Exercise 6: Clustering

Knowledge Discovery in Databases I
SS 2016
Consider the following 2-dimensional data set.

a) Perform the first loop of the PAM algorithm (k=2) using the Euclidian distance. Select x_1 and x_3 as initial medoids and compute the resulting medoids and clusters.
Compute compactness of the initial clustering:

$$TD = d(x_3, x_2) + d(x_3, x_4) + d(x_1, x_5) + d(x_1, x_6)$$

$$= 1 + 3\sqrt{5} + \sqrt{10}$$
• For each pair of medoid and non-medoid \((M,N)\): Compute compactness if swapped \((TD_{M\leftrightarrow N})\)
• Find the pair for which \(TD_{M\leftrightarrow N}\) is minimal and perform the swap if \(TD_{M\leftrightarrow N} < TD\)
In this case: Swap x_1 with either x_5 or x_6:

$$TD_{x_1 \leftrightarrow x_5} = TD_{x_1 \leftrightarrow x_6}$$

$$= d(x_3, x_2) + d(x_3, x_4) + d(x_3, x_1) + d(x_5, x_6)$$

$$= 1 + 2\sqrt{5} + \sqrt{2} < T$$
b) How can the clustering result
\[C_1 = \{x_1, x_5, x_6\}, C_2 = \{x_2, x_3, x_4\} \]
be obtained with the PAM algorithm (k=2) using the weighted Manhattan distance
\[d(x, y) = w_1 \cdot |x_1 - y_1| + w_2 \cdot |x_2 - y_2| \]?
Assume that \(x_1 \) and \(x_3 \) are the initial medoids and give values for the weights \(w_1 \) and \(w_2 \) for the first and second dimension respectively.
Exercise 6-1 (b): K-Medoid (PAM)

- For the desired clusters C_1 and C_2, the medoids would be x_5 and x_3, respectively.
- Under the standard Euclidean or Manhattan Distance, x_1 would be assigned to medoid x_3 rather than x_5.

![Diagram showing clusters C_1 and C_2 with medoids and points assigned to clusters.](image)
• Idea: Attach a higher weight to the second dimension, such that

\[d(x_1, x_3) > d(x_1, x_5) \]
\[\iff w_1 |1 - 2| + w_2 |4 - 6| > w_1 |1 - 4| + w_2 |4 - 3| \]
\[\iff w_1 + 2w_2 > 3w_1 + w_2 \]
\[\iff w_2 > 2w_1 \]

• That is, if we set \(w_2 \) more than twice as large than \(w_1 \) (e.g. \(w_1 = 0.3, w_2 = 0.7 \)), then PAM will return the desired clustering
Construct a low dimensional data set \(D \) together with a clustering \(\{ C_1, C_2 \} \) computed by k-means with the following property:

There exists an object \(o \in D \) with a negative silhouette coefficient \(s(o) < 0 \).

Provide the means of the clusters and compute the silhouette coefficient for the corresponding object \(o \).
Our example is based on the following ideas:

- All objects need to be closer to the centroid of their own cluster than to centroids of other clusters. Otherwise, k-means would not have terminated.
- In two dimensions, we can symmetrically expand a cluster in one dimension to make the point distances within the cluster arbitrarily large, but without changing the centroid of the cluster or getting too close to a different cluster.
- We illustrate this with four points.
• On the following 4-point dataset with the initial centroids as indicated, k-means would produce the clusters C_1 and C_2 (irrespective of the value of δ):
- We have:

\[a(o) = \frac{2}{3} \delta, \quad b(o) = 1 \]

- If we choose \(\delta \) large enough, we can achieve that \(a(o) > b(o) \)

- In particular, we will get

\[s(o) = \frac{b(o) - a(o)}{\max\{a(o), b(o)\}} = \frac{1 - \frac{2}{3} \delta}{\frac{2}{3} \delta} = \frac{3}{2 \delta} - 1 \]

and thus

\[s(o) \to -1 \text{ for } \delta \to \infty \]

i.e. we can make the silhouette of \(o \) arbitrarily bad.
Note: Unfortunately, the example provided by a student in the Friday Group does not work. This is due to the normalization of the a-value (divide by the number of points in the cluster, rather than by the number of summed distances). I apologize, that I did not notice this during the exercise session. In fact, this issue was exactly the motivation for us to „blow up“ the cluster of o.
The solution to Exercise 6-3 will be provided as a *jupyter* notebook.