Exercise 6-1 K-Medoid (PAM)

Consider the following 2-dimensional data set:

\[x_1 = (1, 4), x_2 = (1, 6), x_3 = (2, 6), x_4 = (3, 8), x_5 = (4, 3), x_6 = (5, 2). \]

(a) Perform the first loop of the PAM algorithm \((k = 2)\) using the Euclidian distance. Select \(x_1\) and \(x_3\) as initial medoids and compute the resulting medoids and clusters.

(b) How can the clustering result \(C_1 = \{x_1, x_5, x_6\}, C_2 = \{x_2, x_3, x_4\}\) be obtained with the PAM algorithm \((k = 2)\) using the weighted Manhattan distance

\[d(x, y) = w_1 \cdot |x_1 - y_1| + w_2 \cdot |x_2 - y_2|. \]

Assume that \(x_1\) and \(x_3\) are the initial medoids and give values for the weights \(w_1\) and \(w_2\) for the first and second dimension respectively.

Exercise 6-2 Silhouette-Coefficient and K-Means

Construct a low dimensional data set \(D\) together with a clustering \(\{C_1, C_2\}\) computed by \(k\)-means with the following property:

There exists an object \(o \in D\) with a negative silhouette coefficient \(s(o) < 0\).

Provide the means of the clusters and compute the silhouette coefficient for the corresponding point \(o\).

Hint: It is possible to find such an example with 5 data points.

Exercise 6-3 Implementation of EM

Implement the EM algorithm and run it on the datasets introduced in exercise 5-3. What do you observe in comparison to your results with k-Means?