Exercise 9: Classification

Knowledge Discovery in Databases I
SS 2016
There already exists a very nice solution to exercise 9-1 from the previous year. You can find the slides under the following link (look for exercise 10-3):

http://www.dbs.ifi.lmu.de/Lehre/KDD/SS15/uebung/Tutorial08.pdf
Additional note to clarify some questions which came up in the exercise sessions:

- Bayes rule + Law of total probability:

\[P(c_j|o) = \frac{P(o|c_j)P(c_j)}{P(o)} = \frac{P(o|c_j)P(c_j)}{\sum_{c_j \in C} P(o|c_j)P(c_j)} \]

- Thus: \(\sum_{c_j \in C} P(c_j|o) = 1 \)

- This also holds under the Naive Bayes assumption

- Note: The Naive Bayes assumption does not state that the attributes are independent, i.e. \(P(o) = \prod_{i=1}^{d} P(o_i) \), but that the attributes are conditionally independent given class \(c_j \), i.e. \(P(o|c_j) = \prod_{i=1}^{d} P(o_i|c_j) \)
The solution to Exercise 9-2 will be provided as a *jupyter* notebook.
Suppose, you have a 2-dimensional dataset consisting of 5 classes with 90 objects each, arranged as follows, and that the classes are linearly separable.
Suppose further, that someone has produced a poor implementation of the m-fold cross validation procedure and applied it in combination with a multiclass linear classifier to obtain the following results:

<table>
<thead>
<tr>
<th>m</th>
<th>accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20%</td>
</tr>
<tr>
<td>3</td>
<td>40%</td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>100%</td>
</tr>
<tr>
<td>10</td>
<td>100%</td>
</tr>
</tbody>
</table>
What is the problem with the implementation of the m-fold cross validation?

• **Observations:**
 - The classes are linearly separable.
 - If we have enough samples from every class in the training set, we can, in principle, train a multiclass linear classifier with no error. Thus, we could expect (almost) perfect accuracy.
 - On the other hand, if for one class no samples are in the training set, we cannot classify any object of that class correctly.

• **Problem with the implementation:**
 - The folds are constructed by simply cutting the data into consecutive blocks.
 - This is problematic, since the data is sorted, as we will see in the following.
Describe and explain the result for each value of m in short and precise sentences.

- **$m = 2$**:
 - Suppose, we use the first fold for training
 - Then, the last two classes are not represented in the training data
 - Thus, at least $\frac{4}{5}$ of the test samples are misclassified
 - On the other hand, half of the samples of class C_3 are in the training set
 - If we assume, that all test samples of class C_3 are classified correctly, we arrive at the observed accuracy of $\frac{1}{5} = 20\%$
 - By symmetry: Same results, if we use the second fold for training
Exercise 9-3: m-fold Cross Validation

• $m = 3$:
 • Each fold consists of $\frac{5}{3}$ blocks
 • Suppose, we use the first two folds for training
 • By the same reasoning as for $m = 2$:
 • $\frac{3}{5}$ of the test sample are misclassified
 • $\frac{2}{5} = 40\%$ of the test samples can be classified correctly
 • Again by symmetry, we obtain the same results if we use any of the other folds for testing
Exercise 9-3: m-fold Cross Validation

• $m = 5$:
 • Now each fold corresponds to exactly one class
 • The class that is used for testing is not represented in the training data
 • Thus, all test samples are misclassified and we get an accuracy of 0%

• $m = 6$ and $m = 10$:
 • Now m is large enough, such that a fold can never contain all samples from a certain class
 • Thus, all classes are represented in the training set and we can observe an accuracy of 100%
How could the implementation be improved?

- At least: All classes that appear in the dataset should always be represented in the training data.
- It is further reasonable, to construct training and test sets, such that the class distributions in both sets represent the class distribution in the whole dataset.
- This can be achieved by performing *stratified sampling*:
 - Divide each class ("stratum") separately into \(m \) chunks, either deterministically or by random sampling.
 - Construct a fold for the \(m \)-fold cross-validation by taking a chunk from each class and combining them.