{1}{DB} \cdot \sum_{o \in DB} dist(o, \mu_{DB})$
- Standardabweichung analog

37



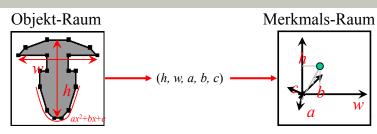

## Räume und Distanzfunktionen



Hauptachsenanalyse eine Menge DB von Euklidischen Vektoren

- Kovarianz-Matrix: 
$$\Sigma_{DB} = \frac{1}{|DB|} \sum_{o \in D} (o - \mu_{DB}) (o - \mu_{DB})^{T}$$

- Die Matrix wird zerlegt in
  - eine Orthonormalmatrix  $V = [e_1, ..., e_d]$  (Eigenvektoren)
  - und eine Diagonalmatrix  $\Lambda = \text{diag}(\lambda_1, ..., \lambda_d)$  (Eigenwerte)
  - so dass gilt:  $\Sigma_{DB} = V \Lambda V^T$
- Interpretation:
  - Eigenvektoren:
     Hauptausrichtung der Datenpunkte in DB
  - Eigenwerte:
     Varianz der Datenpunkte in DB entlang der entspr. Eigenvektoren






## Feature-Transformationen für räumliche Objekte



Feature Transformation für räumliche Objekte (CAD-Daten, Proteine, ...)



- Invarianzen
  - Gleichheit (oder Ähnlichkeit) von Formen unabhängig von Lage und Orientierung im Raum
  - Beispiele gleicher Formen im 2D und im 3D:



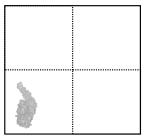


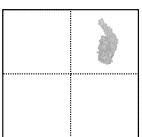




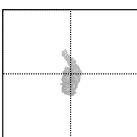
- Erwünscht:
  - Kanonische Darstellung, d.h. ohne Lage- und Orientierungsinformation
  - Verallgemeinerung auf andere Objekteigenschaften

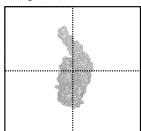
39



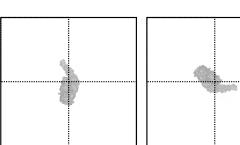


## Feature-Transformationen für räumliche Objekte



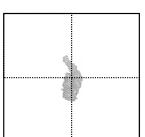

Die wichtigsten Invarianzen

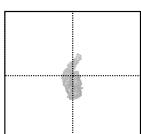

**Translation** 






Skalierung




Rotation



Spiegelung



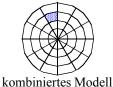




## Feature-Transformationen für räumliche Objekte



Volume Model [Ankerst, Kastenmüller, Kriegel, Seidl 99]


- Applikationen: CAD, Protein 3D-Strukturen
- Idee: Formhistogramme für 3D Objekte
  - Partitioniere den 3D-Raum in Zellen (Histogramm-Bins).
  - Bestimme den Anteil an Punkten des Objektes pro Zelle (normiertes Histogramm).

• Durch die Normierung werden die Histogramme unabhängig von der Punktedichte.

Partitionierungen



Sektorenmodell



Beispiel



Seryl-tRNA Synthetase



Schalenmodell (120 Schalen)



Sektorenmodell (122 Sektoren)



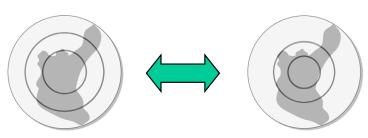
kombiniertes Modell (20 Schalen, 6 Sektoren)

41

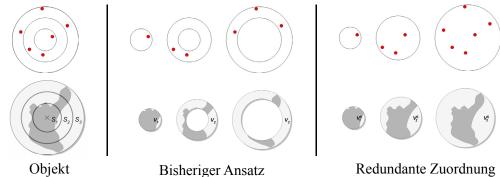


## Feature-Transformationen für räumliche Objekte




- Formale Definition der Histogramme
  - Schalenmodell: Definiere die Bins über den Abstand zum Mittelpunkt, d.h. Anzahl der Punkte auf der jeweiligen Schale.
  - Sektorenmodell: Anzahl der Punkte im jeweiligen Sektor.
  - Kombiniertes Modell: Synthese aus Schalen- und Sektorenmodell.
- Invarianzen
  - Translationsinvarianz durch Lagenormierung: Verschiebung des Schwerpunkts eines Objektes in den Ursprung.
  - Rotationsinvarianz durch Hauptachsentransformation:
    - Drehung der Objekte, so dass die Hauptachsen auf den Koordinatenachsen liegen.
    - unnötig beim Schalenmodell, dieses ist inhärent rotationsinvariant.




## Feature-Transformationen für räumliche Objekte



- Verbesserung der Formhistogramme [Aßfalg, Kriegel, Kröger, Pötke 05]
  - Proportionale Aufteilung



Redundante Zuordnung zu den Bins

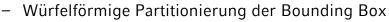


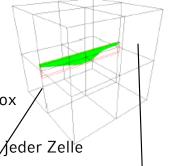
Redundante Zuordnung

43

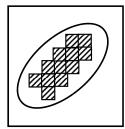


## **Feature-Transformationen** für räumliche Objekte

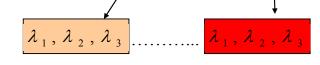




Eigenvalue Model [Kriegel, Kröger, Mashael, Pfeifle, Pötke, Seidl 03]

Volumen-Diskretisierung durch Voxel (3dimensionale Pixel)








Bestimmung der Eigenwerte des Voxelinhaltes Jeder Zelle









## Feature-Transformationen für räumliche Objekte



#### Invarianzen

- Translationsinvarianz durch Lagenormierung:
   Verschiebung des Schwerpunkts eines Objektes in den Ursprung.
- Skalierungsinvarianz durch Voxelisierung der Bounding Box/Bounding Cube des Objekts mit immer gleicher Voxelauflösung
- Rotationsinvarianz
  - Hauptachsentransformation (völlig rotationsinvariant, aber bei manchen Objekten sensitiv gegenüber kleinen Änderungen)
  - CAD Objekte oft in "vernünftiger" Lage durch Konstrukteur abgespeichert, dann besser 90-Grad-Rotationsinvarianz: Zur Laufzeit werden die 24 Würfelpositionen durch Permutation der Merkmalsvektor-Elemente simuliert, die Distanz zweier Objekte ist das Minimum über 24 Distanzen
- Reflektionsinvarianz
  - Betrachte 48 statt 24 Permutationen zur Laufzeit (incl. Spiegelung des Würfels)

45



## Feature-Transformationen für räumliche Objekte



Protein Datenbanken [Borgwardt, Ong, Schönauer, Vishwanathan, Smola, Kriegel 05] Idee:

- Graphmodel für Protein 3D-Strukturen
- Knoten: Untereinheiten von Proteinen (secondary structure elements)
- Kanten: Nachbarschaft von Untereinheiten innerhalb der 3D-Struktur und entlang der Aminosäure Sequenz.

